MATH 1520 Practice Final

Calculus for Management & Social Sciences

May, 2007

PART A/100 marks

[20] 1. Find the derivatives y' for the following [DO NOT SIMPLIFY]

(a)
$$y = x^{\pi} + \pi^2 + \frac{1}{x^4} - \sqrt{x}$$

(b) $y = \log_2(x^3 - 7x + 1)$
(c) $y = (2^{3x+1})(e^{x^2})$
(d) $y = \frac{\ln(x^3 + 1)}{x^2 + x}$

[18]

(a)
$$\int (\frac{1}{x^2} + x) dx$$

(b)
$$\int_1^e (\frac{1}{x} + e^x) dx$$
 (Simplify as much as possible).
(c)
$$\int (6x^3 - e^{7x}) dx$$

(d)
$$\int \sqrt{x}(x^2 + x) dx$$

[25] 3. Identify the following for the function below, if one of the properties does not exist, state "none".

$$f(x) = \frac{x}{x^2 + 4} \qquad \qquad f'(x) = \frac{-x^2 + 4}{(x^2 + 4)^2} \qquad \qquad f''(x) = \frac{2x(x^2 - 12)}{(x^2 + 4)^3}$$

- (a) Domain.
- (b) x and y intercepts.
- (c) Equation(s) of any horizontal asymptote(s).
- (d) Coordinates of all critical points.
- (e) Interval(s) where the curve is increasing and where it is decreasing.

- (f) The x and y coordinates of any relative maximum and/or any relative minimum values. Identify each as a relative maximum and/or relative minimum.
- (g) Interval(s) where the curve is concave up and where it is concave down
- (h) The x and y coordinates of any inflection points.
- (i) Use the above information to sketch f(x).
- [7] 4. Sketch a graph that has the following properties:
 - 1) Vertical asymptote at x = 0.
 - 2) No x or y intercepts.
 - 3) f''(x) < 0 on $(-\infty, 0)$.
 - 4) f''(x) > 0 on $(0, \infty)$.
 - 5) f'(x) > 0 on $(-\infty, -1) \cup (1, \infty)$.
 - 6) f'(x) < 0 on $(-1, 0) \cup (0, 1)$.
 - 7) Relative max of -2 at x = -1.
 - 8) Relative min of 2 at x = 1.

[8] 5. For
$$f(x, y) = 2x^3y + \frac{x}{y}$$
, find:

- (a) $f_x(x,y)$
- (b) $f_y(x,y)$
- (c) $f_y(1,1)$
- (d) $f_{xy}(x,y)$
- [5] 6. If acceleration (in m/s²) of an object is given by $x(t) = 2t^2 + t + 1$ for $t \ge 0$, find the velocity of this object after 2 seconds. It is known that the object's velocity is 3 m/s after 1 second.
- [7] 7. A <u>closed</u> rectangular box has height twice its width. If we have 24 m² of material to work with, what are the dimensions of the box with maximal volume that we could build?
- [10] 8. Make a rough sketch of the function $f(x) = x^2 1$. Shade the region bounded by the curve y = f(x), the x-axis, and the lines x = 0 and x = 2. Find the area of the shaded region.

PART B/20 marks (2 marks per question)

- 9. (a) What is the domain of $\ln(x^2 + 1)$? [2]
 - (b) If the cost function for x shirts is $C(x) = 3x^2 + 6$ dollars and the selling price per shirt is \$10 per shirt, find:
 - i. The revenue function R(x).
- [2]ii. Profit function P(x).
 - iii. The marginal profit function.

[2] (c) Find
$$\lim_{x \to \infty} \frac{x^7 + 12x - 1}{7x^7 + 3x^3 + 9}$$

(d) Re-write the expression $6e^{\frac{\ln 8}{3}t}$ to contain no logarithms.

(e) Find
$$f(4,3)$$
 if $f(x) = \sqrt{x^2 + y^2}$.

(f) If
$$f(x) = 3x + 1$$
 and $g(x) = x^2 + x$, find a simplified expression for

[2] i.
$$g(f(x))$$
.
[2] ii. $f(g(x))$.

[2]

[2]

[2][2]

ii. f(g(x)). iii. g(f(1)).

[2] iii.
$$g(f(1))$$