
Initial Value Problems

1 Euler’s Explicit Method (section 10.2.1)

Definition . By a first order initial value problem, we mean a problem such as

dy
dx

= f (x,y) y(a) is given

in which we are looking a function y(x) that satisfies these condition. Most IVP’s cannot be solved

analytically, therefore we must come up with numerical solutions for them. As an example consider the

following IVP:

y′ = 2x+ y y(0) = 1

and we may be interested in get an approximate value for y(1). For this, we divide the interval [0 , 1]

into a number of subintervals of equal length, and get a step size h = 1−0
n . To be more specific, let us

divide the interval into 5 subinterval by taking the following nodes:

0 , 0.2 , 0.4 , 0.6 , 0.8 , 1

Then starting from the value y(0) we construct an approximate value for y(0.2), and then using this

value we construct an approximate value to y(0.4) , and so on, until we finally construct an

approximate value for y(1). In general, take an arbitrary INP
dy
dx = f(x,y)

y(a) is given
⇒

 y′(x) = f(x,y(x))

y(a) given

and suppose we want to approximate the value of the function y at some point b bigger than x1. Then

we divide the interval [a , b] into n subintervals with these nodes:

x1 = a , x2 , · · · , xn−1 , xn = b

The tangent line at the point (x1,y1) = (x1,y(x1)) is the line:
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y−y1 = y′(x1)(x−x1)

↪→ y−y1 = f(x1,y1)(x−x1)

↪→ y = y1 + f(x1,y1)(x−x1)

By putting x2 in this equation, we get

y2 = y1 + f (x1,y1)(x2 − x1) ⇒ y2 = y1 + f (x1,y1)h

This point (x2,y2) is on the tangent line as it satisfies the equation of the line. The value y2 is taken as

an approximation to the true value y(x2) (Here the details of the figure on page 390 were explained).

Now that we have y2 (an approximate value) we use it to create an approximation y3 to y(x3) through :

y3 = y2 + f (x2,y2)h

and in general, by having constructed an approximation yi, the approximate value for y(xn+1), which

we call yi+1 , is found by setting

yi+1 := yi + f (xi,yi)h

This will continue until we find an approximation for y(xn) which was desired. This method is called

the Euler’s Explicit Method.

Example (from exercise 10.1 of the textbook). Solve the ODE

dy
dx

=
x2

y
x = 0 to x = 2.1 with y(0) = 2

using the Euler’s explicit method with h = 0.7

Solution. We have

f (x,y) =
x2

y

and the nodes are:

0 , 0.7 , 1.4 , 2.1

Discretization:
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yi+1 = yi + f(xi,yi)h ⇒ yi+1 = yi +
x2

i
yi
(0.7)



i = 1 ⇒ y2 = y1 +
x2

1
y1

(0.7) = 2+
02

2
(0.7) = 2

i = 2 ⇒ y3 = y2 +
x2

2
y2

(0.7) = 2+
(0.7)2

2
(0.7) = 2.1715

i = 3 ⇒ y4 = y3 +
x2

3
y3

(0.7) = 2.1715+
(1.4)2

2.1715
(0.7) = 2.8033
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2 Modified Euler’s Method (section 10.3)

The two-step algorithm for the Modified Euler’s Method is as follows:

Step 1. Approximate yi+1 using the Explicit Euler’ Method on the whatever last approximate

value yi :

ŷi+1 = yi + f(xi,yi)h

Step 2. Take the following yi+1 as the Modified Euler’s Approximation for the true value of

y(xi+1)

yi+1 = yi +
f(xi,yi)+ f(xi+1 , ŷi+1)

2
h

Here the figure on page 402 of the textbook was explained.

Example (from exercise 10.1 of the textbook). Solve the ODE

dy
dx

=
x2

y
x = 0 to x = 2.1 with y(0) = 2

using the Modified Euler’s Method with h = 0.7

Solution. We have

f (x,y) =
x2

y

and the nodes are:

0 , 0.7 , 1.4 , 2.1

Interim discretization:

ŷi+1 = yi + f(xi,yi)h ⇒ yi+1 = yi +
x2

i
yi
(0.7)
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i = 1 ⇒



f(x1,y1) =
x2

1
y1

= 02

2 = 0

ŷ2 = y1 + f(x1 , y1)h = y1 +(0)(0.7) = 2+ 02

2 (0.7) = 2

f(x2, ŷ2) =
x2

2
ŷ2

= 0.72

2 = 0.2450

y2 = y1 +
1
2

[
f(x1 , y1)+ f(x2 , ŷ2)

]
h = 2+ 1

2

[
0+0.2450

]
(0.7) = 2.0858

i = 2 ⇒



f(x2,y2) =
x2

2
y2

= 0.72

2.0858 = 0.2349

ŷ3 = y2 + f(x2 , y2)h = 2.0858+(0.2349)(0.7) = 2.2502

f(x3, ŷ3) =
x2

3
ŷ3

= 1.42

2.2502 = 0.8710

y3 = y2 +
1
2

[
f(x2 , y2)+ f(x3 , ŷ3)

]
h = 2.0858+ 1

2

[
0.2349+0.8710

]
(0.7) = 2.4729

i = 3 ⇒



f(x3,y3) =
x2

3
y3

= 1.42

2.4729 = 0.7926

ŷ4 = y3 + f(x3 , y3)h = 2.4729+(0.7926)(0.7) = 3.0277

f(x4, ŷ4) =
x2

4
ŷ4

= 2.12

3.0277 = 1.4566

y4 = y3 +
1
2

[
f(x3 , y3)+ f(x4 , ŷ4)

]
h = 2.4729+ 1

2

[
0.7926+1.4566

]
(0.7) = 3.2601
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3 Second Order Runge-Kutta Methods, including the Midpoint Method

(sections 10.5.1 and 10.4)

The discretization for the Runge-Kutta Method of Order 2 (RK2) is performed in the following two

steps:

(i) Walk along the tangent line at (xi , yi) as much as α times the vector ⟨h , mh⟩= h⟨1 , m⟩ where

m = f(xi , yi) is the slope, where 1
2 ≤ α ≤ 1. This gets you to the point

(xi,yi)+α(h,hm) = (xi +αh , yi +hm) = (xi +αh , yi +αh f (xi,yi))

If α = 1, then we get to the point where the Euler’s Explicit Method tells us to go. We call the

point (xi,yi) the old point, and the point (u , v) = (xi +αh , yi +αhf(xi,yi)) the new point.

(ii) Take the number b = 1
2α . Since 1

2 α ≤ 1, we have 1
2 ≤ b ≤ 1. Then take the combination

yi+1 = yi +(1−b)h(old point’s slope)+bh(new point’s slope)

Since 1
2 ≤ b ≤ 1 we have 0 ≤ 1−b ≤ 1

2 therefore are giving more weight to the new slope. The

old slope and the new slope are denoted by K1 and K2 respectively; so

K1 = f(xi,yi) old slope

u = xi +αh the first component of the new point

v = yi +αhK1 the second component of the new point

K2 = f(u , v) new slope

yi+1 = yi +h
{
(1−b)K1 +bK2

}
The Modified Euler Method is a special case of the RK2 Method by taking the extreme case α = 1 (for

which we have b = 1
2 ) :

K1 = f(xi,yi) old slope

u = xi +h

v = yi +hK1

K2 = f(u , v) new slope

yi+1 = yi +h
{

1
2 K1 +

1
2 K2

}
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By taking the extreme case α = 1
2 we will have b = 1 and we get a method called the Midpoint

Method.
K1 = f(xi,yi) old slope

u = xi +
1
2 h

v = yi +
1
2 hK1

K2 = f(u , v) new slope

yi+1 = yi + hK2

By taking α = 2
3 we have b = 3

4 and the corresponding method is called the Heun’s Method, whose

discretization is as follows:
K1 = f(xi,yi) old slope

u = xi +
2
3 h

v = yi +
2
3 hK1

K2 = f(u , v) new slope

yi+1 = yi +h
{

1
4 K1 +

3
4 K2

}

Here the details of the figure on page 405 were explained

Example (from exercise 10.3 of the textbook). Solve the ODE

dy
dt

= y+ t3 t = 0 to t = 1 with y(0) = 1

using the Midpoint Method with h = 0.5

Solution. We have

f (t,y) = t3 + y

and the nodes are:

t1 = 0 , t2 = 0.5 , t3 = 1
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i = 1 ⇒



K1 = t31 +y1 = 0+1 = 1

u = t1 + 1
2 h = 0+ 1

2(0.5) = 0.25

v = y1 +
1
2 hK1 = 1+ 1

2(0.5)(1) = 1.25

K2 = f(u,v) = u3 +v = (0.25)3 +(1.25) = 1.2656

y2 = y1 +hK2 = 1+(0.5)(1.2656) = 1.6328

i = 2 ⇒



K2 = t32 +y2 = (0.5)3 +1.6328 = 1.7578

u = t2 + 1
2 h = 0.5+ 1

2(0.5) = 0.75

v = y2 +
1
2 hK1 = 1.6328+ 1

2(0.5)(1.7578) = 2.0723

K2 = f(u,v) = u3 +v = (0.75)3 +2.0723 = 2.4942

y3 = y2 +hK2 = 1.6328+(0.5)(2.4942) = 2.8799

Example . The function y = e−x + sin(x)+ cos(x) satisfies y′ =−y+2cosx

y(0) = 2

We want to approximate the value of y(π) = 2 and compare the result with this true value to

demonstrate the superiority of the RK2 method over its rival Euler’s Explicit Method. We use the step

size h = b−a
n = π−0

10 = 0.314 corresponding to n = 10 subintervals. We apply the two methods “Euler’s

Explicit” and “Midpoint” to do a comparison. The results are shown below:
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Midpoint Method

xi approx yi exact error

0.00 2.000000 2.000000 0.000000

0.31 1.992264 1.990476 1.788155e-003

0.63 1.930661 1.930290 3.704116e-004

0.94 1.783842 1.786463 2.621791e-003

1.26 1.538699 1.544683 5.984207e-003

1.57 1.199026 1.207880 8.853566e-003

1.88 0.783220 0.793875 1.065556e-002

2.20 0.321062 0.332133 1.107054e-002

2.51 -0.150235 -0.140229 1.000554e-002

2.83 -0.590440 -0.582875 7.564977e-003

3.14 -0.960802 -0.956786 4.016130e-003

Euler’s Explicit Method

xi approx yi exact error

0.00 2.000000 2.000000 0.000000

0.31 2.000000 1.990476 9.523798e-003

0.63 1.969248 1.930290 3.895756e-002

0.94 1.858911 1.786463 7.244741e-002

1.26 1.644233 1.544683 9.955006e-002

1.57 1.321843 1.207880 1.139636e-001

1.88 0.906574 0.793875 1.126986e-001

2.20 0.427604 0.332133 9.547117e-002

2.51 -0.076048 -0.140229 6.418116e-002

2.83 -0.560477 -0.582875 2.239783e-002

3.14 -0.981965 -0.956786 2.517843e-002

3.14 -0.960802 -0.956786 2.517843e-002
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4 Fourth Order Runge-Kutta Method (section 10.5.3)

The classical Fourth-Order Runge-Kutta Method (RK4)

K1 = f(xi,yi) old slope

u = xi +
1
2 h

v = yi +
1
2 hK1

K2 = f(u , v) first improvement of the slope

v = yi +
1
2 hK2

K3 = f(u , v) second improvement of the slope

u = xi +h

v = yi +hK3

K4 = f(u , v) third improvement of the slope

yi+1 = yi + h
(1

6 K1 +
2
6 K2 +

2
6 K3 +

1
6 K4

)

Example . For the same function in the previous example, here are the results of applying RK4.
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RK4 Method

x node approx exact error

0.00 2.000000 2.000000 0.000000

0.31 1.990464 1.990476 1.219558e-005

0.63 1.930260 1.930290 3.059194e-005

0.94 1.786415 1.786463 4.790234e-005

1.26 1.544624 1.544683 5.936679e-005

1.57 1.207817 1.207880 6.231168e-005

1.88 0.793820 0.793875 5.581790e-005

2.20 0.332093 0.332133 4.042724e-005

2.51 -0.140247 -0.140229 1.784564e-005

2.83 -0.582866 -0.582875 9.375050e-006

3.14 -0.956748 -0.956786 3.817795e-005
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5 Solving a System of First-Order ODEs Using RK2 Method For Systems (Modeified

Euler Version) (section 10.8.2)

Assume a system consisting of two first-order IVPs over an interval [a , b]:
dy
dx = f1(x,y,z) y(a) is given
dz
dx = f2(x,y,z) z(a) is given

and we want to approximate the values y(b) and z(b). As an example:
dy
dx = 3y−2z−3x+1 y(0) = 0
dz
dx = 4y−3z−4x z(0) =−1

The exact solution to this system is:  y(x) = ex − e−x +x

z(x) = ex −2e−x

When the exact solution is not known, then an approximate solution can be found using the RK2

method for systems (or other methods):



 Ky,1 = f1(xi,yi,zi)

Kz,1 = f2(xi,yi,zi)

u = xi +αh

 vy = yi +αhKy,1

vz = zi +αhKz,1

 Ky,2 = f1(u , vy , vz)

Kz,2 = f2(u , vy , vz)

 yi+1 = yi +h{(1−b)Ky,1 +bKy,2}

zi+1 = zi +h{(1−b)Kz,1 +bKz,2}
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Especially, for α = 1 we will have b = 1
2 and then we will have the RK2 method for a system involving

two differential equations:



 Ky,1 = f1(xi,yi,zi)

Kz,1 = f2(xi,yi,zi)

u = xi +h

 vy = yi +hKy,1

vz = zi +hKz,1

 Ky,2 = f1(u , vy , vz)

Kz,2 = f2(u , vy , vz)

 yi+1 = yi +h{1
2 Ky,1 +

1
2 Ky,2}

zi+1 = zi +h{1
2 Kz,1 +

1
2 Kz,2}

Example . Consider the following system of differential equations:
dy
dx = x+ z = f(x,y,z) y(0) = 2
dz
dx = x−y2 = g(x,y,z) z(0) = 1

Use the step size h = 0.1 and the RK2 method (for systems) to solve this system.

Solution .
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 Ky,1 = f(x1,y1,z1) = x1 + z1 = 0+1 = 1

Kz,1 = g(x1,y1,z1) = x1 −y2
1 = 0−22 =−4

u = x1 +h = 0+0.1 = 0.1

 vy = y1 +hKy,1 = 2+0.1(1) = 2.1

vz = z1 +hKz,1 = 1+0.1(−4) = 0.6

 Ky,2 = f(x , vy , vz) = f(0.1 , 2.1 , 0.6) = 0.1+2.1 = 2.2

Kz,2 = g(x , vy , vz) = g(0.1 , 2.1 , 0.6) = 0.1− (2.1)2 =−4.31

 y2 = y1 +h{1
2 Ky,1 +

1
2 Ky,2}= 2+0.1{1

2 (1)+
1
2 (2.2)}= 2.16

z2 = z1 +h{1
2 Kz,1 +

1
2 Kz,2}= 1+0.1{1

2 (−4)+ 1
2 (−4.3)}= 0.5850

Here the code on page 429 of was explained
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6 Solving a Higher-Order Initial Value Problem (section 10.9)

The following is an example of a second-order IVP:

y′′− y′ sin(x)+ xy = 0 y(0) =−1 y′(0) = 0.7

For a second order IVP we need two initial conditions, for a third-order IVP we need three initial

conditions, and so on.

Here is the general idea on how to solve a higher-order IVP: change y′ to a new variable z:

z = y′

Then

z′ = y′′

so then:

y′′− y′ sin(x)+ xy = 0 ⇒ z′− zsin(x)+ xy = 0 ⇒ z′ = zsin(x)− xy

Then the above equation changes to this system:
dy
dx = z = f(x,y,z) y(0) =−1
dz
dx = zsin(x)−xy = g(x,y,z) z(0) = 0.7

Now we may apply the Modified Euler Method for systems to solve this system. Let us approximate

y(0.1) by taking h = 0.1.
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 Ky,1 = f(x1,y1,z1) = z1 = 0.7

Kz,1 = g(x1,y1,z1) =−z1 sin(x1)−x1y1 = 0

u = x1 +h = 0+0.1 = 0.1

 vy = y1 +hKy,1 =−1+0.1(0.7) =−0.93

vz = z1 +hKz,1 = 0.7+0.1(0) = 0.7

 Ky,2 = f(x , vy , vz) = f(0.1 ,−0.93 , 0.7) = 0.7

Kz,2 = g(x , vy , vz) = g(0.1 ,−0.93 , 0.7) =−0.7sin(0.1)− (0.1)(−0.93) = 0.1629

 y2 = y1 +h{ 1
2 Ky,1 +

1
2 Ky,2}=−1+0.1{1

2 (0.7)+
1
2 (0.7)}=−0.3

z2 = z1 +h{ 1
2 Kz,1 +

1
2 Kz,2}= 0.7+0.1{1

2 (0)+
1
2 (0.1629)}= 0.7081

Example (from the textbook). Convert the third-order IVP

y′′′ = 2x−3y+4y′+ xy′′ y(0) = 3 y′(0) = 2 y′′(0) = 7

Solution. Change y′ and y′′ to some new variables z and w:

z = y′ w = z′ = y′′

Then

y′′′ = 2x−3y+4y′+xy′′ w′ = 2x−3y+4z+xw ⇒


y′ = z = f(x,y,z,w) y(0) = 3

z′ = w = g(x,y,z,w) z(0) = 2

w′ = 2x−3y+4z+xw = h(x,y,z,w) w(0) = 7
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Let’s go back to the problem

y′′− y′ sin(x)+ xy = 0 y(0) =−1 y′(0) = 0.7

and perform one step of the Modified Euler Method for the corresponding system:

So far 194 pages of typed materials, consisting of lecture notes, solutions

to the lab questions, and solutions to the homework questions, have been

given to the students
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