8 UNIVERSITY
& OF MANITOBA

Matrix Solution Methods and Sparsity

| Implications

Hui Ding
Shengtao Fan

Advisor: Dr. Ani Gole

Department of Electrical and Computer Engineering
University of Manitoba

Outline

— 1 Introduction

—— 2 Matrix Solution Methods

| 2.1 Graphical method

— 2.2 Cramer’s rule

e 2.3 Gaussian Elimination

2.4 LU Factorization

— 3 Sparsity Implication

1 Introduction (EMT)

4 Start)
3

Parse the System Information
y /)

Parse the Devices |

Norton Equivalent Calculation >

Form Y Matrix and J Vector >

Solve the System > o Votuge)
Update Dynamic Devices > _
Save the Outputs to File > EJ

Yes

ql 1 Introduction (Reference Books)

EMT Reference:
1) HW. Dommel, EMTP Theory Book (2nd edition) ,

Microtran Power System Analysis Corporation,

Vancouver, BC. 1992

2) N. Watson and J. Arrillaga, Power Systems
Electromagnetic Transients Simulation, IEE Power

and Energy Series, No. 39, IEE Press, 2003, UK,

q 1 Introduction (Matlab Solver)

£y INY s slow and inaccurate. Use A\vb for INWV(AT*b, and b/A for b*inw(Al.

F

Explanation

M-Lint has detected a call to Znw in a multiplication operation.

The inverse of a matnx 1s prnimarily of theoretical value. and rarely
finds any use in practical computations. Mever use the inverse of

a matrix to solve a linear system LZx=b with x=inwv (L) *b,
because it 1s slow and inaccurate.

Suggested Action

Instead of multiplying by the inverse, use matnx right division (/)
or matrix left division (). That is:

@ Replace inv (&) *b with &\ b

@ Replace b*inwv (&) with b/

Frequently, an application needs to solve a sernes of related
linear systems x=b, where & does not change, but b does. In
this case, use 1u, chol, or gr instead of inv, depending on

the matrix type.

ql | Introduction (Matrix Solution Methods)
|

Nowadays, easy access to computers makes the
solution of large sets of linear algebraic equations
possible and practical.
Direct Method
By taking the advantage of “sparsity”
Iterative Method

often the only choice for nonlinear equations, also useful
even for linear problems involving a large number of

variables

Direct solution methods were often preferred to
iterative methods in real applications because of

their robustness and predictable behavior.

ql 1 Introduction (Reference Books)

Direct Methods Reference:

1) Davis, T.A., Direct methods for sparse linear systems.
Vol. 2. 2006: Society for Industrial Mathematics.

2) George, A., J. Liu, and E. Ng, Computer Solution of Sparse
Linear Systems. 1994,

3) Duff, I., A. Erisman, and J. Reid, Direct Methods for Sparse
Matrices, 1986, Oxford: Clarendon Press.

4) @sterby, O. and Z. Zlatev, Direct methods for sparse
matrices. DAIMI PB, 1980. 9(123).

Iterative Methods Reference:

5) Saad, Y., Iterative methods for sparse linear systems. 2003:
Society for Industrial and Applied Mathematics.

Outline

— 1 Introduction

—— 2 Matrix Solution Methods

| 2.1 Graphical method

— 2.2 Cramer’s rule

e 2.3 Gaussian Elimination

2.4 LU Factorization

— 3 Sparsity Implication

ql 2 Matrix Solution Methods
|

For small number of equations (n < 3) can be
solved readily by simple techniques.
Graphical method

Cramer’s rule

For large number of equations (n > 3) can be
solved readily by other techniques.

Elimination method
LU method

ql 2.1 Graphical method
|

For two equations:

a X +a,X, = bl

A, X +a,nX, = bz

Solve both equations for x,.

= X, = (slope)x, +1ntercept

ql 2.1 Graphical method
|

Plot x, vs. X,
on rectilinear
paper, the .
Intersection of

the lines

present the
solution.

X 2

q 2.1 Graphical method

(a) No solution
(b) Infinite solutions
(c) lll-conditioned (Slopes are too close)

12

ql 2.2 Cramer’s rule
|

If [A] 1s order 1, then [A] has one element:
A=la]
the determinant 1s D=a,,

For a square matrix of order 2

A: all a12

_a21 a'22 _

ql 2.2 Cramer’s rule
|

For a square matrix of order 3

all a12 a‘13

a‘21 a‘22 a‘23 = allDll o a'12 D12 T a‘l3 Dl3

a‘31 a32 a33

a‘22 a‘23
a32 a‘33
a‘21 a‘23
a'31 a33

a‘21 a‘22

a'31 a32

= a,, Ay3 — a3, Ayg

= a,; 33 — 3y Ayg

=d, d3, —d5, ay,

14

ql 2.2 Cramer’s rule
|

For a square matrix of order 3
bl a12 a13 01 a‘12 a13
b2 a22 a23 02 a22 a23
b3 a‘32 a‘33 C)3 a32 a33

X1 — —
all a12 a13 D
pa pa pa
21 %22 Y23
a'31 a32 a33
X, =

ql 2.3 Gaussian Elimination

the technique for n equations consists of two phases:
Forward elimination of unknowns

Back substitution

‘a1 a2 a3 o |
a1 Q22 Q23 €2
a3 azpy azsz | C3
. Forward
U " elimination
a2 a13 § €
a2 Q23 | 2
ajs |
J
x;:,’: C3’/O33 { Back
x2 = (c2 —a23x3)/a22 [¢ betitution
x1 = [c1 — a1 — a13x3)/a11 |

16

ql 2.3 Gaussian Elimination
|

2X +y — 7 = 8 (L1)

I3x -y + 2z =—11 (L2)

2x + y + 2z =-3 (L3)
((2X+ -z =8
(1)- Lﬁ%Ll_)Lz 10 +1/2;/ +1/2z =1
L+ —>L3 0+ 2y+ z=5
(2x+ y - z =8

(2)L, +(-4)L, > L3 >

0 +12y +1/2z =1

\O+O +

-z =1

(L1)
(L2)
(L3)
(L1)
(L2)
(L3)

17

ql 2.4 LU Factorization
|

all alz a13 Ill O
A=|a a a. |=

21 22 23 |21 |22

Case:
4 3 _Ill O __ull u12_
6 3 |71 |22 O u22

Gu,+0-0 =4
11'u12+0'u22 =3
21'u11+|22'0 =6

a‘31 a32 a33 _ |31 |32

(

\21'u12+|22'u22 =3

ql 2.4 LU Factorization
|

_au a, a;
A=la, a, ay

A A Ay
Case:
4 3] [l, O
6 3] (L, L,
l,-u,+0-0 =4
<1f%2+oum =3

o Uy +1,-0 =6

121 Uy +1y, Uy =3

|

Ill O O ull u12 u13

|21 |22 O O u22 u23

u, +0-0 =4

u,+0-u, =3
Ny 12 22

L, -u,+0 =6

k|21 ‘U, +Uy, = 3

19

ql 2.4 LU Solver
|

AX=b > LUx=b >«

Ux=y

20

ql 2.4 Gaussian Elimination & LU Factorization

X X X X X X X X X X X X X X X X
X X X X £ 0 X X X c 0 X X X c 0 X X X
A= —> — —
X X X X 0 X X X 0 0 x X 0 0 x X
X X X X _O X X X _0 0 X X | _0 0O O X |
A EA E,EA E.E.E.A

Each E. introduces zeros below diagonal of column 1:
E.E.EEA=U——>A=LU where L=(E,E,E,)" =E'E]E]

21

ql 2.4 Gaussian Elimination & LU Factorization
|

EE ---EEAX =EE_,---E,Eb«— Ux=EE_, ---EEDb
<

AX=b «—— LUx=b

(For Gaussian Elimination: UX = EE ---E,Eb=L"D

2

|For LU : LUx=Db

If vector b varies each simulation step,
For Gaussian Elimination we should store U and L' and calculate L'b.

For LU method, we should store L and U. As L' is a dense matrix, so

Gaussian Elimination method is less efficient than LU method.

22

ql 2.4 Arithmetic Complexity Analysis
|

Gaussian elimination to solve a system
of n equations for n unknowns requires

Divisions: n(n-1) /2
multiplications: (2n? + 3n% — 5n)/6
Subtractions: (2n? + 3n% — 5n)/6

Total of approximately: 2n3 / 3 operations.

Thus it has arithmetic complexity of O(n?).

LU decomposition requires 2n° / 3 floating point
operations, 1f neglecting lower order terms

23

Outline

— 1 Introduction

—— 2 Matrix Solution Methods

| 2.1 Graphical method

— 2.2 Cramer’s rule

e 2.3 Gaussian Elimination

2.4 LU Factorization

— 3 Sparsity Implication

24

ﬁ 3.1 contents
|

Sparse linear equation system
Storage of sparse linear equation
LU factorization considering sparsity

Typical sparse solver

ﬁ 3.2 Sparse linear equation system

I . .
A sparse matrix Is a matrix populated

primarily with zeros.

Why the coefficient matrix of linear equation
system Is sparse?

Sparsity comes from the loose coupling of
systems.

1. 3.2 How to utilize the sparsity
|

The required memory will be greatly reduced, If
proper data structure Is used to avoid storing of
the zero elements.

The number of operations is also greatly
reduced, If the operations involved zero
elements are avoided.

Without sparse techniques, it is impractical to
solve some very large systems with direct
method.

ﬁ 3.3 Storage of sparse linear equation
|

Static or dynamic structures can be used
to store sparse matrix.

The triplet form and compressed-column
form / compressed-row form are widely

used.
mtn =
1.0 0 50 70| intnnz =
0 30 0 O int i[] o 2, 1, 3 0 2

20 0 60 80| intj[]
0 40 0 90| intx]

Il
ﬂ-"-\r-"—\r-"—\\.\.o\.".;

, , ¥
o0 o L, 1L, 2,2 3 3 3 }
1.0, 2.0, 3.0, 40, 50, 6.0, 7.0, 80, 9.0 };

int n = 4

int p = { 0, 2, 4, 6, 9%,

int i[] = ¢{(0 2, 1L 3 0 2 0 2 3 }
double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 80, 9.0 };

1. 3.4 LU factorization considering sparsity
|

Apply the gauss elimination process to
matrix represented with sparse storage
structure.

The main step of Gauss Elimination or LU
factorization is multiplying one row with a
number and then adding it to another row.

non-Zero non-Zero

\J

non-zero - fill-in

ﬁ 3.4 LU factorization
|

Investigation shows that the number of fill-
INs In Gauss Elimination process Is greatly
affected by ordering of the matrix.

—~ .. I)
LRy oLt
OO aml f B N |
] O S § IEf § |
L L) € ---.D_/
- ~ . ~ ~ . ~
O O L2 . T 3 S
O O O O L - 2
O O O O O O . S
O O O O O O O O
OO _ OO O O OO
OO0O0O00aod OOOooo || il O0O0O0 OoOono
g L L L _/

ﬁ 3.4 LU factorization
|

The non-zero pattern of a square sparse
matrix can be represented by a graph.

For any square sparse matrix, the number
of vertices in the graph equals to the order
of the matrix.

If alj IS a none-zero entry, there Is an edge
from node | to node j in the directed graph.

X X
X X
X XX
X X

ﬁ 3.4 LU factorization
|

For a symmetric matrix, a connection from node |
to node | iImplies there must be a connection from
node | to node I. So, the arrows may be dropped.

ﬁ 3.4 LU factorization
|

The fill-in will greatly affect the operation
numbers needed to perform Guass Elimination
and Forward/Backward substitution.

Therefore, we need to find the best ordering to
generate the least fill-ins.

However, the bad news is that: Determining the
best ordering in the elimination process which
results in the minimum number of fill-ins is NP-
Hard .

ﬁ 3.4 LU factorization
|

This implies that minimizing the work of
performing Gauss Elimination Is more
costly than itself, which is a P-Hard
problem.

The good news is that we can approximate
this minimum using graph-based heuristics.

One such heuristic Is to always select the
vertex with minimum degree.

1 3.4 LU factorization

= For example:

ﬁ 3.5 Typical sparse solver
|

One typical solver consists of the following
steps:

Symbolic analysis
Numerical factorization

Forward and backward substitution

1. 3.6 IEEE-14 system case

The linear equation of the IEEE-14 system
has 60 unknown variables.

1. 3.6 IEEE-14 system case
|

LU factorization with natural ordering

nz = 305 nz = 305

1. 3.6 IEEE-14 system case
|

Non-zero pattern after Approximate Minimum
Degree ordering.

0

10

20+

30+

40}

50+

60 ¢

nz = 375

1. 3.6 IEEE-14 system case
LU factorization after AMD

L U
0 0
10 10
20 20
30 30
40 40
50 50
b \
60 ‘ ‘ 60

0 20 40 60 0
nz = 249 nz = 261

1. 3.6 IEEE-14 system case
|

Non-zero pattern of Bordered Block Diagonal
(BBD) form.

0-

1. 3.6 IEEE-14 system case
|
LU factorization of the BBD form

nz =278

! Discussion and Suggestion

43

