PLNT2530 PLANT BIOTECHNOLOGY

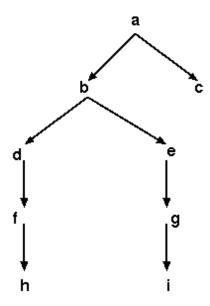
MID-TERM EXAMINATION

11:30 am to 12:20 pm We

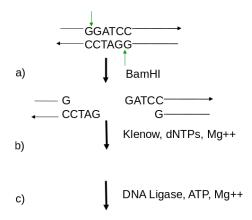
Wednesday, February 26, 2020

Answer any combination of questions totalling to <u>exactly</u> 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points equal 100. The questions total to 120 points. This exam is worth 20% of the course grade.

Hand in these question sheets along with your exam book. Question sheets will be shredded.


Ways to write a readable and concise answer:

- i. Just answer the question. Save time by specifically addressing what is asked. Don't give irrelevant background if it doesn't contribute to the question that was asked.
- ii. Avoid stream of consciousness. Plan your answer by organizing your key points, and then write a concise, coherent answer. Make your point once, clearly, rather than repeating the same thing several times with no new information.
- iii. Point form, diagrams, tables, bar graphs, figures are welcome. Often they get the point across more clearly than a long paragraph.
- iv. Your writing must be legible. If I can't read it, I can't give you any credit.
- 1. (15 points) In your exam booklet, re-write the table, using the terms below. Some terms may be used more than once. Some may not be used at all.


	plastid	mitochondrion	nucleus
genome size (bp)			
copies of genome per cell			
chromosome topology			
number of genes			
inheritance			

maternal		paternal	both parents		
1	2	<100	> 100	50 - 200	10^{5}
> 104			10 ⁵ - 10 ⁶	$10^7 - 10^{12}$	
linear		circular	branched		

- 2. (10 points) List two aspects of DNA structure that cause single-stranded DNA to spontaneously reanneal into double-stranded DNA.
- 3. (5 points) Which of the following would you expect to see in a cDNA library:
- a) exon
- b) intron
- c) TATA box
- d) promoter
- e) 3'UTR
- 4. (5 points) PCR primers used to amplify a single gene from total genomic DNA are typically around 20 nucleotides long. Why can't these primers be, for example, 10 nucleotides long? Hint: See the table of Restriction Site Frequencies on page 7.
- 5. (10 points) Describe the purpose of a laminar flow hood. Explain how it works. Drawing a diagram may make it easier to answer this question.
- 6. (10 points) Redraw the diagram showing the differentiation of the plant body plan. Replace each of the letters a i with one of the following terms: epicotyl, hypocotyl, embryo, cotyledon, root, shoot meristem, radicle, axis, root meristem

7. (15 points) In step a), the Bluescript vector was cut with BamHI, as illustrated in the accompanying figure. Redraw the figure, showing what the result would be after steps b and c.

The sequence of the region of the Bluescript vector that includes the BamHI site is shown below. This is the only BamHI site in the vector. We see that the BamHI site is within the protein coding region for the lacZ gene. Only the beginning of the protein coding region is shown.

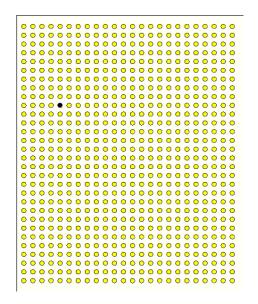
lacZ gene>	KpnI	XhoI
atg acc atg> 802 787 772	757	742
ATG ACC ATG ATT ACG CCA AGC TCG AAA TTA ACC CTC ACT AAA GGG	AAC AAA AGC TGG GTA CCG GGC CCC CCC	TCG
TAC TGG TAC TAA TGC GGT TCG AGC TTT AAT TGG GAG TGA TTT CCC	TTG TTT TCG ACC CAT GGC CCG GGG GGG	AGC
MET Thr MET Ile Thr Pro Ser Ser Lys Leu Thr Leu Thr Lys Gly	Asn Lys Ser Trp Val Pro Gly Pro Pro	Ser
Salı Clai HindIII EcoRV EcoRI Psti Smai	•	
727 712 697	682	667
AGG TCG ACG GTA TCG ATA AGC TTG ATA TCG AAT TCC TGC AGC CCG	GGG GAT CCA CTA GTT CTA GAG CGG CCG	CCA
TCC AGC TGC CAT AGC TAT TCG AAC TAT AGC TTA AGG ACG TCG GGC	CCC CTA GGT GAT CAA GAT CTC GCC GGC	GGT
Arg Ser Thr Val Ser Ile Ser Leu Ile Ser Asn Ser Cys Ser Pro	Gly Asp Pro Leu Val Leu Glu Arg Pro	Pro
SacII SacI		
652 637 622	607	
CCG CGG TGG AGC TCC AAT TCG CCC TAT AGT GAG TCG TAT TAC AAT	TCA CTG GCC GTC GTT TTA CAA C	
GGC GCC ACC TCG AGG TTA AGC GGG ATA TCA CTC AGC ATA ATG TTA	AGT GAC CGG CAG CAA AAT GTT G	
Pro Arg Trp Ser Ser Asn Ser Pro Tyr Ser Glu Ser Tyr Tyr Asn	Ser Leu Ala Val Val Leu Gln	

The Bluescript vector from step c was transformed into *E. coli*, and grown on media containing antibiotic and Xgal. The resultant colonies were all white.

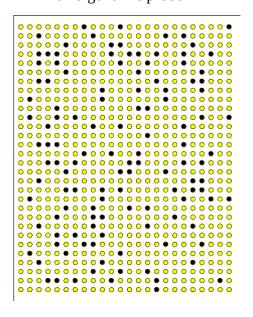
Explain the result.

8. (5 points) Explain the distinction between transposons and retrotransposons.

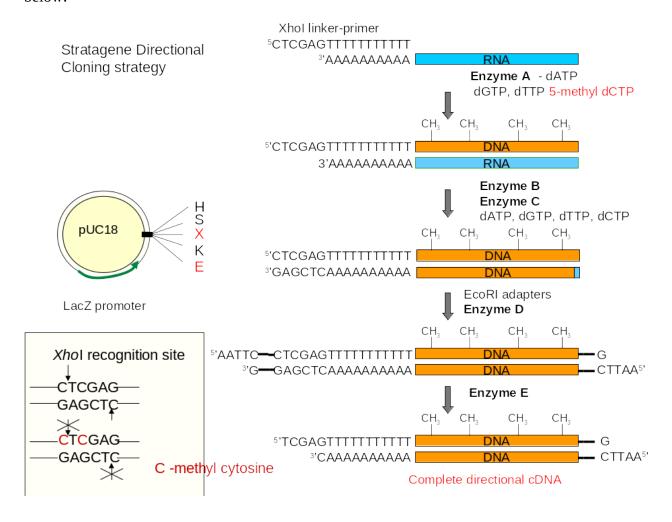
- 9. (10 points) For the following macroelements found used in tissue culture media, match each element with the phrase that best describes its role in the cell. To answer the question, simply write a list a e, with the corresponding phrase. Only use each phrase once.
- a) Nitrogen (N)
- b) Potassium (K)
- c) Calcium (Ca)
- d) Magnesium (Mg)
- e) Phosphorus (P)
- i) nucleic acids, energy transfer, req'd in respiration and photosynthesis
- ii) enzyme cofactor, component in chlorophyll
- iii) proteins, nucleic acids
- iv) regulates osmotic potential, main inorganic cation
- v) cell wall structure, membrane function, signaling
- 10. (10 points) Consider the double-stranded duplexes shown below. Which duplex will be more stable, A or B? Which duplex will be more stable, C or D? In each case, explain your reasoning.


A		В
5' A	ACAATCGTAAG 3'	5' AACTATCGTAAG 3'
3' 1	TGTTAGCATTC 5'	3' TTGTTAGCATTG 5'
C		D
	_	
5' T	CTGCTAACTGA 3'	5' CCACTGACCTGG 3'
	CTGCTAACTGA 3' GACGATTGACT 5'	5' CCACTGACCTGG 3' 3' GGTGACTGGACC 5'

11. (5 points) Based on the data in the table below, which species, do you expect to have longer chromosomes, Glycine max or Zea mays? Explain your reasoning.


Organism	Chromosome		Gene No.
	number (n)	(bp)	
Arabidopsis thaliana	5	1.19 x 10 ⁸	25,400
Frageria vesca	7	2.80 x 10 ⁸	25,050
Brassica rapa	10	2.84 x 10°	41,174
Oryza sativa	12	4.66 x 10 ⁸	58,000
Glycine max	20	1.10 x 10 ⁹	46,430
Zea mays	10	2.80 x 10 ⁹	63,000
Triticum aestivum	21	1.70 x 10 ¹⁰	41,910

12. (10 points) A BAC library from pea (Pisum sativum) was screened with two probes. The first probe was a cDNA clone for pea defense gene DRR206. An identical filter was also probed using as a probe a 6 kb genomic fragment containing the DRR206 gene. Hybridization results for the two experiments are shown below. What is the most likely explantaion for the different results? You can assume that trivial explanations such as probe contamination are not


cDNA probe

6 kb genomic probe

13. (10 points) List the names of Enzymes A - E, used in the cDNA cloning protocol shown below.

Genetic code

				Secon	d base				
		U		С		Α		G	
		UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
	U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
	U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP
		UUG	Leu	UCG	Ser	UAG	STOP	UGG	Trp
		CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
	С	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
First	0	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
base		CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
		AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
	Α	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
	, ,	AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
		AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
_		GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
Met	G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
Wet		GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
		GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly
LRNA LLL UAC									
5' AUG cod	on	— mRNA							

Frequencies of Restriction Sites (or other oligonucleotides)

			<u> </u>
length n	frequency: occurs every 4 ⁿ	example	sequence
1	4	Single nucleotide	G
2	16	Di-nucleotide	GT
3	64	Codon	ATG
4	256	Taq I	TCGA
5	1024	Mboll	GAAGA
6	4096	Hind III	AAGCTT
7	16384	Abe I	CCTCAGC
8	65536	Not I	GCGGCCGC