
TRANSIENT SIMULATION:  LECTURE I
Methods For Formulation Of Equations For Lumped Linear Networks

1.1 Examples of Power System Components
Shown below are some examples of typical power system components
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1.2 Circuits with Linear Elements
In this section we consider the modeling of lumped linear passitve elements such as in the

circuit shown below:

+-

Fig. 1.1  Typical lumped, linear circuit.

How do we write the equations for these?

Ó A.M. Gole, University of Manitoba, 1998 page 1



a) By inspection
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Fig. 1.2.  Simple R-L Circuit

and we solve by analytic or numerical methods.

b) By systematic approaches like the state variable approach [1] which result in equations
like:

X = Ax + Bu(t) (or = f(x, u)  for the general case)

     state variable input variable

Advantages:
Ð minimal set of variables to be solved for
Ð automatic generation of equations is possible
Ð a large body of mathematics dealing with stability, etc. is available
Ð x(t) is a continuous function of time if f(x,u) is finite.  An important factor in numerical 

integration
Ð more later.

c) By transformation of the problem into a purely resistive circuit problem with the help of
trapezoidal integration and Admittance Matrices.

1.3 Admittance Matrix Solutions for Resistive Networks (Note Voltage
Method) [1]
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Fig. 1.3.  Typical resistive circuit.



KCL at node 1 gives:
v1 ¥ GA + (v1Ðv2) GB + (v1Ðv3) ¥Ê GC = +J1(t)

or
v1 (GA+GB+GC) Ð v2 ¥ GB Ð v3 ¥Ê GC = J1(t)

or v1 [sum of all conductances incident at node 1]
+ v2 [Ðconductance between 1 & 2]
+ v3 [Ðconductance between 2 & 3]

= J1(t) = current source incident at node 1
Doing this for the other two nodes,

GA+GB+GC
ÐGB
ÐGC

  
ÐGB
GB+GD
0

  
ÐGC
0
GF+GC+GE

  
v1
v2
v3

  = 
J1(t)
J2(t)

0
(1)

or Y v = J (2)

we can automatically form the admittance matrix equation:
Y v = J

where    v = [v1, v2,. . .vn]T,    J = [J1, J2. . .Jn]T

and       Y = [yij]i=1,n
j=1,n

where   yii = gijå
j=1,n

 

(2)

and      yij
(i¹j)

  = Ðgij

where gij is the conductance between nodes i and j,
and gii is the conductance from node i to ground.

We can then solve for the voltages v as
v = [Y]Ð1 J (3)

Properties of [Y]

Y is symmetric (yij = yji)

Y may be quite sparse, for example
if there is no connection between
nodes i&j, yij=0

        storage implications

If J changes (say J=J(t)),  we need not
recalculate YÐ1, because Y remains 
unchanged

     computational implications

NOTE:  We need not explicitly calculate YÐ1, we could, for example, use the method of LU
factorization [2] where Y can be partitioned into an upper and lower triangular matrix:
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or L v' = J                   where v'=Uv



and solve for  vn
¢  = J1

u11

vk
¢  = 

Jk Ð Lk1 V1
¢ .... Lk, k-1 Vk-1

¢

Lkk
 , k>1

and after v' is determined, we similarly solve for U  v = v' by back substation.
Again, once the LU factorization is obtained, we don't have to re-obtain it unless the network
changes.

Example 1.
Write the admittance matrix form equation for the circuit below and solve:

5A

1W1W

1W 1W 0.5W 5 sin (wt)A

Fig. 1.3.  Circuit for Example 1.

Select an appropriate node numbering scheme:

5A 5 sin (wt)A1s
1s

1s 2s

V3

Thus:
1+1
Ð1
0

   
Ð1
3
Ð1

   
0
Ð1
1+2

  
v1
v2
v3

  =  
5A
0A

5 sin(wt)A

or
2
Ð1
0

   
Ð1
3
Ð1

   
0
Ð1
3

  
v1
v2
v3

  =  
5
0

5 sin(wt)
 A

or  
v1
v2
v3

  =   
0.615
0.231
0.077

   
0.231
0.462
0.154

   
0.077
0.154
0.385

   
5
0

5 sin(wt)
 1

or v1(t) = 3.075 + 0.315 sinwt  V

v2(t) = 1.155 + 0.77 sinwt  V
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v3(t) = 0.315 + 1.925 sinwt  V



1.4 Admittance Matrix Formulations (due to Dommel) for Dynamic Networks [3]

Inductance
Shown below is a schematic diagram and the differential equation governing the voltage-current
relationship for an inductor.

+

Ð

L

i

v v = Ldi
dt

i(t) = 1
L

 v dt + i(o)
t=0

t

Solution Using the Trapezoidal Rule

 f(t) dt » 
f(x) + f(xÐDx)

2
t=xÐDx

x

 ¥ Dx

f(t)

t

Dx

x-Dx x

f(xÐDx)+f(x)
2

Advantage:

Trapezoidal rule preserves
stability for linear systems

Fig. 1.4.  Illustration of trapezoidal rule.

Thus:

i = 1
L

 vdt  or i(t) = i(tÐDt) + 1
L

 v t d t
tÐDt

t

» i(tÐDt) + 1
L

 
v(t) + v(tÐDt)

2
 ¥ Dt

or

i(t) = 
Dt
2L

 v(t) + i(tÐDt) + 
Dt
2L

 v(tÐDt) (4)
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or
 i(t) = gL ¥ v(t)  + IL(tÐDt)

 where gL = 
Dt
2L

 ,  IL = i(tÐDt) + gLv (tÐDt)

                                       ' HISTORY TERM'

(5)

Note the two components of i(t), one which depends on present voltage and the other a 'history
term' dependent on past conditions.

Eqn. 5 has an equivalent network representation as

gLi(t)

+ -
v(t)

IL(t - Dt)

Fig. 1.4.  Equivalent circuit for inductor valid during a timestep.

This model can help us to solve the dynamic equation at time t.  Note IL(tÐDt) is based on past
information (history) and is thus known at time t.

Capacitance:  A similar derivation exists for the capacitor:

V  =  1
C

 idz

or

v(t) = 1
C

 
i(t) + i(tÐDt)

2
 Dt + v(tÐDt)

or
i(t) = gc v(t)  + IC(tÐDt)

where gc = 2C
Dt

 ,   IC = Ði(tÐDt) Ð gc v(tÐDt)

                                       ' HISTORY TERM'

(6)

or
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+ -
v(t)

Ic(t-Dt)

Fig. 1.5:  Equivalent Circuit for Capacitor

Example (2):

Calculate v1(t) in the circuit below (UseDt = 0.01 s):

i(t)

10V

1W

0.1H

+ V1(t)

Fig. 1.6:  Simple R-L Circuit

Represent all network elements as current sources and conductances.

V1(t)

10A 1s

gL = Dt
2L

 = 0.05 s

IL(t-Dt) = i(t-Dt) + 0.05 V1(t-Dt)
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or:



V1(t)

10A - IL(t-Dt) 1.05 s

thus: v1(t) = [10A Ð IL(tÐDt)]¥ 1.05  V
or i(t) = gL ¥ v1(t) + IL(tÐDt)  A

(in inductor)

The code written below in FORTRAN models the given situation.
Fig. 1.7 shows the resulting waveforms.  Also plotted for comparison is the theoretical solution
v1(t) = 10.0eÐRt/L V, i(t) = 10.0 (1ÐeÐRt/L) A.  Solutions for three different values of Dt are shown.

In a similar manner, its possible to represent most network elements current source-conductance
equivalents, where the current sources are functions of the past history of the network.  Thus any
general network reduces to one with current sources and conductances, for which the admittance
matrix equations are readily written, resulting in an equation of the form:

[Y] V = J + I (tÐDt), where J is the vector of external (real) current sources, whereas I(tÐDt)
are the (fictitious) history sources introduced in the algorithm.  This equation is then readily
solved as:

V = [Y]Ð1 [J+I (tÐDt)]
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C****************************************************************************
C Solution of Simple ckt by Admittance methods:
C****************************************************************************
       real delt,R,L,fintim,prtime,v1,Il,i1,v1t,i1t
C____________________________________________________________________
C open datafile for reading and output file for answer:
       open(unit=10,file='inp_file')
       open(unit=11,file='out_file')
       write(11,*) 'This is the solution of a simple R-L circuit:'
C____________________________________________________________________
C Reading the datafile:
C
       read (10,*) delt,fintim,prtime
       read(10,*)R,L
C____________________________________________________________________
C Initialization
       gr=1/R
       gl= delt/(2*L)
       v1=10.0
       i1=0.0
       v1t = 10.0
       i1t = 0.0
       time=0.0
       write(11,*) time, v1, i1, v1t, i1t
C____________________________________________________________________
C Setting the loop on time:
       nstep=fintim/delt
       nprt = prtime/delt
C____________________________________________________________________
C The numerical solution:
C
       Do 1 J=1,nstep+1
C Calculating the history term:
         Il = gl*v1 + i1
C (Note: at this time the values of v1 and Il on the right hand side
C are from thge previous timestep (t-delt) as the soln for time=t has
C as yet not been found!)
C_____________________________________________________________________
C Now the solution:
C
         v1 = (10 - Il )/ (gr +gl)
         i1= gl*v1 + Il
C_____________________________________________________________________

C Updating time:
C     
         time=time+delt
C_____________________________________________________________________
C The theoretical Solution for comparison:
         v1t = 10.0 * exp(-R/L*time )
         i1t = 10.0/R*(1.0 - exp(-R/L*time) )
C Writing the soln. to an output file:
C
         if(mod(J-1,nprt).eq.0) write(11,*) time, v1, i1, v1t, i1t

1      continue
C.....Now loop back for the next timestep.
C_____________________________________________________________________
       write(6,*)'End of Simulation!'
       stop
       end
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Fig. 1.7  Solution to Ex. 2 for different timesteps



Assignment #1:

120 2 sin(2p ´ 60t)~

5W 137.6 mH

20W 530.5 Vc(t)
mF

+

-

i(t)

2

Fig. 1.8:  Circuit for Assignment #1

For the above network, plot i(t) and vc(t) as functions of time.  Choose a suitable timestep.
Continue solution for at least 4 cycles.  Use a print-step of 1 ms.  The following steps should be
clearly shown:
a) Represent the network in a circuit with only current sources and conductances.
b) Directly form the admittance matrix.
c) Develop the equation Y V = J Ð I (tÐDt) and solve it, by inversion of Y.
d) Compare your answer with a phasor solution.

Timesteps:
From the solution of Example 2, we see that the timestep has an effect on the accuracy of
solution.  Typically a timestep which is less than about 10% of the smallest time constant or
period in the circuit being solved is used as a rule of thumb.  However, this is not always known
a-priori, so the following procedure is recommended:  a) Simulate the circuit with a given
timestep.  b) Reduce the timestep by 50% and repeat.  If the results differ only insignificantly,
the chosen timestep is adequate.  We shall investigate the dependency of the stability of the
solution further in this Chapter.
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