
LINEAR SPACES

FOR PHYSICISTS

Donald W. Trim

The University of Manitoba

c© 2014



TABLE OF CONTENTS

Chapter 1 Vector Spaces

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Linearly Independent and Linearly Dependent Sets of Vectors . . . .9
1.4 Basis and Dimension of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Column Space, Row Space, Null Space, and Rank of a Matrix . . . 24
1.6 Changing Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Subspace Components of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 2 Linear Transformations and Linear Operators

2.1 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Matrices Associated With Linear Transformations . . . . . . . . . . . . . . . 52
2.3 Kernel and Range of a Linear Transformation . . . . . . . . . . . . . . . . . . . 63
2.4 Inverse Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Changing Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3 Eigenvalues and Eigenvectors of Linear Operators

3.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
3.1 Bases of Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Generalized Eigenvectors and Jordan Canonical Form . . . . . . . . . . . .92

Chapter 4 Applications of Linear Algebra

4.1 Linear, First-order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Systems of Linear First-order Differential Equations . . . . . . . . . . . . . 97
4.3 Linear Second-order Differential Equations . . . . . . . . . . . . . . . . . . . . . . 103
4.4 Systems of Linear Second-order Differential Equations . . . . . . . . . . . 131
4.5 First-order Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.6 Systems of Linear, First-order Difference Equations . . . . . . . . . . . . . . 151
4.7 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Chapter 5 Real and Complex Inner Product Spaces

5.1 Real Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.2 Complex Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3 Orthogonal Complements and Orthogonal Components of Vectors 172
5.4 Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.5 Least Squares Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 6 Adjoint, Hermitian, and Unitary Operators

6.1 Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
6.2 Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3 Orthogonal and Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4 Infinite Dimensional Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206



SECTION 1.1 1

CHAPTER 1 VECTOR SPACES

§1.1 Introduction

A first course in linear algebra identifies various types of matrices and how they are alge-
braically combined, (added, subtracted, multiplied, and multiplied by scalars), uses Gaussian
and Gauss-Jordan elimination to solve systems of linear equations, evaluates determinants,
and finds inverse matrices. We assume that the reader is familiar with each of these topics.
Toward the end of the first course, there may be a chapter on eigenvalues and eigenvectors of
linear transformations and/or matrices, and perhaps even an introduction to vector spaces.
We do not assume that the reader has studied these topics. We begin our studies of linear
algebra with vector spaces, followed by general discussions on eigenvalues and eigenvectors.

Many structures with which the reader is already familiar are examples of vector spaces.
For instance, geometric vectors in xyz-space are directed line segments. They are often
written in the form v = vxî + vy ĵ + vzk̂, where vx, vy, and vz are their x-, y-, and z-
components, or, alternatively, in the form v = 〈vx, vy, vz〉. We shall see that the set of all
such vectors constitutes a vector space. Likewise, the set of all directed line segments in the
xy-plane constitutes a vector space.

Many other sets of entities are vector spaces, but they bear no resemblance to geometric
vectors. For instance, the set of all m by n matrices, the set of all solutions to a linear,
homogeneous differential equation of order n, the set of all polynomials of degree less than
or equal some integer n, the set of all convergent sequences, and the set of functions that
are continuously differentiable on the interval a < x < b are all vector spaces.

We assume that the reader is familiar with geometry in the xy-plane and xyz-space. For
instance, the reader is expected to be able to find vector and scalar equations of planes in
space; vector, parametric, and symmetric equations of lines in space; and distances between
points, lines and planes. Many of these topics depend on dot and cross products. Not all
vector spaces are equipped with these operations, in particular a cross product. A vector
space equipped with an inner product, the generalization of the dot product, is called an
inner product space. The length of a geometric vector is the square root of the dot product
of the vector with itself ‖v‖ =

√
v · v. A vector space equipped with a norm is called a

normed space. It may seem strange that some of the vector spaces mentioned in the previous
paragraph turn out to be inner product and normed spaces.

Perhaps the biggest difficulty for writer and reader of linear algebra is notation. The
writer must avoid notation that is so arcane that subject matter becomes obscure; we hope
that our notation is sufficiently suggestive that fundamental ideas of linear algebra are trans-
parent to the reader. Should the reader be sufficiently venturesome to seek out other texts
on linear algebra in order to compare presentations, be prepared to see different notations
and nomenclature. The same entity may given a different notation by other authors, and
even a different name.
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§1.2 Definition of a Vector Space

Suppose V is a set of elements, called vectors, and S is a set of elements, called scalars.
In order for V to be a vector space, it must be possible to add vectors, and multiply them
by scalars. In other words, for any two vectors u and v in V , and any scalar a in S, u + v
and au must be defined and be vectors in V . When a set of vectors satisfies this property,
it is said to be closed under vector addition and scalar multiplication.

In order to appreciate the requirements of a vector space, convince yourself that geomet-
ric vectors (directed line segments) in the xy-plane and xyz-space satisfy the the properties
in the following definition.

Definition 1.1 A set V of vectors is said to be a vector space over a set of scalars S if it is closed under
vector addition and scalar multiplication, and if for any vectors u, v, and w in V , and any
scalars a and b in S, the following properties are valid:
(1) u + v = v + u (vector addition is commutative)
(2) (u + v) + w = u + (v + w) (vector addition is associative)
(3) There exists a vector, denoted by 0, called the zero vector, such that 0 + v = v.
(4) For every vector v, there exists a vector, denoted by −v, called the additive inverse,

such that v + (−v) = 0.
(5) a(u + v) = au + av (distributivity of scalar over vector addition)
(6) (a + b)v = av + bv (distributivity of vector over scalar addition)
(7) (ab)v = a(bv)
(8) There exists a scalar, denoted by 1, called the multiplicative identity, such that 1v = v.

When the set of scalars S is the set R of real numbers, V is said to be a real vector
space; when S is the set of complex number C, V is said to be a complex vector space.
Other possibilities for S might be the set of integers or the set of rational numbers.

The set of all geometric vectors in the xy-plane with the usual definitions of vector
addition and scalar multiplication satisfies the conditions of Definition 1.1, and therefore
constitutes a vector space. We denote it by G2. Likewise, the set of geometric vectors
in xyz-space is a vector space denoted by G3. In early studies of geometric vectors, it is
emphasized that the position of the tail of a vector is optional; what is important is the
length and direction of the vector, not its placement. In the context of vector spaces, it is
best to draw vectors with their tails at the origin, and henceforth, we make this agreement.

Closely related to G2 is a vector space denoted by R2. Vectors in R2 are ordered pairs
(x1, x2) of real numbers x1 and x2, and they are added and multiplied by scalars as follows:

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2), a(x1, x2) = (ax1, ax2). (1.1)

This is exactly the way components of vectors in G2 are added and multiplied by scalars. In
other words, vectors in G2 and vectors in R2 are operationally equivalent; it is just the way
in which we regard vectors that differs. Vectors in G2 are directed line segments; vectors
in R2 are ordered pairs. We distinguish between them with angle-brackets surrounding
components of vectors in G2 (such as 〈1,−2〉), and parentheses surrounding vectors in R2

(such as (1,−2)).
In similar fashion, we denote by R3, the vector space of ordered triples (x1, x2, x3) of

real numbers, with vector addition and scalr multiplication defined as in equation 1.1, but
with a third entry,

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3), a(x1, x2, x3) = (ax1, ax2, ax3).(1.2)

Operationally, it is equivalent to G3. The space of ordered n-tuples (x1, x2, . . . , xn) is denoted
by Rn; it has its geometric counterpart in Gn, but we do have difficulty visualizing directed
line segments in this space.
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Vectors in R2 and R3 are pairs and triples of real numbers, nothing more. But because
they are operationally equivalent to vectors in G2 and G3, geometric properties of vectors
in G2 and G3 have corresponding algebraic properties in R2 and R3. Conversely, algebraic
properties in R2 and R3 are reflected by geometric properties in G2 and G3. We make
use of this in the following way. When we want to discuss a new concept in an arbitrary
vector space, we often do so first in G2 and/or G3. With a geometric grasp of the idea,
it is then straightforward to transfer calculations to tuples in R2 and R3, and on to Rn,
spaces without geometry. The final transition is to completely arbitrary vector spaces. For
instance, the numbers vx, vy , and vz for the geometric vector v = vxî + vy ĵ + vzk̂ in G3 are
called the x-, y-, and z-components of the vector. The numbers x1, x2, and x3 for the vector
(x1, x2, x3) in R3 are called the first, second, and third components of the vector. We will
eventually learn how to assign components to vectors in every vector space.

Vector space Rn can be generalized to a complex vector space by using complex numbers
as scalars and complex n-tuples. It is denoted by Cn. Other possibilities for vector spaces
are illustrated below. The reader is asked to verify the assertions in the exercises.

(1) The set of all m by n real matrices, denoted by Mm,n(R), with the usual definition of vector
addition and scalar multiplication by reals is a real vector space.

(2) The set of all m by n complex matrices, denoted by Mm,n(C), with the usual definition of
vector addition and scalar multiplication by complex numbers is a complex vector space.

(3) The set of all real n-tuples with the usual scalar multiplication by complex numbers is not
a vector space.

(4) It might seem unusual to consider the set of all complex n-tuples with scalar multiplication
by real numbers, but it would then be a real vector space, not the vector space Cn. The
adjective “real” identifies the set of scalars, not the set of vectors.

(5) With the usual definitions of addition and scalar multiplication of functions,

(f + g)(x) = f(x) + g(x), (kf)(x) = kf(x),

the set of real-valued functions that have continuous nth derivatives on the interval a ≤ x ≤ b
is a real vector space. It is denoted by Cn[a, b]. In the event that the interval is open,
a < x < b, the space is denoted by Cn(a, b). The vector space of functions with derivatives
of all orders on a ≤ x ≤ b is denoted by C∞[a, b]. The space of continuous functions on
a ≤ x ≤ b is denoted by C0[a, b].

(6) With the usual definitions of polynomial addition and multiplication by a scalar, the set of
real polynomials of degree less than or equal to a fixed integer n ≥ 0 is a real vector space.
The space of real polynomials of only one variable x is denoted by Pn(x). The space of real
polynomials of degree less than or equal to n in x and y is denoted by Pn(x, y). The set of
all real polynomials of all degrees in x is a vector space denoted by P (x).

(7) The set of complex polynomials of degree less than or equal to a fixed integer n ≥ 0 is a
complex vector space. It is denoted by Pn(z).

Example 1.1 Let y1(x), . . . , ym(x) be m real solutions of the linear, nth-order, homogeneous differential
equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a1(x)

dy

dx
+ a0(x)y = 0,

on some interval I where an(x) 6= 0. A linear combination of these solutions is a function of
the form

y(x) = a1y1(x) + a2y2(x) + · · · + amym(x),

where a1, a2, . . ., am are real constants. Is the set of all linear combinations a vector space?



4 SECTION 1.2

Solution Because the differential equation is linear and homogeneous, the superposition
principle states that any linear combination of solutions is also a solution. In other words, the
set of solutions is closed under vector addition and scalar multiplication. It is straightforward
to check that the conditions of Definition 1.1 are satisfied. Consequently, the set of solutions
is a vector space with solutions of the differential equation being vectors in the space.•

Frequently, we encounter a subset W of vectors in a vector space V . By itself, W might
be a vector space, but it also might not be one. When a nonempty subset W of a vector
space V is itself a vector space, it is called a subspace of V . One way to determine whether
W is a subspace is to check the requirements of Definition 1.1. But, because vectors in W
are vectors in V , most of the properties in Definition 1.1 are inherited by these vectors.
According to the following theorem, all that we need check is that W is closed under vector
addition and scalar multiplication.

Theorem 1.1 A nonempty subset W of a vector space V is a subspace of V if it is closed under vector
addition and scalar multiplication; that is, for any two vectors u and v and any scalar a,
the vectors u + v and au are in W .

Proof Since vectors in W are in V , they must satisfy properties (1),(2),(5),(6),(7), and
(8) in Definition 1.1. Since W is closed under vector addition and scalar multiplication, it
follows that if v is in W so also is −v and v − v = 0, properties (3) and (4).

Below are subsets of vector spaces; some are subspaces, some are not.

(1) There are many G2 subspaces of G3. For instance, dropping the third component vz of
vectors 〈vx, vy, xz〉 in G3 leads to a subspace; vectors 〈vx, vy〉 in the xy-plane. Requiring
components to satisfy 3vx + 2vy − vz = 0 defines another subspace; vectors whose tips lie in
the plane 3x+2y−z = 0. The addition of any two vectors in the plane, or any multiple of a
vector in the plane, is also in the plane. Requiring components to satisfy 3vx +2vy −vz = 5,
a nonhomogeneous version of the previous condition, does not lead to a subspace. Vectors
with tips in this plane do not add to give a vector with its tip in the plane, and a multiple
of a vector with tip in the plane does not have its tip in the plane.

(2) Corresponding to the situation in (1), the set of vectors (x1, x2, x3) in R3 that satisfies
x1 + 2x2 + 4x3 = 0 constitutes a subspace. Vectors that satisfy x1 + 2x2 + 4x3 = 1 do not
form a subspace.

(3) The set of all real, diagonal n × n matrices is a subspace of Mn,n(R). It is also a subspace
of Mn,n(C).

(4) The space Cn[a, b] of real-valued functions that have continuous nth derivatives on the
interval [a, b] is a subspace of Cn−1[a, b] which is a subspace of Cn−2[a, b], which is a subspace
of Cn−3[a, b], and so on until C0[a, b].

Since a subspace of a vector space is itself a vector space, it must contain the zero
vector. We state this as a corollary to Theorem 1.1.

Corollary 1.1.1 Every subspace of a vector space contains the zero vector.

The only reason that we state this is that it is sometimes a quick way to prove that a
subset of a vector space is not a subspace. If the subset does not contain the zero vector, it
cannot be a subspace. Here is an example.

Example 1.2 Is the subset of all m× n real matrices with (1, 1) entry equal to 1 a subspace of Mm,n(R)?

Solution Since the subset does not contain the m × n zero matrix, the subset is not a
subspace.•

Example 1.3 The equation Ax+By+Cz = 0, where A, B, and C are constants, describes a plane through
the origin in space. Show that the subset of all vectors that lie in this plane constitutes a
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subspace of G3. Describe the subspace algebraically.

Solution First, recall that we have agreed to draw vectors in G3 with their tails at the
origin. Since the plane passes through the origin, it follows that the sum of any two vectors
in the plane is a vector in the plane, and a constant times any vector in the plane is also in
the plane. Hence, the subset is a subspace. The components 〈vx, vy, vz〉 of any vector in the
subspace must satisfy Avx + Bvy + Cvz = 0.•

Example 1.4 The equations A1x + B1y + C1z = 0 and A2x + B2y + C2z = 0, where all six coefficients are
constants, describe a line through the origin in space. Show that the subset of all vectors
that lie along this line constitutes a subspace of G3. Describe the subspace algebraically.

Solution Because the line passes through the origin, the sum of any two vectors along
the line is a vector along the line, and a constant times any vector along the line is also
along the line. Hence, the subset is a subspace. The components 〈vx, vy, vz〉 of any vector
in the subspace must satisfy A1vx + B1vy + C1vz = 0 , A2vx + B2vy + C2vz = 0.•

Example 1.5 Is the subset of vectors 〈v1, v2, . . . , vn〉 in Gn that satisfy the equation a1v1 + a2v2 + · · · +
anvn = 0, where the ai are constants, not all zero, a subspace?

Solution Since the set is closed under vector addition and scalar multiplication, the set
is a subspace. It is called a hyperplane in Gn.•

The smallest subspace of a vector space V is the subspace consisting only of the zero
vector in V ; the largest subspace is V itself. These may be the only two subspaces of V .
If there are other subspaces, they are called proper subspaces. Every proper subspace
must contain the zero vector and at least one nonzero vector, and there must be at least
one vector in the space that is not in the subspace.

EXERCISES 1.2

In Exercises 1–11 determine whether the set of vectors constitutes a vector space. If the set is
not a vector space, find at least one of the properties in the definition that fails to be met.

1. For any fixed values of m and n, the set Mm,n(R) of all m × n real matrices with all real numbers R as
scalars.

2. For any fixed values of m and n, the set Mm,n(C) of all m×n complex matrices with all complex numbers
C as scalars.

3. The set of all real polynomials Pn(x) of degree less than or equal to a fixed integer n ≥ 0 with scalars R.

4. The set of all complex polynomials Pn(z) of degree less than or equal to a fixed integer n ≥ 0 with scalars
C.

5. The set of all pairs (x1, x2) of real numbers with addition and scalar multiplication defined as

(x1, x2) + (y1, y2) = (x1 + y1, x2 − y2), a(x1, x2) = (ax1, ax2).

6. The set of triples (x1, x2, x3) of real numbers with addition and scalar multiplication defined as

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1 + 1, x2 + y2 + 1, x3 + y3 + 1), a(x1, x2, x3) = (ax1, ax2, ax3).

7. (a) The set of solutions of the differential equation

d2y

dx2
− 10

dy

dx
+ 25y = 0.

(b) The set of solutions of the differential equation



6 SECTION 1.2

d2y

dx2
− 10

dy

dx
+ 25y = 25.

(c) Explain the difference between the two situations.

8. (a) The set of solutions of the differential equation

dy

dx
= y.

(b) The set of solutions of the differential equation

dy

dx
= y2.

(c) Explain the difference between the two situations.

9. The set of 2 × 2 real matrices with positive determinants.

10. The set of 2 × 2 real matrices with nonnegative determinants.

11. The set of all polynomials of degree 3.

12. Determine whether the set of infinite, real sequences (c1, c2, . . .) with addition and scalar multiplication
defined as usual,

(c1, c2, . . .) + (d1, d2, . . .) = (c1 + d1, c2 + d2, . . .), k(c1, c2, . . .) = (kc1, kc2, . . .)

is a vector space.

13. If we demand that sequences in Exercise 12 be convergent, is the set still a vector space?

14. If we demand that sequences in Exercise 12 are such that the series
∑∞

n=1 cn is convergent, is the set still
a vector space?

15. If we demand that sequences in Exercise 12 are such that the series
∑∞

n=1 c2
n is convergent, is the set still

a vector space?

16. In Exercises 14 and 15, which space is a subspace of the other?

In Exercises 17–37 determine whether the subset of vectors constitutes a subspace.

17. The subset in R3 of vectors of the form (x1, x2, 2x1 − 3x2).

18. The subset in R3 of vectors of the form (x1, x2, x
2
1 + x2).

19. If v is the vector 〈1, 2, 3〉, the subset of vectors in G3 of the form av, where a ≥ 0.

20. (a) The subset of vectors in G3 whose x-, y-, and z-components vx, vy, and vz satisfy the equation
5vx − 2vy + 3vz = 0. Does your verification depend on the coefficients 5, −2, and 3, or would it be
true for any values of the coefficients?

(b) The subset of vectors in G3 whose x-, y-, and z-components vx, vy, and vz satisfy the equation
5vx − 2vy + 3vz = 7. Does your verification depend on the number 7, or would it be valid for any
nonzero constant?

(c) Determine whether what you have shown in parts (a) and (b) is equivalent to saying the following in
G3: Vectors whose tips line in a plane constitute a subspace if, and only if, the plane passes through
the origin.

21. (a) The subset of vectors in G3 whose x-, y-, and z-components vx, vy, and vz satisfy the equations
5vx − 4vy + vz = 0 and vx − 2vy = 0. Does your verification depend on the coefficients in the
equations or is it true for any values of the coefficients?

(b) The subset of vectors in G3 whose x-, y-, and z-components vx, vy, and vz satisfy the equations
5vx−4vy +vz = 2 and vx −2vy = 1. Does your verification depend on the numbers 1 and 2, or would
it be valid for any nonzero constants?
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(c) Determine whether what you have shown in parts (a) and (b) is equivalent to saying the following in
G3: Vectors whose tips line on a line constitute a subspace if, and only if, the line passes through the
origin.

22. The subset in C0(a, b) of all even continuous functions.

23. The subset in C0(a, b) of all odd continuous functions.

24. The subset Cn(a, b) in C0(a, b).

25. The subset in C0(−∞,∞) of polynomials P (x).

26. The subset in Pn(x) consisting of all polynomials whose value at x = 0 is 0.
27. The subset in Pn(x) consisting of all polynomials whose value at x = 0 is 5. Does your verification depend

on the number 5, or would it be valid for any nonzero constant?

28. The subset in Pn(x) consisting of all polynomials whose value at x = 1 is 0. Does your verification depend
on the number 1, or would it be valid for any nonzero constant?

29. The subset in Pn(x) consisting of all polynomials whose value at x = 1 is 5. Does your verification depend
on the numbers 1 and 5, or would it be valid for any nonzero constants?

30. The subset of all functions with convergent Maclaurin series on the interval (−1, 1) in the space C∞[−1, 1]?

31. The subset in Mm,n(R) of matrices whose entries are all greater than or equal to zero.

32. The subset in Mn,n(R) of symmetric matrices.

33. The subset in Mn,n(R) of matrices that are not symmetric.

34. The subset in M2,2(R) of matrices for which the sum of the four entries is equal to 5.

35. The subset in M2,2(R) of matrices of the form
(

a 1
b c

)
.

36. (a) The subset of solutions of the form y(x) = ce2x, where c is a constant, of the differential equation

d2y

dx2
− 3

dy

dx
+ 2y = 0.

(b) The subset of solutions of the form y(x) = ce2x + 1, where c is a constant, of the differential equation

d2y

dx2
− 3

dy

dx
+ 2y = 2.

(c) Explain the difference between the situations in parts (a) and (b).

37. The subset in P2(x, y) of polynomials of the form p(x, y) = axy + bx2 + c, where a, b, and c are constants.

38. Is the subset of all real arithmetic sequences a subspace of the vector space in Exercise 12? Is it a subspace
of the space in Exercise 13?

39. Is the subset of all real geometric sequences a subspace of the vector space in Exercise 13?

40. The intersection W1 ∩ W2 of two subspaces W1 and W2 of a vector space V is the set of all vectors in
V that are in both W1 and W2. Prove that the intersection is a subspace of V . Is it also a subspace of
W1 and of W2?

41. The union W1 ∪ W2 of two subspaces W1 and W2 of a vector space V is the set of all vectors in V that
are in either W1 or W2. Is the union a subspace of V ?

42. The sum W1 + W2 of two subspaces of a vector space V is the set of all vectors w1 + w2 where w1 is in
W1 and w2 is in W2. Prove that the sum is a subspace of V .

43. Prove that the union W1 ∪ W2 of two subspaces W1 and W2 of a vector space is a subspace if, and only
if, W1 is a subspace of W2, or W2 is a subspace of W1.
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44. Let V be the vector space of all functions defined on the interval 0 ≤ x ≤ 1, and let V1, V2, V3, and V4

be the following subspaces:

V1 = subspace of all polynomials in x,

V2 = subspace of all differentiable functions on 0 ≤ x ≤ 1,

V3 = subspace of all continuous functions on 0 ≤ x ≤ 1,

V4 = subspace of all integrable functions on 0 ≤ x ≤ 1.

Show that Vi is a subspace of Vj for i ≤ j.

45. Show that the only proper subspaces of G2 are lines through the origin.

46. Show that the only proper subspaces of G3 are lines and planes through the origin.

47. Is the subset of vectors (x1, x2, . . . , xn) in Rn that satisfy m homogeneous, linear, equations
n∑

j=1

aijxj = 0, i = 1, . . . , m,

a subspace of Rn?

48. Let V be the set of all straight lines through the origin in the xy-plane. If L1 and L2 are two lines in V ,
define L1 + L2 to be the line through the origin with slope equal to the sum of the slopes of L1 and L2.
If a is a real scalar, define aL1 to be the line through the origin with slope equal to a times the slope of
L1. Is V a real vector space?

49. Let V be the set of all circles in the xy-plane with centres at the origin. Include in V a circle with centre
at the origin and radius zero. If C1 and C2 are two circles in V , define C1 + C2 to be the circle with
centre at the origin with radius equal to the sum of the radii of C1 and C2. If a is a real scalar, define
aC1 to be the circle with centre at the origin and radius equal to |a| times the radius of C1. Is V a real
vector space?

50. Find a subset in G2 that is closed under vector addition, but not under scalar multiplication.

51. Find a subset in G2 that is closed scalar multiplication, but not under vector addition.

52. Find a subset of G3 that contains the zero vector, but it is not a subspace.

Answers

1. Yes 2. Yes 3. Yes 4. Yes
5. No; violates property (1) that vector addition must be commutative
6. No; violates property (6)
7. Yes (b) No; violates closure under vector addition (c) One equation is homogeneous and the other is
not.
8.(a) Yes (b) No; violates closure under vector addition (c) One equation is linear and the other is not.
9. No; violates property (3) 10. No; violates closure under vector addition
11. No; violates closure under vector addition 12. Yes 13. Yes 14. Yes 15. Yes 16. Neither
17. Yes 18. No 19. No 20.(a) Yes; does not depend (b) No; does not depend (c) Yes
21.(a) Yes; does not depend (b) No; does not depend (c) Yes 22. Yes 23. Yes 24. Yes 25. Yes
26. Yes 27. No; does not depend 28. Yes; does not depend 29. No; does not depend 30. Yes
31. No 32. Yes 33. No 34. No 35. No
36.(a) Yes (b) No (c) One equation is homogeneous and the other is not. 37. Yes 38. Yes, No
39. No 40. Yes 41. Sometimes 47. Yes 48. Yes 49. No
50. All vectors of the form a〈1, 2〉, where a is a positive constant.
51. All vectors of the form a〈1, 2〉 or a〈3, 4〉, where a is a real constant.
52. The subset in Exercise 19.
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§1.3 Linearly Independent and Linearly Dependent Sets of Vectors

If {v1,v2, . . . ,vm} is a set of m vectors in a vector space V , and c1, c2, . . . , cm are constants,
we say that the vector

v = c1v1 + c2v2 + · · · + cmvm (1.3)

is a linear combination of the vectors v1, . . . , vm. For example, in G2, every vector v can
be expressed as a linear combination of the unit vectors î and ĵ, v = vxî+vy ĵ, where vx and
vy are the x- and y-components of v. Every vector in G2 can also be expressed as a linear
combination of the vectors 3̂i + ĵ and −î + 2ĵ. To show this, suppose that v = vxî + vy ĵ is
any vector in G2, and consider finding constants c1 and c2 so that

v = vxî + vy ĵ = c1(3̂i + ĵ) + c2(−î + 2ĵ) = (3c1 − c2 )̂i + (c1 + 2c2)̂j.

When we equate x- and y-components, we obtain

vx = 3c1 − c2, vy = c1 + 2c2,

two nonhomogeneous, linear equations in c1 and c2. The solution is c1 = (2vx + vy)/7 and
c2 = (3vy − vx)/7; that is,

v =
1
7
(2vx + vy)(3̂i + ĵ) +

1
7
(3vy − vx)(−î + 2ĵ).

For example, if v = 10̂i− 3ĵ, then, its representation in terms of 3̂i + ĵ and −î + 2ĵ is

10̂i− 3ĵ =
17
7

(3̂i + ĵ) − 19
7

(−î + 2ĵ).

Some vectors in G2 can be expressed in terms of the vectors î + 2ĵ and 2̂i + 4ĵ, but not
all of them. This is clear geometrically. The two vectors are parallel, and therefore another
vector in the same direction as these can be expressed in terms of them in infinitely many
ways, but a vector in a different direction cannot be expressed in terms of them. To see this
algebraically, consider finding constants c1 and c2 so that

v = vxî + vy ĵ = c1(̂i + 2ĵ) + c2(2̂i + 4ĵ) = (c1 + 2c2)̂i + (2c1 + 4c2)̂j.

When we equate x- and y-components, we obtain

vx = c1 + 2c2, vy = 2c1 + 4c2.

Because the determinant of the matrix of coefficients of the system is zero, for some choices
of vx and vy, there will be an infinity of solutions, and for other choices, there will be no
solution.

The situation is identical in R2. Every vector (x1, x2) in R2 can be expressed as a
linear combination of the vectors (1, 0) and (0, 1), namely (x1, x2) = x1(1, 0) + x2(0, 1).
Every vector in R2 can also be expressed as a linear combination of the vectors (3, 1) and
(−1, 2). In particular, the vector (10,−3) can be expressed as (17/7)(3, 1) − (19/7)(−1, 2).
Some vectors can be expressed as a linear combination of (1, 2) and 2, 4), but not all of them.

We have a similar situation in G3 and R3. Every vector in R3 can be expressed in terms
of (1, 0, 0), (0, 1, 0), and (0, 0, 1). Every vector can also be expressed as linear combinations
of the vectors (1,−2,−4), (−2, 1, 5), and (1, 0, 4). For instance, for the vector (4,−1, 5), we
would set

(4,−1, 5) = c1(1,−2,−4) + c2(−2, 1, 5) + c3(1, 0, 4)
= (c1 − 2c2 + c3,−2c1 + c2,−4c1 + 5c2 + 4c3).

When we equate components, we obtain the nonhomogeneous linear equations
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c1 − 2c2 + c3 = 4, −2c1 + c2 = −1, −4c1 + 5c2 + 4c3 = 5.

The solution is c1 = 1/9, c2 = −7/9, and c3 = 7/3. Thus,

(4,−1, 5) =
1
9
(1,−2,−4)− 7

9
(−2, 1, 5) +

7
3
(1, 0, 4).

On the other hand, the vector (4,−1, 5) cannot be expressed as a linear combination of the
vectors (1,−2,−4), (−2, 1, 5), and (−1,−1, 1). We leave the reader to verify this.

To determine whether it is possible to express all vectors in a vector space in terms of
a given set of vectors, and whether all vectors in the set are necessary, it is useful to define
linearly dependent and linearly independent sets of vectors.

Definition 1.2 A set of nonzero vectors {v1,v2, . . . ,vm} is said to be linearly dependent if there exists
m scalars, not all zero, such that

c1v1 + c2v2 + · · · + cmvm = 0. (1.4)

If the only way a linear combinations of the vectors can be equal to the zero vector is for all
coefficients to be zero, the set of vectors is said to be linearly independent.

We choose the set to consist of nonzero vectors because if the set contains the zero
vector, it is automatically linearly dependent. For instance, if v1 is the zero vector, then
with c1 any nonzero number, and the remaining constants equal to zero, equation 1.4 is
satisfied.

Although linear dependence and linear independence is a property of a set of vectors,
we often omit the word “set”, and say that the vectors themselves are linearly dependent or
linearly independent. Realize, however, that linear dependence or independence is a property
of the collection of vectors, not the individual vectors. The vectors (2, 4) and (−1,−2) in
R2 are linearly dependent because

(2, 4) + 2(−1,−2) = 0.

To find out whether the vectors (2, 4) and (3,−5) are linearly dependent, we determine
whether there are constants, not both zero, such that

c1(2, 4) + c2(3,−5) = 0.

By adding the vectors on the left and equating its components to zero, we obtain

2c1 + 3c2 = 0, 4c1 − 5c2 = 0.

Since the only solution of this homogeneous system of equations is c1 = c2 = 0, the vectors
are linearly independent.

Example 1.6 Determine whether the vectors v1 = (1,−2, 3), v2 = (4,−2, 5), and v3 = (−13, 2,−11) in
R3 are linearly independent or linearly dependent.

Solution We determine whether there are constants, not all zero, such that

0 = c1(1,−2, 3) + c2(4,−2, 5) + c3(−13, 2,−11)
= (c1 + 4c2 − 13c3,−2c1 − 2c2 + 2c3, 3c1 + 5c2 − 11c3).

When we equate components, we obtain three linear, homogeneous equations

c1 + 4c2 − 13c3 = 0, −2c1 − 2c2 + 2c3 = 0, 3c1 + 5c2 − 11c3 = 0.

Gaussian or Gauss-Jordan elimination shows that there is an infinite number of solutions
that can be represented in the form

c1 = −3c3, c2 = 4c3, where c3 is arbitrary.
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For instance, if we set c3 = 1, then c1 = −3 and c2 = 4, and

0 = −3(1,−2, 3) + 4(4,−2, 5) + (−13, 2,−11).

The vectors are therefore linearly dependent.•

The following theorem provides an easier way to think about linear dependence.

Theorem 1.2 A set of nonzero vectors is linearly dependent if, and only if, at least one of the vectors is
a linear combination of the other vectors. Alternatively, a set of nonzero vectors is linearly
independent if, and only if, none of the vectors is a linear combination of the others.

Proof: If the set of vectors {v1,v2, . . . ,vm} is linearly dependent, then there exist con-
stants, not all zero such that

c1v1 + c2v2 + · · · + cmvm = 0.

If ci 6= 0 for some i, then we can solve the equation for vi,

vi = −
c1

ci
v1 − · · · −

ci−1

ci
vi−1 −

ci+1

ci
vi+1 − · · · −

cm

ci
vm.

This shows that vi is a linear combinations of the other vectors. Conversely, suppose that
one of the vectors, say vi, is a linear combination of the other vectors,

vi = c1v1 + c2v2 + · · · + ci−1vi−1 + ci+1vi+1 + · · · + cmvm.

We can then write

0 = c1v1 + c2v2 + · · · + ci−1vi−1 − vi + ci+1vi+1 + · · · + cmvm.

Since not all coefficients are zero, the vectors are linearly dependent.

This theorem does not say that every vector in a linearly dependent set can be expressed
in terms of the other vectors in the set; it says that at least one of the vectors can be so
represented, but not necessarily all of them. For instance, the set of vectors {̂i, 2̂i, k̂} is
linearly dependent. The first and second vectors can be expressed in terms of the other two
vectors, but k̂ cannot be expresed in terms of î and 2̂i.

The following two theorems describe linear dependence for vectors in G2 and G3 geo-
metrically. Corollaries gives the equivalent in R2 and R3.

Theorem 1.3 Two nonzero vectors in G2 are linearly dependent if, and only if, they are parallel.

Corollary 1.3.1 Two nonzero vectors in R2 are linearly dependent if, and only if, each is a multiple of the
other.

Theorem 1.4 Three nonzero vectors in G3 are linearly dependent if, and only if, all three vectors are
parallel, or failing this, one of the vectors lies in the plane determined by the other two.

Corollary 1.4.1 Three nonzero vectors in R3 are linearly dependent if, and only if, all three vectors are
multiples of each other, or failing this, one of the vectors is a linear combination of the other
two.

The following results pertain to vectors in Gn or Rn.

Theorem 1.5 If m > n, a set of m vectors in Gn or Rn is always linearly dependent. (In short, if you have
more vectors than components, then the vectors are linearly dependent.)

Proof We will use the parentheses notation of Rn, but it is equally valid with angle-
bracket notation of Gn. Let vi = (vi1, vi2, . . . , vin), i = 1, . . . , m be m vectors in Rn, and
consider finding m constants so that
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c1v1 + c2v2 + · · · + cmvm = 0.

When we substitute the components for the vectors and equate components of the left side
to zero, we obtain n homogeneous, linear equations in the m constants c1, . . ., cm,

v11c1 + v21c2 + · · · + vm1cm = 0,

v12c1 + v22c2 + · · · + vm2cm = 0,

...
...

v1nc1 + v2nc2 + · · · + vmncm = 0.

When there is more unknowns than equations in a homogeneous, linear system, there is
always an infinity of nontrivial solutions. Hence, the vectors are linearly dependent.

Theorem 1.6 A set of n nonzero vectors in Gn or Rn is linearly dependent if, and only if, the n × n
determinant whose columns (or rows) are the components of the vectors has value 0.

Proof With the notation of Theorem 1.5, it is a question of whether the system of n
equations in now n unknown coefficients has a nontrivial solution. But for a system of n
homogeneous, linear equations in n unknowns, there are nontrivial solutions if, and only
if, the determinant of the coefficient matrix has value zero. But this matrix contains the
components of the vectors in its columns, and the proof is complete.

Example 1.7 Use Theorem 1.6 to solve Example 1.6.

Solution We evaluate the determinant whose columns are the components of the vectors

det




1 4 −13
−2 −2 2
3 5 −11


 = 0.

Hence, the vectors are linearly dependent.•

Theorem 1.5 describes the situation in Gn and Rn when there are more vectors than
components. Theorem 1.6 describes the situation when the number of components is the
same as the number of vectors. No general statements can be made when there are fewer
vectors than components; the vectors might be dependent or independent. To decide, we
return to Definition 1.2 or Theorem 1.2. Here are two examples to illustrate.

Example 1.8 Determine whether the vectors (1,−3, 5,−2), (2, 0, 3, 1), and (−4,−6, 1,−7) in R4 are lin-
early independent or dependent.

Solution Consider finding constants so that

c1(1,−3, 5,−2) + c2(2, 0, 3, 1) + c3(−4,−6, 1,−7) = 0.

When we equate components, we obtain the equations

c1 + 2c2 − 4c3 = 0, −3c1 − 6c3 = 0, 5c1 + 3c2 + c3 = 0, −2c1 + c2 − 7c3 = 0.

There is an infinity of solutions of this system, representable in the form

c1 = −2c3, c2 = 3c3.

This implies that the vectors are linearly dependent.•

Example 1.9 Determine whether the vectors (1,−3, 5,−2), (2, 0, 3, 1), and (−4,−6, 1,−5) in R4 are lin-
early independent or dependent.

Solution Consider finding constants so that

c1(1,−3, 5,−2) + c2(2, 0, 3, 1) + c3(−4,−6, 1,−5) = 0.
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When we equate components, we obtain the equations

c1 + 2c2 − 4c3 = 0, −3c1 − 6c3 = 0, 5c1 + 3c2 + c3 = 0, −2c1 + c2 − 5c3 = 0.

The only solution of this system is c1 = c2 = c3 = 0. The vectors are therefore linearly
independent.•

The following examples consider linear independence and dependence in more abstract
vector spaces. Because vectors in these spaces do not yet have components, we must return
to Definition 1.2 or Theorem 1.2.

Example 1.10 Determine whether the polynomials (vectors) 4x, 3x2, and −2x2 + 5x in P2(x) are linearly
independent or dependent.

Solution Since −2x2 + 5x is a linear combination of 4x and 3x2, namely,

−2x2 + 5x = −2
3
(3x2) +

5
4
(4x),

the polynomials are linearly dependent.•

Example 1.11 The functions ex, xex, and x2ex are vectors in the vector space of solutions of the linear,
homogeneous differential equation

d3y

dx3
− 3

d2y

dx2
+ 3

dy

dx
− y = 0.

Are they linearly dependent or independent?

Solution Consider finding constants c1, c2, and c3 so that

0 = c1(ex) + c2(xex) + c3(x2ex) = (c1 + c2x + c3x
2)ex.

Since this must be true for all x, we set x = 0, in which case, c1 = 0. If we remove the
ex from the equation, and then differentiate the result, we obtain c2 + 2c3x = 0. Setting
x = 0 now gives c2 = 0. It then follows that c3 = 0 also. Thus, the solutions (vectors) are
linearly independent. Alternatively, it is reasonably clear that none of the vectors is a linear
combination of the other two, and therefore the vectors are linearly independent.•

Example 1.12 Is the set of vectors {1 + x, 2 + 3x − 2x2, 5x − 4x2} linearly dependent or independent in
P2(x)?

Solution There are two approaches that we could take. A third will present itself in
the next section. First, we could take the approach of Example 1.11, and consider finding
constants c1, c2, and c3 so that

0 = c1(1 + x) + c2(2 + 3x − 2x2) + c3(5x − 4x2).

Since this is to be true for all x, we set x = 0, in which case 0 = c1 +2c2. If we set x = 1, we
get a second equation, 0 = 2c1 + 3c2 + c3. Finally, if we set x = −1, we get 0 = −3c2 − 9c3.
The only solution of these equations is c1 = c2 = c3 = 0, so that the vectors are linearly
independent. Instead of substituting values of x, suppose that we rearrange terms in the
equation,

0 = (c1 + 2c2) + (c1 + 3c2 + 5c3)x + (−2c2 − 4c3)x2.

Since the vectors 1, x, and x2 are linearly independent (see Exercise 17), it follows that

0 = c1 + 2c2, 0 = c1 + 3c2 + 5c3, 0 = −2c2 − 4c3.

Once again, the only solution is the trivial one.•
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EXERCISES 1.3

In Exercises 1–12 determine whether the set of vectors is linearly dependent or linearly inde-
pendent.
1. {〈1, 2〉, 〈3, 5〉} 2. {(2,−1), (−4, 2)}
3. {(1, 3), (2,−3), (4, 10)} 4. {〈1,−2, 4〉, 〈2,−5, 0〉}
5. {〈2,−4, 1〉, 〈1,−3, 5〉, 〈5,−11, 7〉} 6. {〈3, 2,−1〉, 〈3, 5, 8〉, 〈−2, 4, 1〉}
7. {〈3, 2,−1〉, 〈3, 5, 8〉, 〈−2, 4, 1〉, 〈1, 1, 1〉} 8. {(1,−1, 1,−1), (1, 3,−2, 5), (4, 0, 2, 5)}
9. {(2, 0, 3, 4), (1,−3, 5, 1), (1, 0, 0, 3), (4,−3, 8, 8)} 10. {〈2, 0, 3, 4〉, 〈1, 1, 1, 2〉, 〈−2, 4, 1, 3〉, 〈4, 3, 2, 1〉}

11. {(3 − i, 2,−i), (1, 0, 1), (i,−i, 3)} 12. {(1,−1,−i), (i, 1, 1− i), (1 + 2i,−3i, 1− i)}

13. Show that the vectors u = 〈2,−1, 4〉, v = 〈3, 5,−2〉, and w = 〈1, 1, 0〉 are linearly independent. Express
the vector 〈3, 5, 8〉 as a linear combination of these vectors.

14. (a) Show that the vectors 〈2,−1, 4〉, 〈3, 5,−2〉, and 〈1,−7, 10〉 are linearly dependent.
(b) Show that the vector 〈3, 5, 8〉 cannot be expressed as a linear combination of these vectors.
(c) Show that the vector 〈−4,−11, 8〉 can be expressed as a linear combination of these vectors.

15. Suppose the set of vectors {v1,v2, . . . ,vm} is linearly dependent. Does it follow that v1 can be expressed
in terms of v2, . . ., vm? Explain.

16. (a) Prove that the functions ex, e−2x, and xe−2x are solutions of the differential equation

d3y

dx3
+ 3

d2y

dx2
− 4y = 0.

(b) Is the set of them linearly independent?

17. Show that the set of vectors {1, x, x2, . . . , xn} in Pn(x) is linearly independent.

18. In the space of 2× 2 real, symmetric matrices, are the following matrices linearly dependent or indepen-
dent?

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
1 1

)
,

(
1 −1
−1 1

)

19. Prove that every subset of a set of linearly independent vectors is also linearly independent. Is the same
result true for linearly dependent sets of vectors?

20. (a) Are the vectors v1 = (−2, 1, 1), v2 = (1,−2, 1), and v3 = (1, 1,−2) linearly dependent in R3?
(b) Are v1 and v2 linearly dependent?
(c) Are v2 and v3 linearly dependent?
(d) Are v1 and v3 linearly dependent?

21. Repeat Exercise 20 for the vectors v1 = (−2, 1, 1), v2 = (4, 2,−2), and v3 = (5, 1,−2)

22. Prove or disprove the following statement: If the set of vectors {v1,v2, . . . ,vm}, where m ≥ 4 is linearly
dependent, then given any two vectors in the set, then their sum can be expressed as a linear combination
of the other vectors in the set.

23. The first four Legendre polynomials are

p0(x) = 1, p1(x) = x, p2(x) =
3x2 − 1

2
, p3(x) =

5x3 − 3x

2
.

Are they linearly independent in the space P3(x)?

24. Determine whether the set of polynomials {1 + 2x − x2, 3 + 4x − x3, 2x + 4x2 − x3, 5 + 10 + 2x2 − 2x3}
is linearly independent or dependent.

25. (a) Is the pair of functions {2x, |x|} linearly independent or dependent in the space C0[−a, a]?
(b) Is the pair independent or dependent in C0[0, a]?
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26. Find all values of θ in order that the vectors (functions) sin (x + θ) and sin x be linearly dependent in
C0[−π, π].

27. Show that in Pn(x), any set of n + 1 polynomials, one of degree 0, one of degree 1, one of degree 2, . . .,
and one of degree n is linearly independent.

28. You are given that the set of vectors {v1,v2, . . . ,vm} is linearly independent, but the set of vectors
{v1, . . . ,vm,w} is linearly dependent. Show that w is a linear combination of the vi.

Answers

1. Linearly independent 2. Linearly dependent 3. Linearly dependent
4. Linearly independent 5. Linearly dependent 6. Linearly independent
7. Linearly dependent 8. Linearly independent 9. Linearly dependent
10. Linearly independent 11. Linearly independent 12. Linearly dependent 13. 10u+16v−65w
15. No 16.(b) Yes 18. Dependent 19. No 20. (a) Yes (b) No (c) No (d) No
21. (a) Yes (b) Yes (c) No (d) No 22. False 23. Yes 24. Linearly dependent
25.(a) Linearly independent (b) Linearly dependent 26. nπ, n an integer
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§1.4 Basis and Dimension of a Vector Space

In this section we discuss basis and dimension of a vector space.

Definition 1.3 If {v1,v2, . . . ,vm} is a set of m vectors in a vector space, the set of all linear combinations
of the vectors is called the span of the vectors.

For instance, in G2, the span of the vector v1 = 〈1,−2〉 is all vectors of the form
c1〈1,−2〉, all multiples of v1. The span of the vectors v1 = 〈1,−2, 3〉 and v2 = 〈−3, 4, 0〉
in G3 is all vectors of the form c1v1 + c2v2 = c1〈1,−2, 3〉 + c2〈−3, 4, 0〉; it is all vectors in
the plane through the origin defined by v1 and v2. The span of the vectors v1 = (3,−2, 6),
v2 = (−2, 5, 1), and v3 = (4, 0, 7) in R3 is all linear combinations

c1v1 + c2v2 + c3v3 = c1(3,−2, 6) + c2(−2, 5, 1) + c3(4, 0, 7).

The functions 1 − 2x, 2x2 − 5x3, and ex are vectors in C2(−∞,∞), the space of twice
continuously differentiable functions on the interval −∞ < x < ∞. Their span is all
functions of the form c1(1 − 2x) + c2(2x2 − 5x3) + c3e

x. The span of the three solutions
(vectors) ex, xex and x2ex of the differential equation in Example 1.11 is all solutions of the
form c1e

x + c2xex + c3x
2ex.

Every vector v in G2 is a linear combination of î and ĵ; coefficients in the linear combi-
nation being the components 〈vx, vy〉 of v; that is, v = vxî + vy ĵ. In other words, the span
of the vectors î and ĵ is the whole space G2. Similarly, î, ĵ, and k̂ span G3. Correspondingly,
the vectors (1, 0) and (0, 1) span R2 and the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) span R3.
More generally, if ei is the vector in Rn all of whose components are zero except the ith

component which is one, then the set {e1, e2, . . . , en} spans Rn.

Theorem 1.7 The span of a (nonempty) set of vectors in a vector space is a subspace.

Proof Since the span is all linear combinations of vectors in the set, the condition of
closure under addition and scalar multiplication of Theorem 1.1 is automatically satisfied.

Intuitively, we should be able to take enough vectors in a set to span the whole space.
We query whether there is a minimum number of vectors that a set must contain in order
to span the entire space. We describe such a set in the following definition.

Definition 1.4 When a set of vectors in a vector space V spans the space, and there is not a smaller number
of vectors that spans the space, then the set of vectors is said to be a basis for the space.
The number n of vectors in a basis is called the dimension of the space, and the space
is said to be n-dimensional. The space consisting of only the zero vector is said to be
0-dimensional. If a basis does not consist of a finite number of vectors, the space is said
to be infinite-dimensional.

Vectors î and ĵ are a basis for G2, which is therefore 2-dimensional, and î, ĵ, and k̂
are a basis for the 3-dimensional space G3. These bases (the plural of basis) are called the
natural or standard bases for G2 and G3; they are perhaps the only bases with which
most readers are familiar, and they are often the ones in which many problems are initially
formulated. Correspondingly, e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) is the natural
basis for R3. The natural basis for Rn consists of the n vectors ei (i = 1, . . . , n) where all
entries in ei are zero except the ith, which is one. With every vector space, we can define
what we mean by its natural basis, but different choices can be made. Everyone agrees with
the above choices for G3 and Rn. The set of vectors {1, x, x2, x3} is a basis for the space
P3(x) of real polynomials of degree less than or equal to 3 (they span the space, and no
smaller set of vectors can do so). Everyone agrees that this is the natural basis for the space.
On the other hand, there is no obvious choice for the space of all solutions to the differential
equation d2y/dx2 − k2y = 0, where k > 0 is a constant. Two possibilities are {ekx, e−kx}
and {cosh kx, sinh kx}, and neither is more “natural” than the other.
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When v = 3̂i − 4ĵ is a vector in G2, we call 3 and −4 the components of the vector
with respect to the basis {̂i, ĵ}, and we have been accustomed to writing these components
in the form 〈3,−4〉. Similarly, the components of a vector v = 2e1 − 3e2 + 4e3 in R3 are
2, −3, and 4, and we write v = (2,−3, 4), understanding that these are components of the
vector with respect to the natural basis {e1, e2, e3}. When {b1,b2, . . . ,bn} is a basis for an
n-dimensional vector space V , then every vector v in the space can be expressed as a linear
combination of the basis vectors,

v = v1b1 + v2b2 + · · · + vnbn. (1.5)

We call coefficients vi components of v with respect to the basis {b1,b2, . . . ,bn}†.
We often write the components as an n-tuple (v1, v2, . . . , vn). Although we have the same
notation for vectors in Rn, this is not a vector in Rn. In other words, when we see an
n-tuple, context must make it clear whether the n-tuple is a vector in Rn or whether the
n-tuple represents the n components of a vector in some n-dimensional space with respect
to some basis of the space. Should we wish to denote that the components of a vector are
with respect to a particular basis {b1,b2, . . . ,bn}, we sometimes use a subscript as follows
vb = (v1, v2, . . . , vn). We might even want to place the subscript on each component and
write vb = (vb1, vb2, . . . , vbn).

Example 1.13 What are the components of the vector p(x) = 3 − 5x + 2x3 in P3(x) with respect to the
natural basis for the space?

Solution Components are (3,−5, 0, 2).•

Example 1.14 Accepting for the moment that the vectors {4, 1 + x, 3 − 5x + 2x2} constitute a basis for
P2(x), find the components of the vector p(x) = 1 + 3x − 4x2 with respect to this basis.

Solution We must express the vector as a linear combination of the basis vectors. We
can do this as follows

1 + 3x − 4x2 = −2(2x2 − 5x + 3) + (1 + 3x) + (−10x + 6)
= −2(2x2 − 5x + 3) − 7x + 7

= −2(2x2 − 5x + 3) +
7
5
(3 − 5x) + 7 − 21

5

= −2(2x2 − 5x + 3) +
7
5
(3 − 5x) +

14
5

= −2(2x2 − 5x + 3) +
7
5
(3 − 5x) +

7
10

(4).

Components of the vector are therefore (7/10, 7/5,−2).•

It is important that the order of the components of a vector be the same as the order of
the basis vectors. (We adhered to this in the above example.) In other words, although we
shall not do so, it would be more appropriate for us to talk about ordered basis, and ordered
components of vectors. Just remember to list components of vectors in the same order as
basis vectors.

Much of our work on vector spaces involves bases and therefore it is important to know
when a set of vectors constitutes a basis for the space. For instance, do the vectors (1,−1)
and (−2, 3) constitute a basis for R2, and do any three vectors in R3 form a basis for the
space. The following theorem gives an easy way to determine whether a set of vectors is a
basis for a vector space, provided we know the dimension of the space.

Theorem 1.8 In an n-dimensional vector space, any set of n linearly independent vectors constitutes a
basis.

† Many authors refer to these as coordinates of a vector.
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Proof: Suppose that {v1,v2, . . . ,vn} is a set of n linearly independent vectors in an
n-dimensional vector space V . First we show that the vectors span V . If v is any vector in
V , consider finding constants c1, c2, . . ., cn so that

v = c1v1 + c2v2 + · · · + cnvn.

If we denote the components of v (with respect to some basis) by vj , and those of vi by vij ,
then this equation can be written in the form




v1

v2
...

vn


 = c1




v11

v12
...

v1n


 + c2




v21

v22
...

v2n


 + · · · + cn




vn1

vn2
...

vnn


 ,

or,



v11 v12 · · · v1n

v21 v22 · · · v2n
...

... · · ·
...

vn1 vn2 · · · vnn







c1

c2
...

cn


 =




v1

v2
...

vn


 .

This is a system of n linear, nonhomogeneous equations in the n unknowns ci. Because
the columns of the coefficient matrix are components of the linearly independent vectors vi,
its determinant is nonzero. Hence, there is a unique solution for the ci, and the vi span
V . Now we verify that no smaller set of linearly independent vectors can span the space.
Suppose that {v1,v2, . . . ,vn} is a basis for the space, and {w1,w2, . . . ,wm} is a linearly
independent set of vectors that spans the space where m < n. Each basis vector vi can be
expressed in terms of basis vectors w1, . . . ,wm,

vi = ci1w1 + · · · + cimwm =
m∑

j=1

cijwj , i = 1, . . . , n.

Consider finding constants di, i = 1, . . . , n so that
n∑

i=1

divi = 0.

If we substitute the expression for vi in terms of the wj , we obtain

0 =
n∑

i=1

di




m∑

j=1

cijwj


 =

m∑

j=1

[
n∑

i=1

dicij

]
wj .

Because the wj are linearly independent, the only way to satisfy this equation is for

n∑

i=1

dicij = 0, j = 1, . . . , m.

This is set of m linear, homogeneous equations in the n unknowns di, where the number of
unknowns is greater than the number of equations. Hence, there must be an infinite number
of nontrivial solutions. But this implies that the vi are linearly dependent, a contradiction.
Hence, there cannot be a smaller number of vectors that spans the space.

Because G3 and R3 are 3-dimensional vector spaces, any three linearly independent
vectors constitute a basis. We cannot make the same claim about infinite-dimensional vector
spaces; that is, we cannot say that any infinite set of linearly independent vectors constitutes
a basis. For example, the space P (x) of all polynomials in x is infinite-dimensional, and
a basis is {1, x, x2, x3, . . .}. The infinite set of even polynomials {1, x2, x4, . . .} is linearly
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independent, but it does not form a basis for the space. It would be a basis for the subspace
of all even polynomials.

In the proof of Theorem 1.8, we verified the following corollary.

Corollary 1.8.1 When {b1,b2, . . . ,bn} is a basis for a vector space V , the component representation 1.5 for
a vector is unique.

It is worth further emphasis to mention that whenever we describe a vector v by giving
its components, v = (v1, v2, . . . , vn) say, then these components are with respect to some
specified basis. If no mention of basis has been made, we assume that the components are
with respect to the natural basis of the space, assuming that the natural basis for the space is
clear. For instance, suppose that natural components of three vectors in R3 are b1 = (1, 2, 3),
b2 = (−2, 5, 1), and b3 = (4, 1,−2). Because these vectors are linearly independent, they
can be used as a basis for the space. Relative to the basis {̂i, ĵ, k̂}, the components of b2

are (−2, 5, 1), but with respect to the basis {b1,b2,b3}, the components of b2 are (0, 1, 0).
Similarly, components of b1 and b3 with the respect to the basis {b1,b2,b3} are (1, 0, 0)
and (0, 0, 1), respectively.

In equation 1.5, we have assumed that the space is n-dimensional. When it is infinite-
dimensional, the situation may be exactly the same or quite different. For instance, space
P (x) of all polynomials is infinite-dimensional with basis {1, x, x2, x3, . . .}. Every vector
p(x) in the space is a polynomial of some degree n,

p(x) = a0 + a1x + a2x
2 + · · · + anxn.

The vector therefore has an infinite number of components (a0, a1, . . . , an, 0, 0, . . .), but at
most n + 1 are nonzero. Compare this with the infinite-dimensional vector space of all
infinite sequences {c1, c2, . . .} of real numbers such that

∑∞
n=1 c2

n converges. A basis for the
space consists of the vectors ei, i ≥ 1 whose components are all zero except for the ith one
which is 1; that is,

(n − 1)th component ↓ ↓ (n + 1)th component
ei = (0, 0, . . . , 0, 1, 0, 0, . . .).

Vectors in this space can have an infinite number of nonzero components,

v = c1e1 + c2e2 + c3e3 + · · · . (1.6)

This introduces a difficulty not found in finite-dimensional spaces, or in P (x). Because
expression 1.6 contains an infinite series, there is a question of convergence. We will deal
with this later when we consider infinite-dimensional spaces in detail.

Example 1.15 Show that the vectors (1, 2,−3), (0, 4,−3), and (3, 1, 5) constitute a basis for R3, and find
the components of v = (2,−1, 6) with respect to this basis.

Solution The vectors form a basis if they are linearly independent. This is confirmed by
the fact that

det




1 0 3
2 4 1
−3 −3 5


 = 41 6= 0.

If (v1, v2, v3) are the components of (2,−1, 6) with respect to this basis, then

(2,−1, 6) = v1(1, 2,−3) + v2(0, 4,−3) + v3(3, 1, 5).

When we equate components of these vectors, we obtain

v1 + 3v3 = 2,

2v1 + 4v2 + v3 = −1,

−3v1 − 3v2 + 5v3 = 6.
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The solution is v1 = −17/41, v2 = −10/41, and v3 = 33/41. Thus,

(2,−1, 6) = −
17
41

(1, 2,−3)−
10
41

(0, 4,−3) +
33
41

(3, 1, 5).•

Example 1.16 What is the most likely choice for the natural basis for the vector space M2,2(R) of all 2× 2
real matrices?

Solution The matrices

M1 =
(

1 0
0 0

)
, M2 =

(
0 1
0 0

)
, M3 =

(
0 0
1 0

)
, M4 =

(
0 0
0 1

)

are linearly independent (none is a linear combination of the others). Furthermore, they

span the space since every 2 × 2 matrix M =
(

a b
c d

)
is a linear combination of them,

M = aM1 + bM2 + cM3 + dM4.

Since no smaller set of matrices can span the space, they constitute a basis, which we call
the natural basis for M2,2(R). The space has dimension 4.•

The extension of this example is to take as natural basis for vector space Mm,n(R),
the mn matrices Ei,j of size m× n whose entries are all zero except for a one in the (i, j)th

position. It would be necessary for us to have an understanding as to the order in which the
basis matrices would be taken. We choose to take them in the order suggested by Example
1.16,

E1,1, E1,2, . . . , E1,n, E2,1, E2,2, . . . , E2,n, E3,1, E3,2, . . . , E3,n, . . . , Em,n. (1.7)

Example 1.17 Vectors v = 〈vx, vy, vz〉 in G3 whose components satisfy 3vx + 2vy − vz = 0 form a subspace
of dimension 2. Find a basis for the subspace. Show that the vector v = 〈−4, 1,−10〉 is in
the subspace, and find its components with respect to your basis.

Solution Geometrically, the subspace consists of all vectors with tails at the origin and
tips in the plane 3x + 2y − z = 0. We need two linearly independent vectors in the plane.
Since a normal to the plane is 〈3, 2,−1〉, vectors in the plane must be perpendicular to this
vector. Two linearly independent ones are 〈−2, 3, 0〉 and 〈0, 1, 2〉. Since the components of
v satisfy the equation 3vx + 2vy − vz = 0, the vector is in the subspace. If v1 and v2 are the
components of v with respect to the chosen basis of the subspace, then

〈−4, 1,−10〉 = v1〈−2, 3, 0〉+ v2〈0, 1, 2〉.

When we equate components, we get

−2v1 = −4,

3v1 + v2 = 1,

2v2 = −10.

The solution is v1 = 2 and v2 = −5. Thus,

〈−4, 1,−10〉 = 2〈−2, 3, 0〉 − 5〈0, 1, 2〉.•

In this paragraph, we make an observation that will make your studies much more pro-
found if you can constantly keep it in mind. Every vector space has a basis, and every vector
v in the space has components with respect to that basis. If the space is n-dimensional, we
write the components in the form (v1, v2, . . . , vn). For example, if the space is 4-dimensional,
then (1,−2, 3, 5) would be the components of a vector in the space. Do NOT assume that
this is a 4-tuple, and it is therefore a vector in R4 using the natural basis for R4. It could
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also be the vector v = (1, 2, 3, 1) − 2(3, 2, 0, 4) + 3(1, 1, 1,−1) + 5(3, 5, 7, 0) in R4 using the
basis {(1, 2, 3, 1), (3, 2, 0, 4), (1, 1, 1,−1), (3, 5, 7, 0)}. Furthermore, it doesn’t have to be a
vector in R4; it could be a vector in ANY 4-dimensional space. For example, it could be
the vector p(x) = 1− 2x + 3x2 + 5x3 in P3(x), the space of polynomials of degree less than
or equal to three, (using therefore the natural basis {1, x, x2, x3}). It could be the vector
p(x) = (1+x)−2(3−x2)+3(x+x3)+5x3 in P3(x) using the basis {1+x, 3−x2, x+x3, x3}.

It could also be the matrix
(

1 −2
3 5

)
in M2,2(R) (using the natural basis in Example 1.16).

An n-tuple then, might represent the natural components of a vector in Rn, but it could be
the components of any vector in any n-dimensional vector space with respect to any basis
for that space. Constantly keep this in mind. To begin with, Corollaries 1.3.1 and 1.4.1
and Theorems 1.5 and 1.6 are valid in more general spaces than in Gn and Rn. Their more
general statements are below.

Corollary 1.3.2 Two nonzero vectors in a vector space are linearly dependent if, and only if, each is a multiple
of the other.

Corollary 1.4.2 Three nonzero vectors in a vector space are linearly dependent if, and only if, all three
vectors are multiples of each other, or failing this, one of the vectors is a linear combination
of the other two.

Theorem 1.9 A set of m vectors in an n-dimensional vector space, where m > n, is always linearly
dependent. (In short, if you have more vectors than components, then the vectors are
linearly dependent.)

Theorem 1.10 A set of n nonzero vectors in an n-dimensional vector space is linearly dependent if, and
only if, the n × n determinant whose columns (or rows) are the components of the vectors
has value 0.

Example 1.18 Redo Example 1.12 in Section 1.3 using Theorem 1.10.

Solution Components of the vectors with respect to the natural basis of P2(x) are (1, 1, 0),
(2, 3,−2), and (0, 5,−4). Since the determinant

∣∣∣∣∣∣

1 2 0
1 3 5
0 −2 −4

∣∣∣∣∣∣
6= 0,

the vectors are linearly independent.•

The Dimensions of Complex Vector Spaces

Many vector spaces that involve complex numbers can be regarded in conceptually different
ways, and although eventual results are the same, calculations leading to these results may
differ. We begin with the vector space of complex numbers itself. If we denote it by C = C1,
it is complex vector space with complex vectors and complex scalars. It has dimension 1,
since a basis for the space is the complex number z = 1. Every vector (complex number) z
can be expressed in the form z 1; that is, as z times the basis vector 1. But we could also
regard the space of complex numbers as a real vector space. Vectors are complex numbers
and scalars are reals. In this case, a basis for the space is {1, i}. Every vector a + bi in the
space can be expressed in the form a 1 + bi, where a and b are real. From this point of view,
the dimension of the space is 2, and we should not denote it by C.

In a similar way, we can regard the vector space of all pairs of complex numbers as a
real vector space or a complex space. As a complex space, we denote it by C2, where scalars
are complex numbers. As such, a basis for the space is the pair of vectors (1, 0) and (0, 1),
and the space has dimension 2. Every complex pair (z1, z2) can be expressed in the form
z1(1, 0) + z2(0, 1). On the other hand, we could consider the space of complex pairs as a
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real vector space so that scalars are real. In this case, a basis is {(1, 0), (i, 0), (0, 1), (0, i)}.
Every complex pair (z1, z2) = (a + bi, c + di) can be expressed in the form a(1, 0) + b(i, 0) +
c(0, 1) + d(0, i). From this point of view, the space has dimension 4.

These ideas can carry over to other vector spaces involving complex numbers. For
instance, consider the space M2,2(C), the space of complex 2 × 2 matrices. As a complex
space it has dimension 4, being spanned by the matrices

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
.

Considered as a real vector space of 2 × 2 complex matrices with (real scalars), the space
has dimension 8 with basis

(
1 0
0 0

)
,

(
i 0
0 0

)
,

(
0 1
0 0

)
,

(
0 i
0 0

)
,

(
0 0
1 0

)
,

(
0 0
i 0

)
,

(
0 0
0 1

)
,

(
0 0
0 i

)
.

These ideas do not permeate every complex vector space. For instance, it would be
pointless to attempt to regard the complex space P2(z) as a vector space over the reals.

EXERCISES 1.4

In Exercises 1–13 determine whether the set of vectors constitutes a basis for a vector space. In
Exercises 1–10 take the dimension of the space to be the number of components of the vectors.

1. {(1, 2), (3, 5)} 2. {(2, 1), (−4, 2)}
3. {(1, 3), (2,−3), (4, 10)} 4. {(1,−2, 4), (2,−5, 0)}
5. {(2,−4, 1), (1,−3, 5), (5,−11, 7)} 6. {(3, 2,−1), (3, 5, 8), (−2, 4, 1)}
7. {(3, 2,−1), (3, 5, 8), (−2, 4, 1), (1, 1, 1)} 8. {(1,−1, 1,−1), (1, 3,−2, 5), (4, 0, 2, 5)}
9. {(2, 0, 3, 4), (1,−3, 5, 1), (1, 0, 0, 3), (4,−3, 8, 8)} 10. {(2, 0, 3, 4), (1, 1, 1, 2), (2, 4, 1, 3), (4, 3, 2, 1)}

11. {5, 2− 3x, 3 + x − 4x2} for P2(x)

12. {x2n}, where n ≥ 0 is an integer, for P (x)

13. The matrices
{(

1 0
0 0

)
,

(
1 1
0 1

)
,

(
0 1
0 1

)
,

(
1 0
1 1

)}
for M2,2(R).

14. Find the components of the polynomial 3 + 2x − 5x2 with respect to the basis of polynomials for P2(x)
in Exercise 11.

15. Find the components of the vector (1, 2, 1,−1) with respect to the basis of vectors for R4 in Exercise 10.

16. Find the components of the polynomial i + (1 + i)z − 3z2 with respect to the basis of polynomials
{2− 3i, iz, iz2} of P2(z).

17. (a) Show that the vectors b1 = 〈1, 2, 0〉 and b2 = 〈−1, 4, 4〉 are a basis for the subspace W of vectors
v = 〈vx, vy , vz〉 in G3 that satisfy 4vx − 2vy + 3vz = 0.

(b) Verify that the vector v = 〈3, 9, 2〉 is in W , and find its components with respect to the basis in part
(a).

18. If a set of vectors spans a space, must they be linearly independent?

19. Show that if {v1,v2} is a basis for a vector space, so also is {v1 + v2,v1 − v2}.

20. If n vectors span a vector space, what can be said about the dimension of the space?

21. We have implicitly assumed that every basis of a finite-dimensional vector space contains the same number
of vectors (the dimension of the space). Prove this.

22. Find a basis for the subspace of vectors (polynomials) p(x) in P4(x) that satisfy
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∫ 1

−1

p(x) dx = 0, p(0) = 0.

23. Is it possible to find four numbers a1, a2, a3, and a4 so that the following four polynomials are linearly
independent?

p1(x) = (x − a2)(x − a3),
p2(x) = (x − a3)(x − a4),
p3(x) = (x − a4)(x − a1),
p4(x) = (x − a1)(x − a2).

24. In the space C0(−∞,∞) of continuous functions, what is the dimension of the subspace spanned by the
functions

sin2 x, cos2 x, sin 2x, cos 2x?

25. Is the function sin 2x in the subspace of C0(−∞,∞) spanned by sin x and cosx?

26. Find a basis for the vector space of real arithmetic sequences. What is the dimension of the space?

27. What is the dimension of the space Mm,n(C) of m × n matrices with complex entries?

28. Prove that when W1 and W2 are subspaces of a vector space V , then

dimension (W1 ∩ W2) + dimension (W1 + W2) = dimension W1 + dimension W2.

29. (a) Prove that any set of polynomials {p0, p1, . . . , pn} in x of degrees 0, 1, . . ., n respectively, constitutes
a basis for Pn(x).

(b) Prove that any polynomial p(x) of degree n can be expressed in the form

p(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n,

where a is any given real number. Find values for the coefficients cj , j = 0, . . . , n.

Answers

1. Yes 2. No 3. No 4. No 5. No 6. Yes 7. No 8. No 9. Yes 10. Yes 11. Yes
12. No 13. No 14. (5/4,−1/4,−1/20) 15. (4,−15, 22/5,−1/5) 16.

(
3i, 1− i, (−3 + 2i)/13

)

17.(b) (7/2, 1/2) 18. No 20. Less than or equal to n 22. {x, x3} 23. No 24. 3 25. No
26. (1, 1, 1, 1, . . .), (0, 1, 2, 3, . . .), 2 27. mn 29.(b) f (j)(a)/n!
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§1.5 Column Space, Row Space, Null Space, and Rank of a Matrix

Much of our work involves properties of matrices, in particular, whether the rows and
columns of a matrix, considered as vectors, are linearly independent or linearly depen-
dent. Consider therefore an m×n matrix A = (aij)m×n. The columns of the matrix can be
considered as vectors in Rm and the rows as vectors in Rn, but they could also be vectors in
any m- and n-dimensional spaces. When m = n, we have a test in Theorem 1.10 to deter-
mine whether the columns and rows constitute linearly independent sets of vectors. What
is not clear, perhaps, is how many rows and how many columns are linearly independent
when the complete set of them is linearly dependent. When n > m, the columns are linearly
dependent, but it is not clear how many rows are linearly independent. Similarly, when
m > n, the rows are linearly dependent, but how many columns are linearly independent is
not known.

Definition 1.5 The column space of a matrix Am×n is the space spanned by its columns, and the row
space is the space spanned by its rows.

The column space of an m × n matrix is a subspace of some m-dimensional space; the
row space is a subspace of some n-dimensional space. For example, if A is the matrix

A =




−3 −6 3 5 14
−2 −4 1 2 1
2 4 0 −1 6


 ,

the column space is spanned by the vectors



−3
−2
2


 ,




−6
−4
4


 ,




3
1
0


 ,




5
2
−1


 , and




14
1
6


 ,

and the row space is spanned by the vectors

(−3,−6, 3, 5, 14), (−2,−4, 1, 2, 1) and (2, 4, 0,−1, 6).

Since there are five column vectors each with three components, we can say that the max-
imum dimension of the column space is three. This will be the case if three of the column
vectors are linearly independent, but there could be fewer. Since there are three row vectors
each with five components, we can say that the maximum dimension of the row space is
three. It will be three if all three vectors are linearly independent, but it could be less if
they are dependent. We would like to know the dimensions of these spaces, and be able to
find bases for them. We first prove that their dimensions are the same, a result that is at
first quite startling.

Theorem 1.13 The column and row spaces of a matrix have the same dimension.

Proof We begin with the row space. If A = (aij) is an m×n matrix, denote its ith row by
ri = (ai1, ai2, . . . , ain). Let {v1,v2, . . . ,vk} be a basis for the row space A. The value of k
is as yet unknown, but it represents the dimension of the row space. Let the components of
the ith basis vector be denoted by vi = (vi1, vi2, . . . , vin). Each row vector can be expressed
in terms of the vi,

ri = ci1v1 + ci2v2 + · · · + cikvk, i = 1, . . . , m,

or,

ri =




ai1

ai2
...

ain


 = ci1




v11

v12
...

v1n


 + ci2




v21

v22
...

v2n


 + · · · + cik




vk1

vk2
...

vkn


 , i = 1, . . . , m.
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Suppose we take the first of these (i = 1) and equate the jth components, do the same for
the second (i = 2), the third, to the mth. The result is the m equations

a1j = c11v1j + c12v2j + · · · + cikvkj ,

a2j = c21v1j + c22v2j + · · · + c2kvkj ,

...
...

...
...

amj = cmjv1j + cm2v2j + · · · cmkvkj .

We can write these in the form



a1i

a2j

...
amj


 = v1j




c11

c21
...

cm1


 + v2j




c12

c22
...

cm2


 + · · · + vkj




c1k

c2k
...

cmk


 .

Now, the left side of this equation is the jth column of A. The right side is a linear combi-
nation of k vectors. Since this is true for each of the columns of A, we can conclude that
the dimension of the column space of A is less than or equal to k; that is,

dimension of column space of A ≤ dimension of the row space of A.

But by a similar argument, we can show that

dimension of row space of A ≤ dimension of the column space of A.

We must conclude that the dimension of the row space is equal to the dimension of the
column space.

Definition 1.6 The dimension of the row and column spaces of a matrix A is called the rank of the matrix,
denoted by rank(A).

The next theorem tells us how to find the rank of a matrix, and how to find a basis for
the row space of the matrix.

Theorem 1.14 When Arref is the reduced row echelon form of a matrix A, the rank of A is the number of
nonzero rows in Arref, and the nonzero rows form a basis for the row space of A.

Proof Since the rows of Arref are linear combinations of the rows of A, they must span
the row space of A. All that we need show is that they are linearly independent vectors.
Denote the nonzero rows, from top to bottom, by r1, r2, . . ., rk, where k is therefore the
rank of A. Consider finding scalars c1, c2, . . ., ck so that

c1r1 + c2r2 + · · · + ckrk = 0.

The first component of r1 is 1, and the first component of the remaining vectors is zero. If
we equate the first component of left and right sides of this equation, we get c1 = 0. We
now have

c2r2 + c3r3 + · · · + ckrk = 0.

The first nonzero component of r2 is 1, and the corresponding component of the remaining
vectors is zero. If we equate this component of left and right sides of this equation, we get
c2 = 0. Continuing with this procedure shows that all the ci are equal to zero. Hence, the
rows of Arref are linearly independent, and constitute a basis for the row space of A.

Corollary 1.14.1 The rows in the reduced row echelon form of the transpose AT constitute a basis for the
column space of A.

Here are two examples to illustrate.
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Example 1.19 Find the rank, and bases for the row and column spaces of the matrix

A =




−3 −6 3 5 14
−2 −4 1 2 1
2 4 0 −1 6


 .

Solution The reduced row echelon form for this matrix is

Arref =




1 2 0 0 5
0 0 1 0 3
0 0 0 1 4


 .

The matrix has rank 3, and the three vectors (1, 2, 0, 0, 5), (0, 0, 1, 0, 3), and (0, 0, 0, 1, 4)
constitute a basis for the row space. The original three rows of A also constitute a basis for
the row space, but the reduced row echelon form of A has produced a simpler basis. Because
the column space has dimension three, and we can think of vectors in the column space as
vectors in R3, it follows that the column space is R3. We can therefore choose the natural
basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} as a basis for the column space. Had we taken the trouble
of finding the reduced row echelon form for AT , we would have obtained the same basis.•

Example 1.20 Find the rank, and bases for the row and column spaces of the matrix

A =




3 4 −1 4
2 1 5 −6
4 7 2 1
9 10 6 −1


 .

Solution The reduced row echelon form for this matrix is

Arref =




1 0 0 5/7
0 1 0 13/77
0 0 1 −117/77
0 0 0 0


 .

The dimension of the row space is three, and this must also be the dimension of the column
space, and the rank of the matrix. The three vectors (1, 0, 0, 5/7), (0, 1, 0, 13/77), and
(0, 0, 1,−177/77) constitute a basis for the row space. So also do the vectors (7, 0, 0, 5),
(0, 77, 0, 13), and (0, 0, 77,−177). The reduced row echelon form for AT is




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0


 .

A basis for the column space is {(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)}.•

Any set of vectors in a vector space spans a subspace. We can use the above ideas to
determine whether the vectors are linearly independent, and at the same time find a basis
for the subspace.

Example 1.21 Find a basis for the subspace of a 4-dimensional space spanned by the vectors

(−2, 3, 4, 1), (3, 0, 2, 5), (1, 3, 6, 6), (−5, 3, 2,−4).

Solution We form a matrix with these vectors as rows,

A =




−2 3 4 1
3 0 2 5
1 3 6 6
−5 3 2 −4


 .
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The reduced echelon form for this matrix is

Arref =




1 0 2/3 5/3
0 1 16/9 13/9
0 0 0 0
0 0 0 0


 .

This shows that only two of the vectors were linear independent. The subspace spanned by
the vectors has dimension two, and a basis is (3, 0, 2, 5) and (0, 9, 16, 13).•

As a final consideration in this section, we relate some of the above ideas to solutions
of systems of linear equations, and at the same time identify a third space associated with
a matrix. A system of m linear equations in n unknowns x1, x2, . . . , xn can be represented
in matrix form as

Ax = b, (1.8a)

where

A = (aij)m,n =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn


 , x =




x1

x2
...

xn


 , b =




b1

b2
...

bn


 . (1.8b)

The system is said to be homogeneous if b = 0, nonhomogeneous otherwise. The
homogeneous system

Ax = 0 (1.9)

always has the trivial solution x = 0, but it may have others. The set of solutions is called
the null space of matrix A, and as the name suggests, the set of solutions constitutes a
vector space. The dimension of the null space of a matrix is often called the nullity of the
matrix. The essential question of whether the null space contains more than the zero vector
is answered in the following theorem.

Theorem 1.15 (Rank-Nullity Theorem) If an m × n matrix A has rank r, then its null space has
dimension n − r. If we denote the nullity of A by N , then

N + r = n. (1.10a)

In words,

dimension(null space of A)+dimension(column space of A)
= number of columns of A. (1.10b)

Proof Because the rank of A is r, its reduced row echelon form Arref has r leading ones.
We can find all solutions of Ax = 0 by solving the system Arrefx = 0 for the r variables
corresponding to the leading 1’s in terms of the remaining n − r so called free variables.
When n > m, the maximum value of r is m, and n − r must be positive. In this case, the
n − r family of solutions constitutes a vector space of dimension n − r. When n ≤ m, the
maximum value of r is n. When n = r, the only solution is the trivial one, and when r < n,
there is once again an (n − r)-dimensional space of solutions.

Example 1.22 Find a basis for the null space of the matrix in Example 1.20.

Solution The null space consists of vectors satisfying

Ax = 0 ⇐⇒




3 4 −1 4
2 1 5 −6
4 7 2 1
9 10 6 −1







x1

x2

x3

x4


 =




0
0
0
0


 .
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The reduced row echelon form for the augmented matrix of the system is



1 0 0 5/7
0 1 0 13/77
0 0 1 −117/77
0 0 0 0

0
0
0
0


 .

Vectors in the null space therefore satisfy

x1 = −5x4

7
, x2 = −13x4

77
, x3 =

117x4

77
;

that is, they take the form

x =




−5x4/7
−13x4/77
117x4/77

x4


 = −x4

77




5
13

−117
−77


 .

Hence, the null space has dimension 1 and a basis vector is (5, 13,−117,−77),•

Now consider when system 1.8 is nonhomogeneous,

Ax = b, (1.11)

where b 6= 0. We can rewrite the system in the form,

x1




a11

a21
...

am1


 + x2




a12

a22
...

am2


 + · · · + xn




a1n

a2n
...

amn


 =




b1

b2
...

bn


 . (1.12)

Since the matrices on the left are the column vectors of A, we can say that there is a solution
of the system if, and only if, vector b is in the column space of A. When b is not in the
column space of A, there is no solution of the equations. When b is in the column of space
of A, there may be one solution or an infinite number of solutions of the equations. They
are described in the following theorem.

Theorem 1.16 If the nonhomogeneous system of equations Ax = b has a solution xp, then every solution
of the system can be expressed in the form x = xh + xp, where xh is a solution of the
corresponding homogeneous system Ax = 0.

Proof Let x be any solution of Ax = b. Then

A(x − xp) = Ax − Axp = b − b = 0;

that is, x − xp satisfies the homogeneous system Ax = 0. Hence x − xp must be equal to
xh, for some xh; that is, x − xp = xh, or, x = xh + xp. In the event that the homoge-
neous system Ax = 0 has nontrivial solutions, the nonhomogeneous system will have an
infinity of solutions, and when the homogeneous system has only the trivial solution, the
nonhomogeneous has a unique solution.

When homogeneous system 1.9 has an n − r parameter of solutions, so also does non-
homogeneous system 1.11, but the solutions do not constitute a vector a space.

EXERCISES 1.5

In Exercises 1–7 find: (a) the rank of the matrix, (b) a basis for its row space, (c) a basis for
its column space, and (d) a basis for its null space.
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1.




3 3 2 −1
3 0 2 1
1 3 5 6
7 6 9 6


 2.

(
3 3 1 7
3 0 3 6

)

3.




3 2 1
−2 4 1
5 −2 0
9 6 3


 4.




2 1 −2 3
5 2 3 −6
1 1 1 1




5.




1 2 4 0 −3
0 1 −5 −1 2
0 1 3 −1 0
2 0 −1 −1 0


 6.




1 2 3 4
−2 3 1 0
1 9 10 11




7.




1 2 3 4
−2 3 1 0
1 9 10 12




In Exercises 8–11 the set of vectors spans a subspace in a 4-dimensional space. Find a basis for
the subspace.

8. {(2, 3,−1, 1), (3,−4,−2,−1), (1, 1, 2, 2), (3, 4, 5, 6)}

9. {(2, 3,−1, 1), (3,−4,−2,−1), (1, 1, 2, 2), (6, 0,−1, 2)}

10. {(2, 3,−1, 1), (3,−4,−2,−1), (−1, 7, 1, 2), (4, 6,−2, 2)}

11. {(2, 3, 5,−1), (3,−4,−1, 7), (−1,−2,−3, 1)}

12. If we are not particularly interested in a simple basis for the column space of a real matrix A, there is
an alternative to finding the reduced row echelon form for AT . Take the columns of A corresponding to
the columns in Arref that have leading ones. What basis does this lead to for the matrix in Exercise 4.
Confirm that these vectors do indeed form a basis for the column space of A.

13. Use the matrix
(

1 − i i
2 −1 + i

)

to illustrate that the technique of Exercise 12 for finding a basis for the column space of a matrix does
not work for complex matrices.

Answers

1.(a) 3 (b) (13, 0, 0,−11), (0, 3, 0,−2), (0, 0, 13, 23) (c) (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)
(d) (33, 26,−69, 30)

2.(a) 2 (b) (1, 0, 1, 2), (0, 3,−2, 1) (c) (1, 0), (0, 1) (d) (−3, 2, 3, 0), (6, 1, 0,−3)
3.(a) 2 (b) (8, 0, 1), (0, 16, 5) (c) (1, 0, 1, 3), (0, 1,−1, 0) (d) (2, 5,−16)
4.(a) 3 (b) (5, 0, 0,−11), (0, 5, 0, 23), (0, 0, 5,−7) (c) (1, 0, 0), (0, 1, 0), (0, 0, 1) (d) (11,−23, 7, 5)
5.(a) 4 (b) (5, 0, 0, 0,−4), (0, 5, 0, 0,−3), (0, 0, 4, 0,−1), (0, 0, 0, 20,−27)

(c) (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) (d) (7, 12, 14, 0, 29), (12, 4,−5, 29, 0)
6.(a) 3 (b) (1, 0, 1, 0),(0, 1, 1, 0), (0, 0, 0, 1) (c) (1, 0, 0), (0, 1, 0), (0, 0, 1) (d) (1, 1,−1, 0)
7.(a) 2 (b) (7, 0, 7, 12), (0, 7, 7, 8) (c) (1, 0, 3), (0, 1, 1) (d) (1, 1,−1, 0), (12, 8, 0,−7)
8. (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) 9. (43, 0, 0, 19), (0, 43, 0, 11), (0, 0, 43, 28)
10. (17, 0,−10, 1), (0, 17, 1, 5) 11. (1, 0, 1, 1), (0, 1, 1,−1) 12. (2, 5, 1), (1, 2, 1), (−2, 3, 1)
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§1.6 Changing Bases

The choice of basis for a vector space can make a huge difference on how easy it is to solve
a problem. At the moment, we might feel that the natural basis is optimum for G3 and
R3, and for some problems we would be correct. On the other hand, there are problems in
these spaces where the natural basis is not the best choice. Much of this course is about
finding the best choice for the basis of a vector space, and as we suggested, it may vary from
problem to problem. Once we have located what we feel is the best basis for a particular
problem, it will invariably be necessary to transform components of vectors with respect to
some basis to components with respect to the optimum basis, often from the natural basis
to the optimum basis.

We begin with a numerical example in which we change from natural components of a
vector in R3 to components with respect to a different basis. Suppose that a vector v has
natural components (4,−2, 3); in other words, v = 4̂i− 2ĵ + 3k̂. The vectors b1 = (1, 2, 3),
b2 = (−2, 1, 4), and b3 = (−3, 3, 2) are linearly independent and therefore constitute another
basis for R3. If (c1, c2, c3) are the components of v with respect to this new basis, then

(4,−2, 3) = c1b1 + c2b2 + c3b3 = c1(1, 2, 3) + c2(−2, 1, 4) + c3(−3, 3, 2)
= (c1 − 2c2 − 3c3, 2c1 + c2 + 3c3, 3c1 + 4c2 + 2c3).

When we equate components, we obtain the equations

c1 − 2c2 − 3c3 = 4,

2c1 + c2 + 3c3 = −2,

3c1 + 4c2 + 2c3 = 3.

The solution of these is c1 = 33/35, c2 = 29/35, and c3 = −11/7. The components of vector
v = (4,−2, 3) with respect to the basis b1, b2, and b3 are 33/35, 29/35, and −11/7; that
is,

v =
33
35

b1 +
29
35

b2 −
11
7

b3 =
33
35

(1, 2, 3) +
29
35

(−2, 1, 4)− 11
7

(−3, 3, 2).

This process could be repeated for any other vector with natural components (x1, x2, x3);
replace 4, −2, and 3 with x1, x2, and x3,

c1 − 2c2 − 3c3 = x1,

2c1 + c2 + 3c3 = x2,

3c1 + 4c2 + 2c3 = x3,

and re-solve the system. If components of a large number of vectors were to be transformed,
it would obviously be beneficial to invert the matrix of coefficients

A =




1 −2 −3
2 1 3
3 4 2


 ,

and express the solution in the form



c1

c2

c3


 = A−1




x1

x2

x3


 .

The inverse is A−1 =




2 −16/5 9/5
−1 7/5 −3/5
−1 2 −1


, so that
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


c1

c2

c3


 =




2 −16/5 9/5
−1 7/5 −3/5
−1 2 −1







x1

x2

x3


 .

What we should notice here is that the columns of A are the natural components of the basis
vectors b1, b2, and b3 and even more importantly, the columns of A−1 are the components
of the basis vectors î, ĵ, and k̂ with respect to the b1, b2, and b3 basis; that is,

î = 2b1 − b2 − b3, ĵ = −16
5

b1 +
7
5
b2 + 2b3, k̂ =

9
5
b1 −

3
5
b2 − b3.

This is not a coincidence of this example, nor does it depend on the fact that we began
with natural components, nor does it depend on working in R3. This is confirmed in the
following theorem.

Theorem 1.17 Suppose that {b1,b2, . . . ,bn} and {d1,d2, . . . ,dn} are bases for a vector space V . The
components of any vector v in V with respect to these bases are related by the equation

vd = Tdbvb, (1.13)

where columns of matrix Tdb are the components of the vectors b1,b2, . . . ,bn with respect
to the basis {d1,d2, . . . ,dn}. (vb and vd are the column matrix representations of the
components of vb and vd.)

Matrix Tdb is called the transition matrix or the change of basis matrix. The
above discussion also suggests the following corollary.

Corollary 1.17.1 When Tdb is the change of basis matrix from one basis {b1,b2, . . . ,bn} to a second basis
{d1,d2, . . . ,dn}, then its inverse is the change of basis matrix from {d1,d2, . . . ,dn} to
{b1,b2, . . . ,bn}; that is, Tbd = T−1

db .

Example 1.23 Find the transition matrix from the natural basis in R3 to the basis consisting of the vectors
(1, 2, 3), (−2, 0, 5), and (0, 3, 1).

Solution There are two ways that we could proceed. One is to use Theorem 1.17 and
find components of the natural basis with respect to the other basis. Alternatively, we can
use the corollary to the theorem. The transition matrix from the second basis to the natural
basis is

T =




1 −2 0
2 0 3
3 5 1


 .

The transition matrix from the natural basis to the other basis is the inverse of this matrix,

T−1 =
1
29




15 −2 6
−7 −1 3
−10 11 −4


 .•

Example 1.24 Let b1 = (1, 2) and b2 = (−2, 3) be a basis for R2, and d1 = (−2, 1) and d2 = (1, 1) be a
second basis. Find the transition matrix Tdb. If vb = (1,−5), what is vd?

Solution According to Theorem 1.17, the columns of Tdb are the components of the
vectors b1 and b2 with respect to the basis d1 and d2. If (b11, b12) are the components of
b1 with respect to d1 and d2, then

(1, 2) = b11(−2, 1) + b12(1, 1) = (−2b11 + b12, b11 + b12).

When we equate components, we obtain

−2b11 + b12 = 1, b11 + b12 = 2.
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The solution is b11 = 1/3 and b12 = 5/3. A similar calculation shows that the components
of b2 with respect to d1 and d2 are b21 = 5/3 and b22 = 4/3. The matrix Tdb is

Tdb =
(

1/3 5/3
5/3 4/3

)
.

The components of vb = (1,−5) with respect to the basis d1 and d2 are

(vd) = Tdb (vb) =
(

1/3 5/3
5/3 4/3

) (
1
−5

)
=

(
−8
−5

)
;

that is, vb = −8(−2, 1)− 5(1, 1). We can confirm this by showing that natural components
of vb and vd are the same,

vb = 1(1, 2)− 5(−2, 3) = (11,−13) and vd = −8(−2, 1)− 5(1, 1) = (11,−13).•

In Example 1.23, we saw that it is straightforward to find the transition matrix from
the natural basis to another basis, invert the matrix whose rows are components of the
other basis. In Example 1.24, where neither basis was natural, we found components of the
original basis vectors with respect to the ultimate basis. We could streamline the approach
as follows. In finding components of b1 with respect to d1 and d2, we solved the system

−2b11 + b12 = 1, b11 + b12 = 2.

In finding components of b2 with respect to d1 and d2, we solved the system

−2b21 + b22 = −2, b21 + b22 = 3.

We can solve both systems simultaneously by reducing the first 2 × 2 matrix below to the
identity,

(
−2 1
1 1

1 −2
2 3

)
.

The first two columns contain the components of the ultimate basis d1 and d2, and the last
two columns contain components of the original basis b1 and b2. The result is

(
1 0
0 1

1/3 5/3
5/3 4/3

)
.

The last two columns contain components of b1 and b2 with respect to d1 and d2, the
transition matrix. We illustrate this again in the next example.

Example 1.25 Find the transition matrix from the basis (1, 2, 3), (−3, 2, 5), and (2, 0, 3) in R3 to the basis
(0, 2, 1), (4, 1,−1), and (1, 1, 0).

Solution We reduce the first 3 × 3 matrix in



0 4 1
2 1 1
1 −1 0

1 −3 2
2 2 0
3 5 3




to the identity. The result is



1 0 0
0 1 0
0 0 1

8 10 11
5 5 8

−19 −23 −30


 ,

and therefore the transition matrix is
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


8 10 11
5 5 8

−19 −23 −30


 .•

The next two examples are more abstract.

Example 1.26 The natural basis for the space P2(x) of real polynomials of degree less than or equal to two
is {1, x, x2}. Find the transition matrix to the basis {3x, 1− 2x, 2 + 10x + 5x2}.

Solution We should perhaps confirm that {3x, 1 − 2x, 2 + 10x + 5x2} is indeed a basis
for P2(x). Natural components of these vectors are (0, 3, 0), (1,−2, 0), and (2, 10, 5). Since

det

∣∣∣∣∣∣

0 1 2
3 −2 10
0 0 5

∣∣∣∣∣∣
= −15 6= 0,

the vectors are linearly independent and therefore form a basis. We can find the transition
matrix in a number of ways.
Method 1 Columns of the transition matrix are the components of 1, x, and x2 with
respect to the other basis. We could get them as we did in Example 1.24, which for 1 would
be to set

1 = c1(3x) + c2(1 − 2x) + c3(2 + 10x + 5x2),

equate coefficients of 1, x, and x2, and solve for c1, c2, and c3. Then do this for x and x2.
This is perhaps the least efficient method.
Method 2 We can find the inverse of the transition matrix




0 1 2
3 −2 10
0 0 5




from the basis {3x, 1− 2x, 2 + 10x + 5x2} to the natural basis.
Method 3 Following the method of Example 1.25, we can reduce the first 3 × 3 matrix
in




0 1 2
3 −2 10
0 0 5

1 0 0
0 1 0
0 0 1




to the identity. The calculations are those of Method 2.
Method 4 We can find the components in Method 1 by writing

1 = (1 − 2x) + 2x = (1 − 2x) +
2
3
(3x) =

2
3
(3x) + 1(1− 2x),

x =
1
3
(3x),

x2 =
1
5
(2 + 10x + 5x2) − 2x − 2

5
=

1
5
(2 + 10x + 5x2) − 2

5
(1 − 2x) − 14

5
x

=
1
5
(2 + 10x + 5x2) − 2

5
(1 − 2x) − 14

15
(3x)

= −
14
15

(3x) −
2
5
(1 − 2x) +

1
5
(2 + 10x + 5x2).

These display the components of the natural basis with respect to the other basis., All
methods lead to the transition matrix

T =




2/3 1/3 −14/15
1 0 −2/5
0 0 1/5


 .•
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Example 1.27 The vector space of solutions of the linear, homogeneous, second order differential equation

d2y

dx2
− k2y = 0,

where k > 0 is a constant, is 2-dimensional with basis {ekx, e−kx}. A second basis is the
functions {coshkx, sinh kx}. Find the transition matrix from the exponential basis to the
hyperbolic basis.

Solution The columns of the matrix are the components of ekx and e−kx with respect to
cosh kx and sinh kx. Definitions of cosh kx and sinh kx are

cosh kx =
ekx + e−kx

2
and sinh kx =

ekx − e−kx

2
,

and these imply that

ekx = cosh kx + sinh kx and e−kx = cosh kx − sinh kx.

Hence, the change of basis matrix is

T =
(

1 1
1 −1

)
.

We could test this with a simple example. Consider the solution 5ekx−3e−kx. Its components
with respect to the hyperbolic basis are

(
1 1
1 −1

) (
5
−3

)
=

(
2
8

)
.

In other words, the solution is

2 coshkx + 7 sinh kx = 2
(

ekx + e−kx

2

)
+ 8

(
ekx − e−kx

2

)
= 5ekx − 3e−kx.•

In each of the above examples, the transition matrix had constant entries. The following
example illustrates that this may not always be the case.

Example 1.28 We have agreed to draw all vectors in G2 with their tails at the origin. We could have drawn
them all with tails at some other fixed point, but discussions would have been the same,
and the reason for this is that basis vectors î and ĵ are the same at any point in the plane.
As a result, the natural components of a vector at one point are the same as the natural
components at any other point. Basis vectors r̂ and θ̂θ for polar coordinates do not share this
constancy. They change direction from point to point (see Figure 1.1). What this means
is that the polar components of a directed line segment at one point are different than the
polar components at another point. The transition matrix from natural components to polar
components will therefore vary from point to point. Find the matrix.

Solution The columns in the transition matrix are the components of î and ĵ with respect
to r̂ and θ̂θ. They will vary from point to point. Either algebraically, or using Figure 1.2, we
find that

î = cos θ r̂ − sin θ θ̂θ, ĵ = sin θ r̂ + cos θ θ̂θ.

The transition matrix is therefore

T =
(

cos θ sin θ
− sin θ cos θ

)
;

it depends on polar coordinate θ of the point at which vectors are drawn, but not the distance
r from the origin to the point.
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For example, consider finding the polar coordinates of the vector î at the point with Cartesian
coordinates (2, 0). Since θ = 0 at this point, the polar coordinates of î are

(
1 0
0 1

) (
1
0

)
=

(
1
0

)
;

that is, î = r̂. At the point (4, 4), the value of θ is π/4, and the components of î at this
point are

(
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

) (
1
0

)
=

(
1/

√
2

−1/
√

2

)
;

that is, î = (r̂ − θ̂θ)/
√

2. Finally, at the point (0, 5) where θ = π/2, the components of î are
(

0 1
−1 0

) (
1
0

)
=

(
0
−1

)
;

that is, î = −θ̂θ. Draw î, r̂, and θ̂θ at the points (2, 0), (4, 4), and (0, 5) to confirm the validity
of the results. It would also be a good idea to change components of ĵ at these same points,
and to change components of î and ĵ at points in the other quadrants.

EXERCISES 1.6

In Exercises 1–8 find the transition matrix from the first basis to the second. Then find compo-
nents of the given vector with respect to both bases and confirm that they are indeed correct.
Assume that the components of the vector are natural components.

1. Natural basis to {(1, 3), (3, 5)} in R2; v = (4,−7)

2. {(1, 1), (3,−2)} to {(1, 3), (3, 5)} in R2; v = (−3, 8)

3. {〈1, 1, 2〉, 〈2,−1, 0〉, 〈0, 3,−2〉} to natural basis in G3; v = 〈−2, 3, 6〉

4. Natural basis to {〈1, 1, 2〉, 〈2,−1, 0〉, 〈0, 3,−2〉} in G3; v = 〈−3, 2, 5〉

5. {(1, 1, 2), (2,−1, 0), (0, 3,−2)} to {(3, 1,−2), (1, 1, 0), (4,−3, 2)} in R3; v = (3, 3, 7)

6. Natural basis to {3, 2− x, 4 + x2} in P2(x); p(x) = 3x2 − 4x + 7

7. Natural basis {1, z, z2} to {i, 3z, 2− z + (1 + i)z2} in P2(z); p(z) = 2i + 4z + (2 + 3i)z2

8. Natural basis to basis {2, 3x, 4x2, . . . , (k + 2)xk, . . .} of P (x); p(x) = x6 + 4x3 − 2

9. The first five Legendre polynomials are

p0(x) = 1, p1(x) = x, p2(x) =
1
2
(3x2 − 1), p3(x) =

1
2
(5x3 − 3x), p4(x) =

1
8
(35x4 − 30x2 + 3).

The first five Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.
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Both form a basis for P4(x).
(a) Find the transition matrix from the Legendre basis to the Chebyshev basis.
(b) Find the transition matrix from the Chebyshev basis to the Legendre basis.

10. Repeat Exercise 9 but replace the Chebyshev polynomials with the Hermite polynomials

h0(x) = 1, h1(x) = 2x, h2(x) = 4x2 − 2, h3(x) = 8x3 − 12x, h4(x) = 16x4 − 48x2 + 12.

Answers

1.
1
4

(
−5 3
3 −1

)
; (4,−7), (−41/4, 19/4) 2.

1
4

(
−2 −21
2 11

)
; (18/5,−11/5), (39/4,−17/4)

3.




1 2 0
1 −1 3
2 0 −2


; 〈10/9,−20/9,−5/9〉, 〈−2, 3, 6〉

4.
1
18




2 4 6
8 −2 −3
2 4 −3


; 〈−3, 2, 5〉, 〈16/9,−43/18,−13/18〉

5.
1
9




−7 3 4
22 −3 8
2 3 −5


; (10/3,−1/6,−1/6), (−49/18, 145/18, 7/9)

6.
1
3




1 2 −4
0 −3 0
0 0 3


; (7,−4, 3), (−13/3, 4, 3)

7.




−i 0 1 + i
0 1/3 (1 − i)/6
0 0 (1 − i)/2


; (2i, 4, 2 + 3i),

(
1 + 5i, (13 + i)/6, (5 + i)/2

)

8.




1/2 0 0 0 0 0 0 0 · · ·
0 1/3 0 0 0 0 0 0 · · ·
0 0 1/4 0 0 0 0 0 · · ·
0 0 0 1/5 0 0 0 0 · · ·
0 0 0 0 1/6 0 0 0 · · ·
0 0 0 0 0 1/7 0 0 · · ·
0 0 0 0 0 0 1/8 0 · · ·
...

...
...

...
...

...
...




;
(−2, 0, 0, 4, 0, 0, 1, 0, · · ·),
(−1, 0, 0, 4/5, 0, 0, 1/8, 0, · · ·)

9.(a)




1 0 1/4 0 9/64
0 1 0 3/8 0
0 0 3/4 0 5/16
0 0 0 5/8 0
0 0 0 0 35/64


 (b)




1 0 −1/3 0 −1/15
0 1 0 −3/5 0
0 0 4/3 0 −16/21
0 0 0 8/5 0
0 0 0 0 64/35




10.(a)




1 0 0 0 0
0 1/2 0 0 0

1/4 0 3/8 0 0
0 9/8 0 5/16 0

57/32 0 75/32 0 35/128


 (b)




1 0 0 0 0
0 2 0 0 0

−2/3 0 8/3 0 0
0 −36/5 0 16/5 0

−4/5 0 −160/7 0 128/35



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§1.7 Subspace Components of Vectors

The coefficients vx, vy, and vz in the representation v = vxî+ vy ĵ + vzk̂ of vectors in G3 are
called the scalar components of the vector. In previous discussions, we have simply called
them components, but because we are about to define what are called vector components of
vectors, we have added the adjective “scalar”. Should we happen to omit either adjective,
scalar or vector, context always makes it clear which type of component is intended.

Every vector v = vxî + vy ĵ + vzk̂ in G3 can be regarded as the sum of the vector vzk̂
along the z-axis, and the vector vxî + vy ĵ in the xy-plane. In elementary vector analysis,
vzk̂ would be called the vector component of v along the z-axis, and vxî + vy ĵ the vector
component of v in the xy-plane. Because this nomenclature can be ambiguous, we will
modify it in this section. Vectors along the z-axis constitute a subspace of G3, call it W1;
vectors in the xy-plane also form a subspace, call it W2. In other words, every vector v in
G3 can be expressed as the sum of two vectors

v = w1 + w2 (1.14)

where w1 is in W1 and w2 is in W2, and the representation is unique. We call w1 the vector
component of v along W1 as determined by W2, and w2 the vector component of v along
W2 as determined by W1. It is important to notice that the only vector in both subspaces
is the zero vector.

Every vector v in G3 can also be expressed as the sum v = w1 + w2 of a vector w1

along the vector 〈1, 2, 3〉 and a vector w2 along the xy-plane. We can find these vectors by
setting

v = 〈vx, vy, vz〉 = c1〈1, 2, 3〉 + c2î + c3ĵ.

By equating components, we obtain

vx = c1 + c2, vy = 2c1 + c3, vz = 3c1 =⇒ c1 =
vz

3
, c2 = vx − vz

3
, c3 = vy − 2vz

3
.

Thus,

v =
vz

3
〈1, 2, 3〉+

[(
vx − vz

3

)
î +

(
vy − 2vz

3

)
ĵ
]

;

that is,

v = w1 + w2, where w1 =
vz

3
〈1, 2, 3〉 and w2 =

(
vx − vz

3

)
î +

(
vy − 2vz

3

)
ĵ.

Vectors along 〈1, 2, 3〉 constitute a subspace of G3, call it W1; vectors in the xy-plane form
a subspace W2. We call w1 the vector component of v along W1 as determined by W2, and
w2 the vector component of v along the W2 as determined by W1. Notice that the only
vector in the intersection of the two subspaces W1 and W2 is the zero vector.

Every vector (x1, x2, . . . , xn) in Rn can be expressed uniquely in the form

(x1, x2, . . . , xn) = (x1, x2, . . . , xi, 0, 0, . . . , 0) + (0, 0, . . . , 0, xi+1, xi+2, . . . , xn).

Vectors of the form (x1, x2, . . . , xi, 0, 0, . . . , 0) constitute a subspace of Rn, call it W1; vectors
of the form (0, 0, . . . , 0, xi+1, xi+2, . . . , xn) constitute another subspace, call it W2. Vector
(x1, x2, . . . , xi, 0, 0, . . . , 0) is the vector component of v along the subspace W1 as determined
by W2; and (0, 0, . . . , 0, xi+1, xi+2, . . . , xn) is the vector component of v along the subspace
W2 as determined by W1. Once again, the only vector common to W1 and W2 is the zero
vector.

The xy-plane and the yz-plane are subspaces of G3. It is possible to express every
vector in G3 as the sum of vectors in these subspaces, but there are many ways to do it;
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the representation is not unique. The reason for this is that the subspace consisting af all
vectors along the y-axis is common to the subspaces.

We now extend these ideas to arbitrary vector spaces.

Definition 1.7 If W1 and W2 are subspaces of a vector space V such that every vector v in V can be
expressed uniquely in the form v = w1 + w2, where w1 is in W1, and w2 is in W2, we
say that V is the direct sum of W1 and W2, and write that V = W1 ⊕ W2. We call
w1 the vector component of v along W1 as determined by W2, and w2 the vector
component of v along W2 as determined by W1

†.

The requirement that the representation of a vector in the form v = w1 + w2, where
w1 is in W1 and w2 is in W2, is unique is tantamount to the requirement that only the zero
vector is common to W1 and W2. We prove this in the following theorem.

Theorem 1.18 Suppose that all vectors in a vector space V can be expressed in the form v = w1 + w2,
where w1 and w2 are vectors in subspace W1 and W1, respectively. The representation is
unique if, and only if, the only vector in the intersection of the subspaces is the zero vector.

Proof First suppose that W1 and W2 have only the zero vector in common, and yet there
exists a vector in V that has two different representations v = w1 + w2 and v = w′

1 + w′
2.

Then

w1 + w2 = w′
1 + w′

2 =⇒ w1 −w′
1 = w′

2 −w2.

But the left vector is in W1 and the right one is in W2, contradicting the fact that only
the zero vector is common to the subspaces. Conversely, suppose that vectors in V can be
expressed uniquely in the form v = w1 + w2, and yet W1 and W2 have at least one nonzero
vector in common, call it u. According to Exercise 40 in Section 1.2, the intersection
of subspaces in a vector space is a subspace. Hence, the vector −u must also be in the
intersection. We can therefore express the zero vector, which is in V , in two different ways
in terms of vectors in W1 and W2, namely,

0 = −u + u, and 0 = 0 + 0,

a contradiction.

As an immediate corollary, we have the following result.

Corollary 1.18.1 Suppose that all vectors in a vector space V can be expressed in the form v = w1 + w2,
where w1 and w2 are vectors in subspace W1 and W2, respectively. Then V = W1 ⊕ W2 if,
and only if, the intersection of the subspaces is the zero vector.

Both Theorem 1.18 and its corollary assume that every vector in the space can be
expressed in the form w1 +w2 where w1 is in a subspace W1, and w2 is in a second subspace
W2, and use a zero intersection to obtain uniqueness of the representation. Showing that
every vector can be represented as a sum may be a more difficult thing to prove. The
following theorem provides a way out if we know the dimensions of the subspaces.

Theorem 1.19 If W1 and W2 are m- and n-dimensional subspaces, respectively, of an (n + m)-dimensional
vector space V such that W1 ∩ W2 = 0, then V = W1 ⊕ W2.

Proof Let {b1, . . . ,bm} and {d1, . . . ,dn} be basis for W1 and W2, respectively. If we can
show that {b1, . . . ,bm,d1, . . . ,dn} is a basis for V , then it will follow that every vector v
in V can be expressed in the form v = w1 + w2, where w1 is in W1, and w2 is in W2. This
set of n + m vectors is a basis for V if it is linearly independent. Consider finding n + m
constants so that

† Many authors refer to these as projections of v onto the subspaces W1 and W2.
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c1b1 + · · · + cmbm + f1d1 + · · · + fndn = 0.

If we write

c1b1 + · · · + cmbm = −f1d1 − · · · − fndn,

then the left side is a vector in W1 and the right side is a vector in W2. Since the only vector
common to the subspaces is the zero vector, we conclude that

c1b1 + · · · + cmbm = 0, f1d1 + · · · + fndn = 0.

These imply that all c and f coefficients must be zero, and our proof is complete.

We only take vector components of a vector along one subspace as determined by
another when the space is the direct sum of the subspaces. As pointed out above, we can
express every vector in G3 as the sum of vectors in the plane xy-plane and the yz-plane, but
the representation is not unique. G3 is not the direct sum of these two subspaces, and we do
not take components of a vector along either of these subspaces as determined by the other.

It is important to understand that a vector component depends not only on the subspace
where the component is to be found but also on the other subspace in the direct sum. Our
introductory example illustrated this. The vector components of a vector v along the xy-
plane were different when the other space was vectors along the z-axis, and vectors along
〈1, 2, 3〉. The next two examples reinforce this point.

Example 1.29 Find the vector component of a vector v = 〈vx, vy〉 in G2 along the subspace W1 of vectors
along the x-axis as determined by the subspace W2 of vectors along the y-axis.

Solution Since v = 〈vx, vy〉 = vxî + vy ĵ, it follows that the vector component of v along
the x-axis as determined by vectors along the y-axis is vx î.•

Contrast this with the following example.

Example 1.30 Find the vector component of a vector v = 〈vx, vy〉 in G2 along the subspace W1 of vectors
along the x-axis as determined by the subspace W2 of vectors that are multiples of 〈3, 2〉.

Solution Because vectors 〈1, 0〉 and 〈3, 2〉 are linearly independent, they constitute a basis
for G2, and every vector v in the space can be expressed in the form v = c1〈1, 0〉+ c2〈3, 2〉.
The vector component of v along W1 as determined by W2 is c1〈1, 0〉. To find c1, we equate
components in

〈v1, v2〉 = c1〈1, 0〉 + c2〈3, 2〉,

to get

v1 = c1 + 3c2, v2 = 2c2.

The solution is c1 = v1 − 3v2/2 and c2 = v2/2. In other words,

〈v1, v2〉 =
(

v1 −
3v2

2

)
〈1, 0〉+

v2

2
〈3, 2〉.

The vector component of v along W1 as
determined by W2 is(

v1 −
3v2

2

)
〈1, 0〉.

We have shown the vector v and its
vector components in Figure 1.3.
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EXERCISES 1.7

1. Repeat Example 1.30 but replace the vector 〈3, 2〉 with the vector 〈−2, 1〉. In addition, find the vector
component of 〈x1, x2〉 along W2 as determined by W1.

2. Let W1 be the subspace of R2 of vectors that are multiples of (1, 4), and W2 be the subspace of multiples
of (2,−3). Find the vector component of a vector v = (x1, x2) along W1 as determined by W2, and the
vector component along W2 as determined by W1.

3. Let W1 be the subspace of G3 consisting of vectors in the xy-plane, and W2 be the subspace of vectors
along the z-axis. What is the vector component of a vector v = 〈v1, v2, v3〉 along W1 as determined by
W2, and the vector component along W2 as determined by W1.

4. Repeat Exercise 3 but take W2 as multiples of the vector 〈1, 2, 3〉.

5. Let W1 be the subspace of R3 spanned by the vectors (1, 2, 3) and (−2, 4, 1), and let W2 be the subspace
spanned by (3, 2, 1). Find the vector component of a vector v = (x1, x2, x3) along W1 as determined by
W2, and the vector component along W2 as determined by W1.

6. Let W1 be the subspace of P3(x) spanned by 1 and x, and let W2 be the subspace spanned by x2 and x3.
Find the vector component of a vector p(x) = a0 + a1x + a2x

2 + a3x3 along W1 as determined by W2,
and the vector component along W2 as determined by W1.

7. Let W1 be the subspace of P3(x) spanned by 1 − x and x2, and let W2 be the subspace spanned by 3x
and 2x3. Find the vector component of a vector p(x) = a0 + a1x + a2x

2 + a3x3 along W1 as determined
by W2, and the vector component along W2 as determined by W1.

8. Let W1 be the subspace of P2(x) spanned by 1 − x + x2 and 2 + x − 3x2, and let W2 be the subspace
spanned by 4 + 2x − 5x2. Find the vector component of a vector p(x) = a0 + a1x + a2x

2 along W1 as
determined by W2, and the vector component along W2 as determined by W1.

9. Does the component of a vector along a subspace W1 as determined by W2 depend on the bases for W1

and W2 used to find w1 and w2?

10. Prove that Mn,n(R) is the direct sum of the subspace of n × n symmetric matrices and the subspace of
n × n skew-symmetric matrices. What is the dimension of each subspace?

11. Prove that the space C0[−a, a] of continuous functions on the interval −a ≤ x ≤ a is the direct sum of
the subspace of even, continuous functions on the interval and the subspace of odd, continuous functions
on the interval.

12. In Exercises 1.2, we combined subspaces W1 and W2 of a vector space V to form the sum W1 + W2, the
intersection W1 ∩ W2, and the union W1 ∪ W2.
(a) Prove that W1 + W2 contains W1 ∪ W2.
(b) Is W1 + W2 the same as W1 ⊕ W2?

Answers

1. (x1 + 2x2)(1, 0), x2(−2, 1) 2.
(

3x1 + 2x2

11

)
(1, 4),

(
4x1 − x2

11

)
(2,−3) 3. v1 î + v2ĵ, v3k̂

4. (v3/3)〈1, 1, 1〉, (v1 − v3/3)̂i + (v2 − 2v3/3)̂j 5. [−2x1 − 5x2 + 16x3)/36](1, 2, 3) + [(−x1 + 2x2 −
x3)/9](−2, 4, 1), [(10x1 + 7x2 − 8x3)/36](3, 2, 1)
6. a0 + a1x, a2x2 + a3x

3 7. a0(1 − x) + a2x
2, [(a0 + a1)/3](3x) + (a3/2)(2x3)

8. [a0 − 2a1)/3](1 − x + x2) − (a0 + 3a1 + 2a2)(2 + x − 3x2), [2a0 + 5a1 + 3a2)/3](4 + 2x − 5x2)
9. No 10. n(n + 1)/2, n(n − 1)/2 12.(b) Sometimes, but not always


