Some examples on domain and range

The sign of a linear form ax + b is determined by the following rule:

The sign of a <u>quadratic form</u> $ax^2 + bx + c$ is determined by the following rule:

		$\frac{-b - \sqrt{b^2 - 4ac}}{2a}$		$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$	
$ax^2 + bx + c$	sign of a	•	opposite sign of a	•	sign of a

To find the range of a quadratic function complete the square

Example. Find the range of the quadratic function $g(x) = -3x^2 + 2x - 1$.

Solution: There is no restriction on x, therefore the domain is $(-\infty, \infty)$. As for the range, we complete the square to get: $-3x^2 + 2x - 1 = -3(x^2 - \frac{2}{3}x) - 1 = -3\left[(x - \frac{1}{3})^2 - \frac{1}{9}\right] - 1 = -3(x - \frac{1}{3})^2 + \frac{3}{9} - 1$ $= -3(x - \frac{1}{3})^2 - \frac{2}{3} \le -\frac{2}{3}$ (the maximum value of $-\frac{2}{3}$ is reached at $x = \frac{1}{3}$). The maximum for this function is $-\frac{2}{3}$, so the range is $(-\infty, -\frac{2}{3}]$. \checkmark This inequality shows that the values of the expression $-3x^2 + 2x - 1 = -3(x - \frac{1}{3})^2 - \frac{2}{3}$ is at least $-\frac{2}{3}$. By putting $x = \frac{1}{3}$ it becomes clear the minimum value of the expression is $-\frac{2}{3}$. So the range of this function is $(-\infty, -\frac{2}{3}]$.

Example. Find the range of the quadratic function $g(x) = 2x^2 - 3x + 7$.

Solution: There is no restriction on x, therefore the domain is $(-\infty, \infty)$. As for the range, we complete the square to get:

$$2x^{2} - 3x + 7 = 2(x^{2} - \frac{3}{2}x) + 7 = 2\left[(x - \frac{3}{4})^{2} - \frac{9}{16}\right] + 7 = 2(x - \frac{3}{4})^{2} - \frac{9}{8} + 7$$
$$= 2(x - \frac{3}{4})^{2} + \frac{-9 + 56}{8} = 2(x - \frac{3}{4})^{2} + \frac{47}{8} \ge \frac{47}{8}$$

This inequality shows that the values of the expression $2x^2 - 3x + 7 = 2(x - \frac{3}{4})^2 + \frac{47}{8}$ is at least $\frac{47}{8}$. By putting $x = \frac{3}{4}$ it becomes clear the minimum value of the expression is $\frac{47}{8}$. So the range of this function is $[\frac{47}{8}, \infty)$.

Now, below we find some examples on finding the domain

Example. Find the domain of the function $f(x) = \frac{\sqrt{2x^5 + 64}}{3x - 4} + x^3 + 1$

Solution: The restrictions that we have are

$$\begin{cases} 2x^5 + 64 \ge 0 \\ and \\ 3x - 4 \ne 0 \end{cases} \Leftrightarrow \begin{cases} x^5 \ge -\frac{64}{2} \\ and \\ x \ne \frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} x^5 \ge -32 \\ and \\ x \ne \frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} x \ge \sqrt[5]{-32} \\ and \\ x \ne \frac{4}{3} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \ge -\frac{5}{\sqrt{32}} \\ x \ne \frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} x \ge -2 \\ x \ne \frac{4}{3} \end{cases}$$

The first restriction gives us the interval $[-2, \infty)$ and the second restriction tells us to remove the point $\frac{4}{3}$ from this set. So, the domain is

$$[-2 \ , \ \frac{4}{3}) \cup (\frac{4}{3} \ , \ \infty)$$

Example (section 1.1 exercise 31). Find the domain of $f(x) = \frac{x+4}{x^2-9}$.

Solution: The points $x = \pm 3$ must be excluded as they make the denominator zero.

 $D_f: x \neq \pm 3$

Example. Find the domain of the function $f(t) = \sqrt{\frac{-1+2t}{3t-6}}$

Solution:

We must have $\frac{-1+2t}{3t-6} \ge 0$ but under the restriction $t \ne 2$ to make sure that the denominator is non-zero. We must determine the signs of both -1+2t and 3t-6 to be able to determine where the ration $\frac{-1+2t}{3t-6}$ is non-negative.

		$\frac{1}{2}$	2
-1 + 2t		+	+
3t-6	_	—	+ +
qutient	+	_	+

So the domain on which $\frac{-1+2t}{3t-6} \ge 0$ excluding where the denominator is zero is the set

$$D_f = \left(-\infty, \, \frac{1}{2}\right] \cup \left(2, \, \infty\right)$$

Example (section 1.1 exercise 32). Find the domain of $f(x) = \frac{2x^3 - 5}{x^2 + x - 6}$.

Solution: The points satisfying $x^2 + x - 6 = 0$ must be excluded as they make the denominator zero.

$$x^{2} + x - 6 = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2} = \begin{cases} -3 \\ 2 \end{cases}$$
$$D_{f}: \quad x \neq -3, \ 2 \end{cases}$$

Example (section 1.1 exercise 33). Find the domain of $f(t) = \sqrt[3]{2t-1}$.

Solution: As the operator $\sqrt[3]{.}$ can act on all numbers (positive and negative), the value $\sqrt[3]{2t-1}$ can be calculated for all t, so

$$D_f = (-\infty, \infty)$$

Example (section 1.1 exercise 34). Find the domain of $g(t) = \sqrt{3-t} - \sqrt{2+t}$.

Solution: We must have both $3 - t \ge 0$ and $2 + t \ge 0$. So, we must have both $3 \ge t$ and $t \ge -2$. So the domain is the interval [-2, 3]

Example (section 1.1 exercise 35). Find the domain of $h(x) = \frac{1}{\sqrt[4]{x^2 - 5x}}$.

Solution: We must have	$x^2 - 5x > 0.$	But x^2 -	-5x = x	(x-5)	and	
		0 5				
	x			+		
	x-5			+		
	product	+	_	+		
So, the domain is:				. <u> </u>		
	$D_h =$	$(-\infty, 0)$	\cup (5, ∞)		

Example (section 1.1 exercise 38). Find the domain of the function $h(x) = \sqrt{4 - x^2}$.

Solution: $4 - x^2 \ge 0 \quad \Leftrightarrow \quad 4 \ge x^2 \quad \stackrel{\text{square root}}{\Leftrightarrow} \quad 2 \ge |x| \quad \Leftrightarrow \quad -2 \le x \le 2$ $D_h = [-2, 2]$

Example Find the domain of the function $\frac{\sqrt{x^2-4}}{e^{5x+7}(x-3)}$

Solution: Since the exponential function return positive values, the quantity e^{5x+7} is positive and therefore it does not cause any problem being in the denominator. So the only restrictions that we have are $x^2 - 4 \ge 0$ and $x - 2 \ne 0$. The restriction $x^2 - 4 \ge 0$ is equivalent to x being in $(-\infty, -2] \cup [2, \infty)$, and the restriction $x - 3 \ne 0$ is the same as $x \ne 3$. So we should remove the point x = 3 from the set $(-\infty, -2] \cup [2, \infty)$, and the domain is

 $(-\infty \ , \ -2] \cup [2 \ , \ 3) \cup (3 \ , \ \infty)$

Example Find the domain of the function $\frac{\sqrt{x^2-3}\cos(2x+1)}{e^{-2x+3}(x-4)}$

Solution: Since the exponential function return positive values, the quantity e^{-2x+3} is positive and therefore it does not cause any problem being in the denominator. Also the function $\cos(2x + 1)$ brings along no restriction for x because you can give any value to the function $\cos as$ the input. So the only restrictions that we have are $x^2 - 3 \ge 0$ and $x - 4 \ne 0$. The restriction $x^2 - 3 \ge 0$ is equivalent to x being in $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$, and the restriction $x - 4 \ne 0$ is the same as $x \ne 4$. So we should remove the point x = 4 from the set $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$, and the domain is

$$(-\infty \ , \ -\sqrt{3}] \cup [\sqrt{3} \ , \ 4) \cup (4 \ , \ \infty)$$