MATH 1520 A03 **B10** March 17, 2008

_

TUTORIAL TEST 4 DEPARTMENT OF MATHEMATICS UNIVERSITY OF MANITOBA

/25_____ _____ Student ID Student Name MARKS

You are given 30 minutes to finish ALL questions; Please show ALL your work to get full credits.

1. Answer the following questions. **DO NOT SIMPLIFY.**

[2](a) Find Find f''(x), if $f(x) = x \ln x + 2$

[3] (b) Calculate
$$D_x \left[\frac{\log_3 \left(x^3 - 2x \right)}{x^2 + 1} \right]$$
.

[3] (c) Differentiate
$$y = \left[\frac{1}{x} - e^{2x^3}\right]^{2/3}$$
.

[3] 2. Suppose that f is differentiable and f'(4) = 1. Find $\frac{d}{dx} [f(x^2)]$ when x = 2.

$$f(x) = x^4 - 2x^2 + 4$$

The first derivative is given by

$$f'(x) = 4x^3 - 4x$$

GIVE ANSWERS ONLY. Write "NONE" for any item that does not exist.

Domain of f	[1/2]
y-intercept	[1/2]
The instantaneous rate of change of f at $x = -1$	[1/2]
$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$	[1/2]
The slope of the tangent line to the curve $y = f(x)$ at which $x = 2$	[1/2]
The derivative of $f'(x)$	[1/2]
Critical number(s)	[3]
Open interval(s) where f is decreasing	[2]
Open interval(s) where f is increasing	[2]
x and y coordinates of all relative minima	[2]
x and y coordinates of all relative maxima	[2]