PLNT2530 PLANT BIOTECHNOLOGY

MID-TERM EXAMINATION

11:30 am to 12:20 pm Wednesday, February 27, 2019

Answer any combination of questions totalling to <u>exactly</u> 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points equal 100. The questions total to 120 points. This exam is worth 20% of the course grade.

Hand in these question sheets along with your exam book. Question sheets will be shredded.

Ways to write a readable and concise answer:

iii. Point form, diagrams, tables, bar graphs, figures are welcome. Often they get the point across more clearly than a long paragraph.

iv. Your writing must be legible. If I can't read it, I can't give you any credit.

1. (15 points) In your exam booklet, re-write the table, using the terms below. Some terms may be used more than once. Some may not be used at all.

	plastid	mitochondrion	nucleus
genome size (bp)			
copies of genome per cell			
chromosome topology			
number of genes			
inheritance			

Page 1 of 5

matern	al	paterna	l	both parents						
1	2	<100	> 100	50 - 200 1	0 ⁵					
> 10 ⁴		10 ⁵ - 10	\mathbf{D}_{e}	10 ⁷ - 10 ¹²						
linear		circula	r	branched						

i. Just answer the question. Save time by specifically addressing what is asked. Don't give irrelevant background if it doesn't contribute to the question that was asked.

ii. Avoid stream of consciousness. Plan your answer by organizing your key points, and then write a concise, coherent answer. Make your point once, clearly, rather than repeating the same thing several times with no new information.

2. (15 points) A restriction map of a gene that you want to clone is shown in a). The direction of transcription of the gene is indicated by an arrow. Your goal is to use directional cloning to clone the transcribed sequence of the gene into the vector (b) in the sense orientation. In other words, your construct should have the insert in the correct orientation to produce the protein coded for by the gene, under the control of the lacZ promoter.

Describe a directional cloning strategy with the following infomation

- Which enzyme(s) would you use to cut the gene?
- Which enzyme(s) would you use to cut the vector?
- Draw a map of the final construct

There are several possible cloning strategies. Only describe one of those.

H = HindIII; S=SaII; B=BamHI; E=EcoRI; K=KpnI; X=XbaI b) ampR lacz H JII E E KH III b) ampR lacz H promoter

3. (10 points) Design a set of DNA hybridization probes for a protein that contains the following amino acid sequence:

Ile Met His Ser Trp Tyr

For reference, the standard Genetic Code is included on the last page of this exam. In total, how many unique oligonucleotides would you have to make to account for all possible 18-mers that could encode this polypeptide?

4. (15 points) When growing cells in callus culture, there are three categories of components that must be included in the media: essential elements, organic supplements, and a carbon source. Briefly define what each of these does and give an example of each.

Explain why we need to provide these things to cells in culture, but not to mature plants growing in soil.

5. (10 points) In cell elongation, what is the mechanism by which plant cells can increase their total volume without having a substantial increase in cytoplasmic volume? Draw a simple diagram to illustrate your point.

6. (10 points) List two aspects of DNA structure that cause single-stranded DNA to spontaneously reanneal into double-stranded DNA.

7. (5 points) Which of the following would you expect to see in a cDNA library:

a) exonb) intronc) TATA boxd) promotere) 3'UTR

8. (10 points) Draw a simple diagram illustrating the posttranscriptional processing of premRNA transcripts into mature mRNA. Also show the translation step, indicating the N-terminal and C-terminal ends of the polypeptide product. Show steps in the order in which they occur.

9. (5 points) PCR primers used to amplify a single gene from total genomic DNA are typically around 20 nucleotides long. Why can't these primers be, for example, 10 nucleotides long? Hint: See the table of Restriction Site Frequencies on page 5.

10. (10 points) In expression libraries, each clone expresses the protein encoded by a single cDNA insert. Why is it not possible to make expression libraries in BAC vectors carrying large fragments (eg. 100 kb) of plant genomic DNA as inserts? Give at least 2 reasons. Hint: Keep in mind that you are trying to express a plant gene in E. coli.

11. (15 points) In step a), the Bluescript vector was cut with BamHI, as illustrated in the accompanying figure. Redraw the figure, showing what the result would be after steps b and c.

The sequence of the region of the Bluescript vector that includes the BamHI site is shown below. This is the only BamHI site in the vector. We see that the BamHI site is within the protein coding region for the lacZ gene. Only the beginning of the protein coding region is shown.

lacZ atg ATG TAC	ger acc ACC TGG	atg atg ATG TAC	> ATT TAA	802 ACG TGC	CCA GGT	AGC TCG	TCG AGC	AAA TTT	787 TTA AAT	ACC TGG	CTC GAG	ACT TGA	AAA TTT	772 GGG CCC	AAC TTG	AAA TTT	AGC TCG	Kı TGG ACC	onI 757 GTA CAT	CCG GGC	GGC CCG	CCC GGG	CCC GGG	XhoI 742 TCG AGC
MET	Thr	MET	Ile	Thr	Pro	Ser	Ser	Lys	Leu	Thr	Leu	Thr	Lys	Gly	Asn	Lys	Ser	Тгр	Val	Pro	Gly	Pro	Pro	Ser
Sa	lI		C	laI	Hi	indI	II E	CORV	Ec	CORI	Ps	stI	Sr	naI		BamH	II Sp	beI	XI	JaI		Not	[
				727					712					697					682					667
AGG	TCG	ACG	GTA	TCG	ATA	AGC	TTG	ATA	TCG	AAT	тсс	TGC	AGC	CCG	GGG	GAT	CCA	СТА	GTT	СТА	GAG	CGG	CCG	CCA
тсс	AGC	TGC	CAT	AGC	TAT	TCG	AAC	TAT	AGC	TTA	AGG	ACG	TCG	GGC	CCC	СТА	GGT	GAT	CAA	GAT	СТС	GCC	GGC	GGT
Arg	Ser	Thr	Val	Ser	Ile	Ser	Leu	Ile	Ser	Asn	Ser	Cys	Ser	Pro	Gly	Asp	Pro	Leu	Val	Leu	Glu	Arg	Pro	Pro
SacI	Ι	Sa	acI																					
				652					637					622					607					
CCG	CGG	TGG	AGC	тсс	AAT	TCG	CCC	TAT	AGT	GAG	TCG	TAT	TAC	AAT	TCA	CTG	GCC	GTC	GTT	TTA	CAA	С		
GGC	GCC	ACC	TCG	AGG	TTA	AGC	GGG	ATA	тса	СТС	AGC	ATA	ATG	TTA	AGT	GAC	CGG	CAG	CAA	AAT	GTT	G		
Pro	Arg	Тrр	Ser	Ser	Asn	Ser	Pro	Tyr	Ser	Glu	Ser	Tyr	Tyr	Asn	Ser	Leu	Ala	Val	Val	Leu	Gln			

The Bluescript vector from step c was transformed into *E. coli*, and grown on media containing antibiotic and Xgal. The resultant colonies were all white.

Explain the result.

Genetic code

				Secon	d base				
		U		С		А		G	
		UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
		UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
	0	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP
		UUG	Leu	UCG	Ser	UAG	STOP	UGG	Trp
		CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
	C	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
First	Ŭ	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
base		CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
		AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
	Δ	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
	~	AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
		AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
		GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
Mot	G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
WEL	-	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
		GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly
tRNA									
UAC									
5'AUG cod	on								

Frequencies of Restriction Sites (or other oligonucleotides)

length n	frequency: occurs every 4 ⁿ	example	sequence
1	4	Single nucleotide	G
2	16	Di-nucleotide	GT
3	64	Codon	ATG
4	256	Taq I	TCGA
5	1024	Mboll	GAAGA
6	4096	Hind III	AAGCTT
7	16384	Abe I	CCTCAGC
8	65536	Not I	GCGGCCGC

------ mRNA