PLNT4610 BIOINFORMATICS

MID-TERM EXAMINATION

08:30-9:45 Tuesday, October 24, 2017
Answer any combination of questions totalling to exactly 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points are less than or equal to 100 . There are 12 questions to choose from, totaling 120 points. This exam is worth 20% of the course grade.

Hand in this question sheet along with your exam book. All questions must be answered in the exam book. The exam sheets will be shreded after the exam.

[^0]1. (5 points) The BLAST database services at NCBI must process over 100,000 BLAST searches per day. Researchers at NCBI realized that the most critical bottleneck in the process was the simple matter of reading in all the sequence data when comparing a query sequence with all sequences in a database. What solution was found to solve this problem?
2. (15 points) If you wanted to design an oligonucleotide as a hybridization probe, you want to ensure that the oligo sequence is unique within the genome ie. it is not likely to occur by random chance. To help in your calculations, a table is given with some relevant information.

	n	$4 \wedge n$	$2 \times 4^{\wedge} \mathrm{n}$
a) How big would an oligo probe have to be for use with	10	$1.05 \mathrm{E}+06$	$2.10 \mathrm{E}+06$
haploid yeast, Saccharomyces cerevisiae, (1N $\left.=1.2 \times 10^{7} \mathrm{bp}\right)$?	11	$4.19 \mathrm{E}+06$	$8.39 \mathrm{E}+06$
That is, how long does the oligo have to be to ensure that it is	12	$1.68 \mathrm{E}+07$	$3.36 \mathrm{E}+07$
not likely to occur in the genome due to random chance?	13	$6.71 \mathrm{E}+07$	$1.34 \mathrm{E}+08$
		14	$2.68 \mathrm{E}+08$
	$5.37 \mathrm{E}+08$		
b) Yeast also go through a diploid phase. If you were	15	$1.07 \mathrm{E}+09$	$2.15 \mathrm{E}+09$
hybridizing to DNA extracted from diploid yeast, would you	16	$4.29 \mathrm{E}+09$	$8.59 \mathrm{E}+09$
need to use a longer oligo? Explain.	17	$1.72 \mathrm{E}+10$	$3.44 \mathrm{E}+10$

c) Most eukaryotic genomes, especially for higher organisms, are largely composed of middle repetitive sequences such as the AluI family in mammals. How would this affect our estimates of the likelihood of finding a particular oligonucleotide in a eukaryotic genome?
3. (10 points) The dot-matrix plot below shows a comparison of two SAR8 proteins. What are the most obvious differences or mutations between these two sequences?

4. (5 points) It has been demonstrated that it is impractical to extend the dynamic programming algorithm of Needleman and Wunsch/Smith Waterman to constructing multiple alignments for more than a few sequences. If there are k sequences of length n , give a simple expression that tells how does the problem scales, in terms of n and k ?
5. (10 points) The shell script below accepts a FASTA file as input. What is written to the output? An example of a FASTA file containing 3 sequences is shown in the box.

```
#!/bin/bash
infile=$1
outfile=$2
cat $infile | grep '>' | cut -c2- | cut -f1 -d " " > $outfile
```

>BLYTHNA 137 bp
MATNKSIKSVVICVLILGLVLEQVQVEAKSCCKNTTGRNCYNACRFAGGSRPVCATACGC
KIISGPTCPRDYPKLNLLPESGEPNATEYCTIGCRTSVCDNMDNVSRGQEMKFDMGLCSN
ACARFCNDGEVIQSVEA
>TATTH20MR 131 bp
MGGGQKGLESAIVCLLVLGLVLEQVQVEGVDCGANPFKVACFNSCLLGPSTVFQCADFCA
CRLPAGLASVRSSDEPNAIEYCSLGCRSSVCDNMINTADNSTEEMKLYVKRCGVACDSFC
KGDTLLASLDD
>TGTHI13 107 bp
MMVVVILGLVVAQTQVEAKSCCRNTTARNCYNVCRLPGTPRPVCAATCDCKIISSGKCPP
GYEKLGFSDVADEALDVAEEVMKEAVERCNNACSEVCTKGSYAVVTA

Notes:
-c2- tells the cut command to print all columns after and including column 2.
-d " " tells the cut command to use a blank space as a field delimiter
6. (15 points) A number of alternative genetic codes have been discovered. Examples are found in mitochondria, plastids, bacteria and archaea. In all of the alternative genetic codes seen so far, most of the codons code for the same amino acids as in the Standard Genetic Code, with a few codons differing. For example in some cases, a stop codon codes for an amino acid, or a codon for an amino acid is used as a stop codon. In other cases, one or two codons are reassigned to a different amino acid.

Type of search	NCBI	FASTA
a)DNA vs. DNA database	blastn	fasta3 ssearch3 (slow, full Smith-Waterman alignment)
b) protein vs. protein database	blastp	fasta3 ssearch3 (slow, full Smith-Waterman alignment)
c) protein vs. translated DNA database	tblastn	tfasta3
d) translated DNA vs. translated DNA database	tblastx	tfastx3, tfasty3
e) translated DNA vs. protein database	blastx	fastx3, fasty3 (especially well-suited for cDNAs, which often contain frameshift errors)

Yeast mitochondria use a non-standard genetic code. Suppose you had the seqeunces for a yeast mitochondrial gene, and its corresponding protein, and wished to find homolgues in other species.

How would the difference in genetic codes affect Needleman-Wunsch similarity scoreseach for the types of searches listed above? Indicate: Increase, Decrease, or No-effect. Also, state in a single sentence or phrase the reason.
7. (5 points) Sequence database search programs such as the FASTA and BLAST family of programs do not read database files that include annotation for each sequence, as would be found in GenBank or Uniprot entries. Rather, they read files in FASTA or similar formats, which include just a name and definition for each sequence, along with each sequence itself. What is the advantage, when doing a sequence database search, of eliminating the annotation?
8. (10 points) Two antifreeze proteins were aligned using both GGLSEARCH and GLSEARCH.
a) Which of the two alignments is deemed to be more statistically significant?
b) Why does the GGSEARCH alignment have a long gap, followed by a phenylalanine (F) at the end of ISP2_H? How does that gap contribute to the difference in Needleman-Wunsch (n-w) scores?

GGSEARCH

Algorithm: Global/Global affine Needleman-Wunsch (SSE2, Michael Farrar 2010) (6.0 April 2007) Parameters: BL62 matrix (11:-4), open/ext: -11/-1

```
>>ISP2_OSMMO 175 bp (175 aa)
```

n-w opt: 315 Z-score: 295.7 bits: 61.1 E(1): 1.3e-133
global/global ($N-W$) score: 315; 39.1\% identity (65.4% similar) in 179 aa overlap (1-163:1-175)

ISP2_H MTWALAETNCMKLGGHLASIHSQEEHSFIQTLN-AGVV--WIGGSACLQAGAWTWSDGTP

ISP2_0 LHWAHAQISCMKDGANLASIHSLEEYAFVKELTTAGLIPAWIGGSDCHVSTYWFWMDSTS

60	70	80	90	100	110

$120130 \quad 140 \quad 150 \quad 160$

ISP2_H MNFRSWCSTKPDDVLAACCMQMTAAADQCWDDLPCPASHKSVCAMT---------F :.: .::...:: .:. ::.:..... .::.: :: : :::
ISP2_0 MDFTDWCAAQPDFTLTECCIQINVGVGKCWNDTPCTHLHASVCAKPATVIPEVTPPSIM $\begin{array}{llllll}120 & 130 & 140 & 150 & 160 & 170\end{array}$

GLSEARCH

Algorithm: Global/Local affine Needleman-Wunsch (SSE2, Michael Farrar 2010) (6.0 April 2007) Parameters: BL62 matrix (11:-4), open/ext: -11/-1

```
>>ISP2_OSMMO 175 bp
```

n-w opt: 336 Z-score: 328.6 bits: $67.2 \mathrm{E}(1): 4 \mathrm{e}-171$
global/local score: 336; 41.9\% identity (69.5\% similar) in 167 aa overlap (1-163:1-163)

ISP2_H MNFRSWCSTKPDDVLAACCMQMTAAADQCWDDLPCPASHKSVCAMTF
:.: .::...:: .: ::.:.... .::.: :: : :::
$\begin{array}{ccccccc}\text { ISP2_0 } & \text { MDFTDWCAAQPDFTLTECCIQINVGVGKCWNDTPCTHLHASVCAKPATVIPEVTPPSIM } \\ 120 & 130 & 140 & 150 & 160 & 170\end{array}$
9. (10 points) Draw a dot-matrix plot (eg. DXHOM) of this sequence, compared with itself. You can assume that the only repeats of any significance are the ones documented in this GenBank entry.

LOCUS	AY966016	380 bp
DEFINITION	Aspergillus flavus isolate NPL GA3-3 hexose transporter-like (hexA)	
	gene/telomere breakpoint junction.	

10. (20 points) Fill in the blanks.

Over the course of sequence evolution, some positions undergo base or amino acid substitutions, and bases or amino acids can be inserted or deleted. Any measurement of similarity must therefore be done with respect to the best possible alignment between two sequences. Because insertion/deletion events are __ a compared to base substitutions, it makes sense to penalize gaps _ b _ than mismatches when calculating a similarity score. As an example, a very simple scoring scheme would add +1 for each match, -1 for each mismatch, and -2 for each gap inserted. That is, the larger the gap, the more we subtract. The similarity between two sequences would then be

Similarity = \qquad
From an evolutionary point of view, the gap penalty scheme in the simple Needleman-Wunsch algorithm is highly unrealistic. Although single point insertions or deletions ("indels") are probably more common than large indels, it is not obvious that any sort of linear relation exists between frequency of indels and length. That is, it's just as easy to delete 4 bases as to delete 2 . Most alignment programs deal with this problem using _ d__ gap penalties. d__ gap penalties consist of a _ e_ penalty, and an f_ penalty for each subsequent gap character inserted into the alignment. Typically, the __ e_ penalty is ___ negative than the _f_ penalty. Unfortunately, there is no empirical data to guide the choice of values for these penalties.
_ d gap penalties are calculated by the formula:

$$
\text { penalty }=\ldots
$$

As mentioned above, there are no good theoretical criteria for choosing _ e_ and $\quad \mathrm{f}$ penalties for proteins. That being said, we know that insertion/deletion events are less frequent than amino acid substitutions. Therefore, it makes sense that a _ e_penalty should be more negative than the
\qquad . For example, with the Blosum45 matrix, the \qquad is a $\operatorname{Trp}(\mathrm{W})$ - Cys (C) substitution, which gives a score of -5 . Therefore, it would be reasonable that for even a single gap that the e penalty should be \qquad negative than the \qquad _.
(It may be useful to consider the Blosum45 scoring matrix in question 11, when answering this question.)
11. (10 points) Explain the rationale behind the fact that in multiple sequence alignments, a match between two gaps is scored as 0 . When considering this question, it may help to review the Blosum45 matrix, shown below.

Blosum 45 Amino Acid Similarity Matrix

Gly	7																		
Pro	-2	9																	
Asp	-1	-1	7																
Glu	-2	0	2	6															
Asn	0	-2	2	0	6														
His	-2	-2	0	0	1	10													
Gln	-2	-1	0	2	0	1	6												
Lys	-2	-1	0	1	0	-1	1	5											
Arg	-2	-2	-1	0	0	0	1	3	7										
Ser	0	-1	0	0	1	-1	0	-1	-1	4									
Thr	-2	-1	-1	-1	0	-2	-1	-1	-1	2	5								
Ala	0	-1	-2	-1	-1	-2	-1	-1	-2	1	0	5							
Met	-2	-2	-3	-2	-2	0	0	-1	-1	-2	-1	-1	6						
Va	-3	-3	-3	-3	-3	-3	-3	-2	-2	-1	0	0	1	5					
Ile	-4	-2	-4	-3	-2	-3	-2	-3	-3	-2	-1	-1	2	3	5				
Leu	-3	-3	-3	-2	-3	-2	-2	-3	-2	-3	-1	-1	2	1	2	5			
Phe	-3	-3	-4	-3	-2	-2	-4	-3	-2	-2	-1	-2	0	0	0	1	8		
Tyr	-3	-3	-2	-2	-2	2	-1	-1	-1	-2	-1	-2	0	-1	0	0	3	8	
Trp	-2	-3	-4	-3	-4	-3	-2	-2	-2	-4	-3	-2	-2	-3	-2	-2	1	3	15
Cys	-3	-4	-3	-3	-2	-3	-3	-3	-3	-1	-1	-1	-2	-1	-3	-2	-2	-3	-5 12
	Gly	Pro	Asp	Glu	Asn	His	Gln	Lys	Arg	Ser	Thr	Ala	Met	Val	Ile	Leu	Phe		Trp Cys

12. (5 points) Why is it important to eliminate duplicate sequences before doing a multiple protein alignment?

The IUPAC-IUB symbols for nucleotide nomenclature [Cornish-Bowden (1985)Nucl. Acids Res. 13: 30213030.] are shown below:

Symbol	Meaning	Symbol	Meaning
G	Guanine	K	G or T
A	Adenine	S	G or C
C	Cytosine	W	A or T
T	Thymine	H	A or Cor T
U	Uracil	B	G or T or C
R	Purine (A or G)	V	G or C or A
Y	Pyrimidine (C or T)	D	G or T or A
M	A or C	N	G or A or T or C

The Universal Genetic Code							
UUU UUC UUA UUG	phe leu	UCU UCC UCA UCG	ser	UAU UAC UAA UAG	tyr stop stop	$\begin{aligned} & \text { UGU } \\ & \text { UGC } \\ & \text { UGA } \\ & \text { UGG } \end{aligned}$	$\begin{aligned} & \text { cys } \\ & \text { stop } \\ & \text { trp } \end{aligned}$
CUU CUC CUA CUG	Ieu	$\begin{aligned} & \text { CCU } \\ & \text { CCC } \\ & \text { CCA } \\ & \text { CCG } \end{aligned}$	pro	$\begin{aligned} & \text { CAU } \\ & \text { CAC } \\ & \text { CAA } \\ & \text { CAG } \end{aligned}$	his gln	$\begin{aligned} & \text { CGU } \\ & \text { CGC } \\ & \text { CGA } \\ & \text { CGG } \end{aligned}$	arg
AUU AUC AUA AUG	ile met	ACU ACC ACA ACG	thr	AAU AAC AAA AAG	$\begin{aligned} & \text { asn } \\ & \text { lys } \end{aligned}$	AGU AGC AGA AGG	ser arg
GUU GUC GUA GUG	val	$\begin{aligned} & \text { GCU } \\ & \text { GCC } \\ & \text { GCA } \\ & \text { GCG } \end{aligned}$	ala	GAU GAC GAA GAG	asp glu	GGU GGC GGA GGG	gly

3-letter	1-letter	3-letter	1-letter	3-letter	1-letter
Phe	F	Leu	L	Ile	I
Met	M	Val	V	Ser	S
Pro	P	Thr	T	Ala	A
Tyr	Y	His	H	Gln	Q
Asn	N	Lys	K	Asp	D
Glu	E	Cys	C	Trp	W
Arg	R	Gly	G	STOP	*
Asx	B	Glx	Z	UNKNOWN	X
Xle (Leu/Ile)	J	Pyl (pyrrolysine)	O		

[^0]: Ways to write a readable and concise answer:
 i. Just answer the question. Save time by specifically addressing what is asked. Don't give irrelevant background if it doesn't contribute to the question that was asked.
 ii. Avoid stream of consciousness. Plan your answer by organizing your key points, and then write a concise, coherent answer. Make your point once, clearly, rather than repeating the same thing several times with no new information.
 iii. Point form, diagrams, tables, bar graphs, figures are welcome. Often they get the point across more clearly than a long paragraph.
 iv. Your writing must be legible. If I can't read it, I can't give you any credit.

