Unit 3
Methods of DNA Manipulation

Reference:
Analysis of Genes and Genomes by Richard J Reece
Enzymes Used to Manipulate DNA/RNA

Cutting and joining DNA is essential to all recombinant DNA work

1. **Nucleases** - cut polynucleotide DNA/RNA by cleavage of a phosphodiester linkage.

- Nucleases are either DNase or RNase
- Either *endonucleases* (cut internally) or *exonucleases* (cut from 3’ or 5’ end of polymer chain)
- Most nucleases cleave phosphodiester bond leaving the phosphate unit on the 5' terminal nucleotide
• Different nucleases differ in their specificity – i.e. the site at which the enzyme will cleave DNA/RNA.

 – DNAase I is a low specificity endonuclease that will cleave almost randomly between any two nucleotides

 – highly specific DNases will only cleave where a certain sequence of nucleotides occurs

• Eg. restriction endonucleases

• Restriction endonucleases are bacterial enzymes whose purpose is to cleave foreign DNA eg. viruses
• Restriction endonucleases
 – valuable - because they cleave DNA at specific sites
 – cut only dsDNA and cut both strands at the same time. REs usually occur as dimers, so that one subunit binds to each strand.

 Restriction endonucleases have recognition sites with 2-fold rotational symmetry within dsDNA. This is a form of inverted repeat.

Examples

Sau3AI

NGATCN
NCTAGN

EcoRI

GAATTC
CTTAAG

-where N is any nucleotide
Restriction endonucleases

nomenclature (name) of enzyme

eg. EcoRI
E. coli RY
 KpnI
 Klebsiella pneumonia
 XhoI & XhoII
 Xanthomonas holicicola

1st letter
genus
2nd & 3rd letters
species
other letters
strain identity or serotype
number (Roman)
number of enzyme isolated from that particular species
Restriction endonucleases

Cleavage off center within recognition site

Many enzymes cut off centre giving rise to 3' or 5' extensions of 2 or 4 bases

\[
\begin{align*}
\text{EcoRI:} & \quad \text{GAATTC} \quad \text{CTTAAG} \\
\text{3’ extension:} & \quad \text{GAGCTC} \quad \text{CTCGAG} \\
\text{5’ extension:} & \quad \text{G} \quad \text{AATTC} \quad \text{CTTAA} \\
\text{SacI:} & \quad \text{GAGCTC} \quad \text{CTCGAG} \\
\end{align*}
\]
Having 3' or 5' extensions makes it easier to rejoin fragments with complementary ends as this will allow base pairing at the overlap.

Hence overhanging end are referred to as **cohesive ends**.
Restriction endonucleases

May cut at center of recognition site

![Diagram showing restriction endonuclease cutting sites and blunt-end products]

Blunt-end products
<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Cutting site</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoRI</td>
<td>G^AATTC</td>
<td>5' protruding ends (Escherichia coli)</td>
</tr>
<tr>
<td>HindIII</td>
<td>A^AGCTT</td>
<td>" " " " (Haemophilus influenza)</td>
</tr>
<tr>
<td>SmaI</td>
<td>CCC^GGG</td>
<td>blunt ends (Serratia marcescens)</td>
</tr>
<tr>
<td>XmaI</td>
<td>C^CCGGG</td>
<td>5' protruding ends (Xanthomonas malvacaerum) an isoschizomer 1 of SmaI</td>
</tr>
<tr>
<td>PstI</td>
<td>CTGCA^G</td>
<td>3' protruding ends (Providencia stuarti)</td>
</tr>
<tr>
<td>HinfI</td>
<td>G^ANTC</td>
<td>5' protruding ends (H. influenza). Degenerate recognition site. (GAATC,GAGTC,GACTC,GATTC)</td>
</tr>
<tr>
<td>HaeII</td>
<td>RGCGC^Y</td>
<td>3' protruding (H. aegyptius) 2^2=4 possible cutting sites: AGCGCC, AGCGCT, GGCGCC, GGCGCT</td>
</tr>
<tr>
<td>BglII</td>
<td>5'GCCN NNN^NGGC3' 3'CGGN^NNN NCCG 5'</td>
<td>assymetric, 3'protuding, (Bacillus globigii)</td>
</tr>
<tr>
<td>BbvI</td>
<td>5'GCAGC(N)_8^3' 3'CGTCG(N)_12 3'</td>
<td>assymetric, 3'recessed</td>
</tr>
</tbody>
</table>

1*isoschizomer* - restriction endonucleases that recognize the same sequences
R = purine; Y = pyrimidine; N = {A,G,C or T}
Restriction endonucleases - example showing part of a plant alternative oxidase gene (GenBank::Z15117)

MaeI 2875 VspI 2900 2925
CTCCACCCTAGCTCTCTTTGCAGCAG TACTGATTAAATTGATGGGCTGT GAGCTGCTTTATATATATAGTTTCTCTG
GAGGTGGAAGAGAGAAGCTGTCGCTC ATGACAATTAACTACCGACA CTCGACGAATATATATACAAGAAGAC

SmlII (C^TYRAG) 2950 2975
TACAGGACGTCCATTACCAGGATACTCTAGAAGACGACGCCGGCGGGCTACTACGCGGCCGC

NaeI 2975 KpnI 3000
GAGGTGGGATCAGAGAGAACGTCGTC ATGACA

GGTACC ACTGATGCGCCGCCG

ATGTCCTGCAATTGATGGCTCTAGACGCTGACGCTACTACGCGGCCG

3025 3050 3075
GCCCCGTTAATTGGCCGATCGACA GACGCCAAGATGGTCACTCAGCAGTATACCGACA AGCTTCTGTAATCATATTGATATTCT

ScaI 3100 3125 3150
ATATTTCTATTGGTCAGACTCTAGATTAAACGACAAGTACTGATCTATATATATAGCTG
TATAAGATAAGCTCATGAATATTGCTAGCTGACGCTACTACGCGGCCG

3175 3200
TCTCCATATATATAGGTGAGGGAGG TCTCCGGTGATTCTTAATTTCGGCT TTGGCTTCCTTCTTTGGT

MaeI 3225
AGAGGTATATACATCAAGTTAAAGGCAGAGAGGCCACTAAGAATTAAAGCCGA AACCGAAGGAAGAAACAA

GATC CCA

NaeI 2875
CTCCACCCTAGCTCTCTTTGCAGCAG TACTGATTAAATTGATGGGCTGT GAGCTGCTTTATATATATAGTTTCTCTG
GAGGTGGAAGAGAGAAGCTGTCGCTC ATGACAATTAACTACCGACA CTCGACGAATATATATACAAGAAGAC

VspI 2900
CTCCACCCTAGCTCTCTTTGCAGCAG TACTGATTAAATTGATGGGCTGT GAGCTGCTTTATATATATAGTTTCTCTG
GAGGTGGAAGAGAGAAGCTGTCGCTC ATGACAATTAACTACCGACA CTCGACGAATATATATACAAGAAGAC

KpnI 3000
TACAGGACGTCCATTACCAGGATACTCTAGAAGACGACGCCGGCGGGCTACTACGCGGCCGC

GCCCCGTTAATTGGCCGATCGACA GACGCCAAGATGGTCACTCAGCAGTATACCGACA AGCTTCTGTAATCATATTGATATTCT

3100 3125 3150
ATATTTCTATTGGTCAGACTCTAGATTAAACGACAAGTACTGATCTATATATATAGCTG
TATAAGATAAGCTCATGAATATTGCTAGCTGACGCTACTACGCGGCCG

3175 3200
TCTCCATATATATAGGTGAGGGAGG TCTCCGGTGATTCTTAATTTCGGCT TTGGCTTCCTTCTTTGGT

MaeI 3225
AGAGGTATATACATCAAGTTAAAGGCAGAGAGGCCACTAAGAATTAAAGCCGA AACCGAAGGAAGAAACAA

GATC CCA

Restriction endonucleases: NaeI, KpnI, VspI, ScaI, SmlI, MaeI, MspI, HpaII, and HaeIII.
Restriction endonucleases - example showing restriction map for the entire alternative oxidase gene (GenBank::Z15117)

Map generated using NEBcutter V2.0 at New England Biolabs
http://nc2.neb.com/NEBcutter2/
REBASE - A comprehensive database of Restriction Endonucleases maintained by New England Biolabs.

http://rebase.neb.com/rebase/
Frequencies of Restriction Sites (or other oligonucleotides)

<table>
<thead>
<tr>
<th>length n</th>
<th>frequency: occurs every 4^n</th>
<th>example</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Single nucleotide</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>Di-nucleotide</td>
<td>GT</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>Codon</td>
<td>ATG</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>Taq I</td>
<td>TCGA</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>MboII</td>
<td>GAAGA</td>
</tr>
<tr>
<td>6</td>
<td>4096</td>
<td>Hind III</td>
<td>AAGCTT</td>
</tr>
<tr>
<td>7</td>
<td>16384</td>
<td>Abe I</td>
<td>CCTCAGC</td>
</tr>
<tr>
<td>8</td>
<td>65536</td>
<td>Not I</td>
<td>GCGGCGCGC</td>
</tr>
</tbody>
</table>
Restriction endonucleases - Try these exercises at home:

Restriction enzyme worksheet from University of Canterbury

Restriction Enzyme Worksheet

https://mafiadoc.com/download/restriction-enzyme-worksheet-name-date-restriction-enzymes-are-_5a2d05381723ddf7ca407475.html
Other nucleases

Less specific (or non-specific) nucleases may cleave only one strand not both.

- DNase I is a non-specific nuclease
 - depending on the condition of the reaction mixture will either cut only one strand (nicking) or cleave both strands in a random manner

- RNases are largely non-specific and cleave single-stranded RNA

- RNase H cuts an RNA strand of a RNA-DNA heteroduplex
2. DNA Ligases

- catalyse the joining of DNA strands together.
- do not require any specific sequence but must have compatible ends as well as ATP for energy

```
G_OH
CTTAAP

pAATTC
HO>G

DNA ligase
ATP
Mg^{++}

G_OH
Cp
HO>T

GAATTC
CTTAAG

specific

GT
CA

non-specific
```
3. DNA Polymerases – Replication of DNA

a. DNA polymerase I
 - enzyme derived from *E. coli*
 - DNA template-dependent DNA polymerase
 - single polypeptide but with 3 separate enzyme activities
 5’→3’ DNA polymerase
 5’→3’ exonuclease activity
 3’→5’ exonuclease activity
5’ → 3’ DNA polymerase

---TA_{OH} → ---ATCCGAATA-----

dTTP, dCTP, dGTP, dATP
Mg^{+2}

---TAGGCTTTAT-----
---ATCCGAATA-----

Extends from 3’ end of a primer

5’→3’ exonuclease activity (+polymerase)

---GACAT AATCCTA----
---CTGTACCTTTAGGAT----

dTTP, dCTP, dGTP, dATP
Mg^{+2}

---GACATGGAATCTCTA----
---CTGTACCTTTAGGAT----

3’→5’ exonuclease activity (proof reading)

---CGCTCAGAGC
---GCGAGTT

dTTP, dCTP, dGTP, dATP
Mg^{+2}

---CGCTCAA
---GCGAGTT
b. **Klenow enzyme** (large fragment of DNA polymerase I)

DNA pol I cleaved with a protease into 2 parts

“polI (holoenzyme)”

- 5’ → 3’ polymerase activity
- 5’ → 3’ exonuclease activity
- 3’ → 5’ exonuclease activity

Klenow fragment

- 5’ → 3’ polymerase activity
- 3’ → 5’ exonuclease activity
Types of labeled nucleotides

Labeled nucleotides can be included in a DNA synthesis reaction to make it possible to detect the presence of the DNA.

Several types of labeled nucleotides are commercially available:

Fluorescent nucleotides - emit fluorescence at a specific wavelength when excited by UV light. These are the easiest to work with.

Biotinylated nucleotides - bind straptavidin-conjugated with peroxidase. Peroxidase will break down a chemiluminescent substrate, emitting a photon at a specific wavelength.

Digoxigenin nucleotides - bind anti-dig antibodies, conjugated with peroxidase. Peroxidase will break down a chemiluminescent substrate, emitting a photon at a specific wavelength.

(Radiolabeled nucleotides such as ^{32}P are obsolete.)
DNA synthesized using labeled nucleotides can be detected by imaging

• The main use of fluorescent or chemiluminescent nucleotides is to include them in DNA synthesis reactions.
• For Southern blots, labeled DNA is used as a probe that hybridizes with unlabeled DNA separated by gel electrophoresis.
• For PCR reactions, DNA is directly labeled by including labeled nucleotides in the reaction, and bands on the gel are visualized by the imager.
b Klenow enzyme

Uses:

1. Filling in (or labeling) 3’ recessed termini

\[
\begin{align*}
5'----CG_{OH} & \quad \xrightarrow{\text{Klenow, Mg}^{+2}} \quad 5'----CGAATT_{OH} \\
3'----GCTTAA_p & \quad \xrightarrow{\text{dTTP, dATP}*} \quad 3'----GCTTAA_p
\end{align*}
\]

(Labeled so that target DNA can be detected)

2. Removal of 3’ extension to produce blunt ended DNA

\[
\begin{align*}
\text{AATTCG------} & \quad \xrightarrow{\text{Klenow, Mg}^{+2}} \quad \text{AATTCG------} \\
\text{GCTTAAGC------} & \quad \xrightarrow{} \quad \text{TTAAGC------}
\end{align*}
\]
3. Random hexanucleotide labeling using the Klenow enzyme

A pool of DNA hexamers is added to the purified DNA sample. Some of the hexamers will find complementary sequences with which they can base pair.
Klenow uses:

3. Random hexanucleotide labeling

Hexamers act as primers for DNA synthesis using the Klenow enzyme. In this example, most of the nucleotides are unlabeled. However, a small percentage of the A’s are labeled with either fluorescent or chemiluminescent tags.
Klenow uses:

3. Random hexanucleotide labeling

DNA synthesis will proceed until DNA polymerase reaches the end. The length of each strand synthesized will depend on where the primer binds. Each newly synthesized strand will contain a percentage of labeled nucleotides, which is enough for most detection purposes.
Klenow uses:

3. Random hexanucleotide labeling

To use the newly-synthesized DNA as a probe, the sample is heated, denaturing the DNA, so that all DNA is now single-stranded. Each of the newly synthesized strands is available to bind to a target DNA on a Southern or Northern blot. The unlabeled strands will still be present, but are not detected, because they don’t contain label. They can be ignored.
DNA Polymerases (cont’d)

a. Reverse transcriptase (RT)

- RNA template-dependent DNA polymerase
- also requires a primer

Use: reverse transcription of mRNA into complementary DNA
4. DNA/RNA Modifying enzymes

A Alkaline phosphatase
- catalyze removal of phosphate group from 5’ end of both RNA and DNA

Use: To prevent ligation
DNA/RNA Modifying enzymes (cont’d)

B Polynucleotide kinase (PNK)
- catalyzes the transfer of the terminal phosphate group of ATP to replace a free 5’ hydroxyl group of DNA (ss or ds), RNA, or oligos

Uses:
- end labeling oligos and short DNA/RNA
- making 5’ ends ligation-ready if they only have a hydroxyl group
 eg. chemically synthesized DNA
Techniques

Polymerase Chain Reaction (PCR)

For rapid amplification of one or more pieces of dsDNA

Requirements: dsDNA template
primers (ssDNA oligomers, 8-30 mers)
dNTPs (mix of dATP, dGTP, dTTP, dCTP)
thermostable DNA polymerase
buffer with Mg$^{+2}$

Thermocycler - instrument to alter temperature on a programmed cycle

https://youtu.be/iQsu3Kz9NYo
Simplified PCR cycle

5'GGT ATG3'
3'CCA TAC5'

5'GGT ATG3'
3'CCA TAC5'

* in a real reaction, primers are usually about 20 bases long
PCR requires a thermostable DNA polymerase
- eg Taq polymerase (*Thermus aquaticus*)

- enzyme most active at 70-80°C and can survive 97°C
- lacks 3’- 5’ exonuclease activity (no proofreading ability)
 lower fidelity
 error rate 1 in 10^4 to 10^5 vs 10^7 to 10^9 for DNA Pol I

Other thermostable commercial enzymes include Pfu, Vent (higher fidelity)
possess 3’- 5’ exonuclease activity

Use: Polymerase chain reaction (PCR) - a technique for amplifying DNA sequences ~10^9 in a few hours
PCR

- Stages of thermocycle
 - Initial denaturation ~3 min @ 96°C
 - Cycle denaturation 0.5 - 1.5 min @ 96°C
 - Primer annealing 0.3 - 1 min @ 57°C
 - Chain elongation 0.5 - 3 min @ 72°C

Temp transitions between each temp is as rapid as possible

Primer binding sites: 100 – 2000 bp apart (common)
up to 25,000 bp is possible

Specificity
- Typical primers 8-25 nt
- Annealing temps 2-5°C below T_m for primer
PCR applications

- Selective amplification of DNA pieces
- DNA sequencing
- Site-directed mutagenesis
- Genome mapping/molecular marker studies (RAPD, AFLP, SCAR)
- Quantitation of specific RNA (RT-PCR)
 - viral infection assessment
 - gene expression by mRNA level
Techniques

Gel electrophoresis

- Electrophoresis allows separation of charged molecules in an electric field

- Separation based on the net charge carried by the molecules and their physical size (affects frictional drag)

- DNA/RNA molecules all possess same charge density so separation is based on ‘size’ Smaller molecules move faster than larger ones

- Agarose (0.8%) used as the frictional media for electrophoresis of DNA/RNA larger than ~250 bp (or nt)

- Acrylamide may be used as a frictional media for high resolution separation for DNA/RNA from 50-1000 bp/nt
Gel electrophoresis

Video from BioRad

http://youtu.be/vq759wKCCUQ
Agarose Gel electrophoresis

- During and post-separation, agarose reduces the rate of diffusion.
Electrophoretic Separation of DNA - Example

3000 bp barley gene
EcoRI cuts A into 3 pieces
1500, 1000 and 500 bp
SstI doesn’t cut A
Electrophoretic Separation of DNA - Example

barley genomic DNA ~5x10^9 bp (B)
EcoRI cuts B into > 200,000 pieces
size range (100 -50,000 bp)
SstI cuts B into >200,000 pieces
Electrophoretic Separation of DNA

3000 bp barley gene (A)
- EcoRI cuts A into 3 pieces
- 1500, 1000 and 500 bp
- SstI doesn’t cut A

barley genomic DNA ~5 \times 10^9 bp (B)
- EcoRI cuts B into > 200,000 pieces
- size range (100 - 50,000 bp)
- SstI cuts B into > 200,000 pieces

M size marker DNA
(-) - uncut
E - EcoRI digested
S - SstI digested

EcoRI and SstI both have 6-base recognition sites
Flourescence stained gel after electrophoresis, viewed in UV light

- Small DNA produces individual bands
- Large DNA when cut gives a continuum of bands

<table>
<thead>
<tr>
<th>M</th>
<th>(-)</th>
<th>E</th>
<th>S</th>
<th>(-)</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
</table>

25 K						
10						
6						
4						
3						
2						
1						
.5						

M - size marker DNA (kbp)

(-) - uncut

E - EcoRI digested

S - SstI digested

remember: each band contains millions of identical copies of a particular DNA fragment or fragments
Finding out the identity of bands on a gel: filter hybridization

….but all we really see is bands on a gel. How do we find which band contains a particular gene?
Gel Blotting - vacuum blotting

1. Treat gel with NaOH to denature DNA helices (DNA becomes single-stranded)
2. Neutralize with high salt solution
3. Place gel in vacuum blotter and apply vacuum.

Buffer with soluble DNA pulled directly from gel onto membrane where DNA is bound replicating the separation pattern that was in the gel

Process is blotting. The membrane with bound transferred DNA is a Southern blot.
Gel Blotting - capillary blotting

alternatively, after NaOH denaturation and neutralization steps, you can use capillar action to transfer the DNA to a filter
Finding out the identity of bands on a gel: filter hybridization

After blotting, each unique DNA fragment is on the filter in exactly the same position that it was in on the gel.

At this stage, we can't actually see the DNA. To the eye, it looks like a perfectly blank filter:
Techniques
Probing the blot

Purpose: To identify if a specific sequence exists on the blot by testing if a hybrid with a probe will form

Replica of separated DNA on the membrane is denatured -- ie ssDNA

Incubate with labeled ss probe under hybrid-forming conditions

Wash any unbound probe away so that the only label is bound to its complement

For chemiluminescent detection, film is exposed to membrane inside a light-proof box to detect location of bound labeled probe
Hybridization results

The only bands visualized will be those with sequences complementary to the labeled probe. In this experiment the entire 3 kb fragment was used as probe.

Locations of bound probe can be visualized using autoradiography for chemiluminescent detection, or fluorescent imaging if fluorescent nucleotides are used.
Hybridization results

But - If we had used ONLY the 1.5 kb EcoRI fragment as probe, we would not see the 1.0 and 0.5 kb bands, because the 1.5 kb fragment has no sequences complementary to these bands.

Locations of bound probe can be visualized using autoradiography for chemiluminescent detection, or fluorescent imaging if fluorescent nucleotides are used.
Example: Digest of genomic DNA from transgenic *B. napus* plants

Plant tissue from *B. napus* was transformed with the pea defense gene DRR206. DRR206 is expressed in pea in response to fungi.

DNA from 10 transgenic canola (*Brassica napus plants*) (lanes 1 - 10) and an untransformed control was digested with HindIII. The lane on the left contains a mixture of bacterial DNA fragments of known size, for use as a size marker.

The digested DNA was electrophoresed on an agarose gel containing the DNA-specific dye, ethidium bromide. When bound to DNA, EtBr emits a pink fluorescent light, which is visualized in the photo.

We see a smear of fluorescence, because plant genomes are very large. For an enzyme like HindIII, which recognizes a 6 base sequence, we expect to see hundreds of thousands of bands.
Example: Southern blot of DNA from transgenic *B. napus* plants

The gel was blotted onto a nylon membrane, and the blot was hybridized with a labeled probe from the pea DRR206 gene.

As we expect, neither the size marker (MW) nor the untransformed control (Wt.) show bands.

All transformed plants show several bands. In each independent transformation event, the T-DNA inserts at random into one or more chromosomal locations. Thus, in each case the HindIII sites nearest to the insertion site will be at different distances from the inserted gene. Consequently, the HindIII bands will be of different sizes at each site.

One useful consequence is that the number of bands in a Southern gives a direct measurement of the number of copies of the gene in each transgenic plant.
<table>
<thead>
<tr>
<th>Material blotted</th>
<th>Blot name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>Southern blot</td>
</tr>
<tr>
<td>RNA</td>
<td>Northern blot</td>
</tr>
<tr>
<td>Protein</td>
<td>Western blot</td>
</tr>
</tbody>
</table>