MATH 1520 A03 **B09** MARCH 31, 2008

TUTORIAL TEST 5

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MANITOBA

		/25
Student Name	STUDENT ID	Marks
YOU ARE GIVEN 30 MINUTES TO FINISH ALL OUE	STIONS: PLEASE SHOW ALL YO	OUR WORK TO GET FULL CREDITS

[5] 1. Let

$$f(x) = \frac{3x-2}{x-1}$$
, $f'(x) = \frac{-1}{(x-1)^2}$, and $f''(x) = \frac{2}{(x-1)^3}$

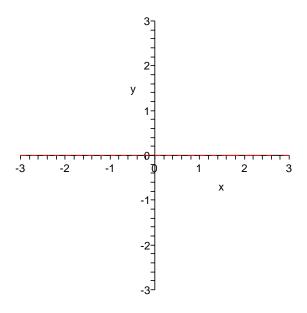
Fill in the table with the requested information about f. **GIVE ANSWERS ONLY.** Write "**NONE**" for the item that does not exist.

Domain of f	[1/2]
y-intercept	[1/2]
Equation of the horizontal asymptote(s)	[1]
Open interval(s) where f is decreasing	[1]
Open interval(s) where f is concave upward	[1]
Point(s) of inflection	[1]

[5] 2. Let

$$f(x) = \frac{x^2}{x+1}$$
, $f'(x) = \frac{x(x+2)}{(x+1)^2}$, and $f''(x) = \frac{2}{(x+1)^3}$

Fill in the table with the requested information about f. **GIVE ANSWERS ONLY.** Write "**NONE**" for the item that does not exist.


Domain of f	[1/2]
x-intercept	[1/2]
Equation of the vertical asymptote(s)	[1]
Open interval(s) where f is increasing	[1]
x and y -coordinates of the relative maximum	[1]
Open interval(s) where f is concave downward	[1]

3. Consider the function $f(x) = xe^x$. Answer the following questions using the information in the table.

Domain of $f/$ symmetry	$(-\infty, \infty)$ / NONE
x-intercept/ y -intercept	0 / 0
Horizontal/vertical asymptote	y = 0 / NONE
Open interval(s) where f is decreasing	$(-\infty, -1)$
Open interval(s) where f is increasing	$(-1, \infty)$
Critical Point	(-1, -1/e)
Open interval(s) where f is concave downward	$(-\infty, -2)$
Open interval(s) where f is concave upward	$(-2, \infty)$
Inflection Point	$(-2, -2/e^2)$

[1] (a) Find all relative maxima and minima, if any, and clearly indicate the x-values that they occur.

[2] (b) SKETCH the graph of y = f(x), labelling the horizontal asymptote, the relative maxima/minima and the inflection point. [You might want to know that $2/e^2 < 1/e$.]

[7]	4	Find the absolute	maximum and	minimum	values	of the func	etion $f(r) =$	$= r^3 - 3r$	+2 on the	interval [0.21

5. If the price charged for a box of "SWEET" candy bar is p dollars, then x boxes will be sold in a centain city, where

$$p = p(x) = 10 - \frac{x}{10}$$

- [1] (a) Find an expression for the total revenue R(x) from the sale of x boxes of "SWEET" candy bars.
- [3] (b) Find the value of x that leads to maximum revenue. Justify your answer.

[1] (c) Find the maximum revenue.