PLNT2530 PLANT BIOTECHNOLOGY

MID-TERM EXAMINATION

11:30 am to 12:20 pm Monday, March 8, 2021

Answer any combination of questions totalling to <u>exactly</u> 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points equal 100. The questions total to 120 points. This exam is worth 20% of the course grade.

Hand in these question sheets along with your exam book. Question sheets will be shredded.

iii. Point form, diagrams, tables, bar graphs, figures are welcome. Often they get the point across more clearly than a long paragraph.

iv. Your writing must be legible. If I can't read it, I can't give you any credit.

1. (10 points) Describe the purpose of a laminar flow hood. Explain how the function of the hood accomplishes that purpose.

2. (10 points) Why is it that plants cells in tissue culture can regenerate into complete organ systems such as shoots or roots? In particular, in what way do plants lend themselves to regeneration, where animals do not?

Page 1 of 7

3. (5 points) Briefly explain the distinction between transposons and retrotransposons.

Ways to write a readable and concise answer:

i. Just answer the question. Save time by specifically addressing what is asked. Don't give irrelevant background if it doesn't contribute to the question that was asked.

ii. Avoid stream of consciousness. Plan your answer by organizing your key points, and then write a concise, coherent answer. Make your point once, clearly, rather than repeating the same thing several times with no new information.

4. (10 points) For the following macroelements found used in tissue culture media, match each element with the phrase that best describes its role in the cell. To answer the question, simply write a list a - e, with the corresponding phrase. Only use each phrase once.

a) Nitrogen (N)b) Potassium (K)c) Calcium (Ca)d) Magnesium (Mg)e) Phosphorus (P)

i) nucleic acids, energy transfer, req'd in respiration and photosynthesis

ii) enzyme cofactor, component in chlorophyll

iii) proteins, nucleic acids

iv) regulates osmotic potential, main inorganic cation

v) cell wall structure, membrane function, signaling

5. (10 points) Consider the double-stranded duplexes shown below. Which duplex will be more stable, A or B? Which duplex will be more stable, C or D? In each case, explain your reasoning.

Α		В
5' AACAAT	FCGTAAG 3'	5' AACTATCGTAAG 3'
3' TTGTTA	AGCATTC 5'	3' TTGTTAGCATTG 5'
С		D
5' TCTGCT	TAACTGA 3'	5' CCACTGACCTGG 3'
3' AGACGA	ATTGACT 5'	3' GGTGACTGGACC 5'

Organism	Chromosome number (n)	Genome size (bp)	Gene No.
Arabidopsis thaliana	5	1.19 x 10 ⁸	25,400
Frageria vesca	7	2.80 x 10 ⁸	25,050
Brassica rapa	10	2.84 x 10 ⁸	41,174
Oryza sativa	12	4.66 x 10 ⁸	58,000
Glycine max	20	1.10 x 10 ⁹	46,430
Zea mays	10	2.80 x 10°	63,000
Triticum aestivum	21	1.70 x 1010	41,910

6. (5 points) Based on the data in the table below, which species, do you expect to have longer chromosomes, Glycine max or Zea mays? Explain your reasoning.

7. (10 points) A BAC library from pea (Pisum sativum) was screened with two probes. The first probe was a cDNA clone for pea defense gene DRR206. An identical filter was also probed using as a probe a 6 kb genomic fragment containing the DRR206 gene. Hybridization results for the two experiments are shown below. What is the most likely explanation for the different results? You can ignore trivial explanations such as probe contamination.

cDNA probe

6 kb genomic probe

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$^{\circ}$	0	$^{\circ}$	0	0	$^{\circ}$	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$
0	0	0	0	0	0	0	0	o	O	0	0	0	o	o	,	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	o	0	0	0	o	0	0	0	0	0	o	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	o	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	$^{\circ}$	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	o	0	0	0	0	o	o	o	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	Ó	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò
0	0	ò	ò	ó	ò	ò	0	ò	ò	0	0	Ó	0	ò	Ó	Ó	Ó	Ó	Ó	Ó	ò	ò	0
ò	ō	0	ō	0	0	0	0	0	0	0	0	0	0	0	õ	0	0	0	0	0	õ	õ	0
0	ó	ò	ò	ō	ō	ō	Ó	Ó	Ö	Ö	Ő	ó	Ó	Ó	Ö	Ö	ó	ó	ō	Ó	Ő	ō	ó
0	ò	ò	ò	ō	ō	ō	0	0	Ö	0	0	ō	0	0	ö	ő	ō	0	0	0	ő	ō	0
0	õ	ő	ő	õ	õ	õ	0	0	ő	ő	ő	ő	ő	ő	ő	ő	ő	ő	ő	ő	ő	õ	0

ori

8. (10 points) List the names of Enzymes A - E, used in the cDNA cloning protocol shown below.

10. (15 points) The image below depicts a clone for a gene for disulfide isomerase. In each of the 3 reading frames on the forward strand (top) and 3 reading frames on the reverse strand (bottom), stop codons are shown as vertical tick marks. A map of the gene is shown between the two strands.

				\\ \\ \\ \\ \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1 IIII 🕅 IIII I III 🗖 🗖 I 💷
GmPDIM	800	GmF Gn 1600 240	1 GmPDIMIM ()0 <u> </u> 3200	GmPDIM Gr((Gm _4000	Gr GmP G Gr Gi GmPDIM 4 4800 5600
				, 	

a) Which boxes are exons, and which are introns? What lets you distinguish between exons and introns in this diagram?

b) Is this from a cDNA library, or a genomic library?

c) The gene shown was cloned into the multiple cloning region of the pUC18 cloning vector. Many white colonies were screened, but the disulfide isomerase protein could not be detected in any of the clones. What is the most likely reason that the protein was not produced in any of the clones?

11. (5 points) Media for co-cultivation of Agrobacterium with plant tissue needs Acetosyringone in order to induce Agrobacterium genes required for transformation. All other components are heat stabile, but Acetorsyringne would be destroyed by autoclaving. How could you sterilize the acetosyringone so that it could be added to the media after autoclaving?

12. (10 points) The Td for a 100 bp DNA fragment is 72 °C at standard hybridization conditions. What would be the Td for a 500 bp fragment, given similar conditions? Show your work.

13. (10 points) One of the figures below is from a region of a maize nuclear chromosome. The other is from the maize chloroplast genome. Both diagrams span around 140 Kb of DNA. State which is genomic, and which is from chroloplast. What observations support your choices?

Α					
🖢 웅 🗸 Find:	✓ < <p>< <p>< <p>< <p>< <p>< <p><</p></p></p></p></p></p>		🗄 😤 — 🔭	Tools 🗕 🗱 Tracks 🚽 💆	🖞 Download 🗸 🎘 🤉 🗸
125,360 K	25,380 K 1	25,400 K	125,420 K	125,440 K	125,460 K
Gnomon Alignments Warning, No track data found in this range					0 ×
NG ALIGNMENTS Warping: No track data found in this range					~ ~
Reised Alignments					~ ~
Canada NCDI Zan mayo Annatati	an Delegen 103 - 20				10.0
Genes, NCBI Zea mays Annotati	ion Release 103, 20	100100273397		1.00100283532	T ** *
	им_е	001147834.2 NP_001	141306.2 NM_00119	6432.2 - 1 NP_0011499	04.1
RNA-seq exon coverage, aggree	jate (filtered), NC	BI Zea mays An	notation Releas	e 103 - log base	2 scaled 🔍 🌣 🗶
		1 N			A 4
RNA-seg intron-spanning reads	. aggregate (filte	ered). NCBI Zea	mays Annotatio	n Release 103 - l	.og base 2 sca∜eð
	, . <u></u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		_	_		
RNA-seq intron features, agg	regate (filtered),	NCB			± © ×
					н
				ΪĤ	
B					
🖢 😔 NC_001666.2 - 🗘 🖒 🔍 🛛	i 🔍 🕴	D 😫 🚠	🔀 Tools	🗸 🗱 Tracks 🗸 📩 🛙	Download 🗸 🎅 🭷 🗸
10 К 20 К 30 К	40 K 50 K	60 K 70 K	80 K 90 K	100 K 110 K	120 K 140,384
Genes, NCBI Zea mays Annotati	on Release 103, 20	20			₹ © ×
trnK rpoC2	psaR NP 0430252		rps12	430031	ZemaCr119
exon 1 petN	trnM	psbB	ZemaCr114	ndhF	rpl2
psbZ NP_043014.1	tRNA-Met N	IP_043049.1 📕	rRNA-23S ribosomal	DI NP_043084.1	NP_043110.1 H
NP_043011.1 trnC	psaB at	tpВ	rpl2	ndhD	exon 1 🚺
psbC tRNA-Cys	NP_043024.1	343032.1	NP_043066.1	NP_0430	287.1 ZemaCp111
IP_043010.1 atpH	trnL r	-pi33 430451	Zev-Ce0C4	+PNA-Loui +PNA-Aso	NP_043112.1
IP 0430 H tRNA-Glu atoF	exon 1 trnU	petD	NP. 043065.1	trnN	ndhA tRNA-Ile
sbK exon 1 NP_043021.1	trnF tRNA-U	Jal NP_043054.1 H	trnI	tRNA-Asn 📕 NF	_043092.1 Ze
IP_043 trnfM exon 1	tRNA-Phe exon 1	exon 1	tRNA-Ile	ccsA 🛛 🚺 e>	con 1
osbI tRNA-Met	ycf3	psbE	rpl16	NP_043086.1	ndhB
IP_043 rpoB	FH NP_043026.1	NP_043041.1	H NP_043061.1 Zer	naCp077 0430781	NP_043102.1
trnS otnH	trnT	tRNA-Trp	rpoA r	ps15	trnA NP
dino depir	dim	· · · ·	, port		

Genetic code

				Secon	d base				
		U		С		А		G	
		UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
		UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
	0	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP
		UUG	Leu	UCG	Ser	UAG	STOP	UGG	Trp
		CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
	C	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
First	C	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
base		CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
		AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
	А	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
		AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
		AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
		GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
Mot	G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
Wiet		GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
		GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly
tRNA									
UAC 5'AUG_cod	on								
0,400,000									

Frequencies of Restriction Sites (or other oligonucleotides)

length n	frequency: occurs every 4 ⁿ	example	sequence
1	4	Single nucleotide	G
2	16	Di-nucleotide	GT
3	64	Codon	ATG
4	256	Taq I	TCGA
5	1024	Mboll	GAAGA
6	4096	Hind III	AAGCTT
7	16384	Abe I	CCTCAGC
8	65536	Not I	GCGGCCGC

_____ mRNA