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1 Introduction (Reference Books)
EMT Reference:

( )

 1) H.W. Dommel, EMTP Theory Book (2nd edition) , 

Microtran Power System Analysis Corporation,Microtran Power System Analysis Corporation, 

Vancouver, BC. 1992

 2)  N. Watson and J. Arrillaga, Power Systems 

Electromagnetic Transients Simulation, IEE PowerElectromagnetic Transients Simulation, IEE Power 

and Energy Series, No. 39, IEE Press, 2003, UK,
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1 Introduction (Matlab Solver)( )

5



1 Introduction (Matrix Solution Methods) 
 Nowadays, easy access to computers makes the 

l ti f l t f li l b i ti

( )

solution of large sets of linear algebraic equations 
possible and practical.

Di M h d Direct Method
By taking the advantage of “sparsity”

Iterative Method Iterative Method
often the only choice for nonlinear equations, also useful
even for linear problems involving a large number ofeven for linear problems involving a large number of
variables

 Direct solution methods were often preferred to p
iterative methods in real applications because of 
their robustness and predictable behaviortheir robustness and predictable behavior.
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1 Introduction (Reference Books)
Direct Methods Reference:
 1) Davis, T.A., Direct methods for sparse linear systems.

( )

 1)  Davis, T.A., Direct methods for sparse linear systems. 
Vol. 2. 2006: Society for Industrial Mathematics.

 2) George, A., J. Liu, and E. Ng, Computer Solution of Sparse 
Linear Systems 1994Linear Systems. 1994.

 3)  Duff, I., A. Erisman, and J. Reid, Direct Methods for Sparse 
Matrices, 1986, Oxford: Clarendon Press.

 4)  Østerby, O. and Z. Zlatev, Direct methods for sparse 
matrices. DAIMI PB, 1980. 9(123).

Iterative Methods Reference:
 5) Saad, Y., Iterative methods for sparse linear systems. 2003:5)  Saad, Y., Iterative methods for sparse linear systems. 2003: 

Society for Industrial and Applied Mathematics.
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2 Matrix Solution Methods 
 For small number of equations (n ≤ 3) can be 

l d dil b i l t h isolved readily by simple techniques.
 Graphical method

C ’ l Cramer’s rule

 For large number of equations (n ＞ 3) can be 
solved readily by other techniques.
 Elimination method
 LU method
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2.1 Graphical method
 For two equations:

p

11 1 12 2 1a x a x b
a x a x b

 
 

 Solve both equations for x

21 1 22 2 2a x a x b 

 Solve both equations for x2:

11 1a b  
 11 1

2 1
12 12

2 1(slope) intercept
x x

a a
x x

b

    
     
  21 2

2 1
22 22

a bx x
a a

        
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2.1 Graphical methodp
 Plot x2 vs. x1

on rectilinearon rectilinear 
paper, the 
intersection ofintersection of 
the lines 
present thepresent the 
solution.
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2.1 Graphical methodp

(a) No solution(a) No solution
(b) Infinite solutions 
(c) Ill-conditioned (Slopes are too close)
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2.2 Cramer’s rule
 If [A] is order 1, then [A] has one element:

A=[a11]  
the determinant is D=a11

 For a square matrix of order 2

11 12a a
A

 
  

h d i i

21 22

A
a a

  
 

the determinant is D= a11 a22-a21 a12
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2.2 Cramer’s rule
 For a square matrix of order 3

11 12 13

21 22 23 11 11 12 12 13 13

a a a
D a a a a D a D a D   3 3 3

31 32 33a a a

22 23
11 22 33 32 23

32 33

a a
D a a a a

a a
  

32 33

21 23
12 21 33 31 23

a a
D a a a a  12 21 33 31 23

31 33

21 22

a a

a a
14

21 22
13 21 32 31 22

31 32

a a
D a a a a

a a
  



2.2 Cramer’s rule
 For a square matrix of order 3

1 12 13 1 12 13b a a b a a
b a a b a a2 22 23 2 22 23

3 32 33 3 32 33

b a a b a a
b a a b a a

x  1
11 12 13

x
a a a D
a a a

 

21 22 23

31 32 33

a a a
a a a

2 ...x
x


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2.3 Gaussian Elimination
 the technique for n equations consists of two phases:

Forward elimination of unknowns Forward elimination of unknowns
 Back substitution
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2.3 Gaussian Elimination

2             8         (L1)x y z  
-3x   y   +  2z  = 11       (L2)

-2x  +   y   +  2z  = 3         (L3) 

  
 

  2 1 2

2               =8       (L1)3
1    0   +1/2 y  + 1/2z  =1       (L2

x y z
L L L

    


2)





 
3 1 3L L L   0   +   2 y  +       z  =5      (L3) 

2               =8       (L1)x y z




 
  3 2

( )
2 ( 4) 3 0   +1/2 y  + 1/2z  =1       (L2)

0   +   0     +     -z  =1       (L3) 

y
L L L


    

 ( )

 
  


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2.4 LU Factorization

11 12 13 11 11 12 130 0a a a l u u u     
     

21 22 23 21 22 22 23

31 32 33 31 32 33 33

0 0
0 0

A a a a l l u u
a a a l l l u

           
          31 32 33 31 32 33 330 0
:
a a a l l l u

Case

          

     11 11 12

21 22 22

04 3
06 3

l u u
l l u
    

     
     21 22 22

11 11 0 0   4
0 3

l u
l

     
   


 11 12 22

21 11 22

0  3
0  6

l u u
l u l
   
   






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2.4 LU Factorization

11 12 13 11 11 12 130 0a a a l u u u     
     

21 22 23 21 22 22 23

31 32 33 31 32 33 33

0 0
0 0

A a a a l l u u
a a a l l l u

           
          31 32 33 31 32 33 330 0
:
a a a l l l u

Case

          

     11 11 12

21 22 22

04 3
06 3

l u u
l l u
    

     
     21 22 22

11 11 0 0   4
0 3

l u
l

     
    11 0 0   4

1 0 3
u

l
   

  11 12 22

21 11 22

0  3
0  6

l u u
l u l
   
   

11 12 22

22 21 11

1 0  3
1 0  6

l u u
if

l l u

           
 
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2.4 LU Solver

Ly = b
  



Ly = b
Ax = b LUx = b

Ux = yUx = y
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2.4 Gaussian Elimination & LU Factorization

0 0 0
                      
                 EE E× × × × × × × × ×0 0 0

0 0 0 0 0
0 0 0 0 0 0

             
          
                 

31 2 EE EA
× × × × × × ×
× × × × × ×

                                                                   
       

1A E A 2 3 2

i

                         
Each  introduces zeros below diagonal of column i:

1 1E E A E E E A
E

2 3  where    -1 -1 -1 -1
3 2 1 3 2 1 1E E E A = U A = LU L (E E E ) E E E
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2.4 Gaussian Elimination & LU Factorization

= E E E E A x = E E E E b Ux E E E E b  1 1 1     =
                                                  

n n n n n n  
 

2 1 2 1 2 1E E E E A x = E E E E b Ux E E E E b
Ax = b LUx = b

  

 1
1 Gaussian Elimination:  

 :                           
n nFor

For LU


 2 1Ux = E E E E b L b

LUx



 = b

1 1

 vector  varies each simulation step, 
For Gaussian Elimination we should store  and  and calculate .
if

 

b
U L L b

1For LU ,  we should store  and . As  is a dense matrix, so 
Gaussian Elimin

method L U L
ation method is less efficient than LU methodGaussian Elimination method is less efficient than LU method.
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2.4 Arithmetic Complexity Analysis
 Gaussian elimination to solve a system 

f ti f k i

p y y

of n equations for n unknowns requires
 Divisions: n(n-1) /2 
 multiplications: (2n3 + 3n2 − 5n)/6
 Subtractions: (2n3 + 3n2 − 5n)/6 ( )
 Total of approximately: 2n3 / 3 operations.

Thus it has arithmetic complexity of O(n3) Thus it has arithmetic complexity of O(n3).

 LU decomposition requires 2n3 / 3 floating point 
operations, if neglecting lower order terms
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3.2 Sparse linear equation systemp q y
 A sparse matrix is a matrix populated 

primarily with zerosprimarily with zeros.

 Why the coefficient matrix of linear equation 
system is sparse?

 Sparsity comes from the loose coupling of Sparsity comes from the loose coupling of 
systems. 



3.2 How to utilize the sparsityp y

 The required memory will be greatly reduced, if q y g y ,
proper data structure is used to avoid storing of 
the zero elements.

The number of operations is also greatly The number of operations is also greatly 
reduced, if the operations involved zero 
elements are avoidedelements are avoided.

 Without sparse techniques, it is impractical to 
solve some very large systems with direct 
method.



3.3 Storage of sparse linear equationg p q
 Static or dynamic structures can be used 

to store sparse matrixto store sparse matrix.
 The triplet form and compressed-column 

f / d f id lform / compressed-row form are widely 
used.

i t 4
1.0 0 5.0 7.0
0 3.0 0 0

2 0 0 6 0 8 0

 
 
 
 

A

int 4;
int 9;
int [] { 0, 2, 1, 3, 0, 2, 0, 2, 3 };
i [] { 0 0 1 1 2 2 3 3 3 }

n
nnz
i
j





2.0 0 6.0 8.0
0 4.0 0 9.0

 
 
 

int [] { 0, 0, 1, 1, 2, 2, 3, 3, 3 };
int [] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };

j
x




int n 4;
int p { 0, 2, 4, 6, 9};
int i [] { 0, 2, 1, 3, 0, 2, 0, 2, 3 };



int i [] { 0, 2, 1, 3, 0, 2, 0, 2, 3 };

double x [] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };



3.4 LU factorization considering sparsityg p y
 Apply the gauss elimination process to 

matrix represented with sparse storagematrix represented with sparse storage 
structure.
h i f G li i i The main step of Gauss Elimination or LU 

factorization is multiplying one row with a 
b d h ddi i hnumber and then adding it to another row.



3.4 LU factorization 
 Investigation shows that the number of fill-

ins in Gauss Elimination process is greatlyins in Gauss Elimination process is greatly 
affected by ordering of the matrix.



3.4 LU factorization 
 The non-zero pattern of a square sparse 

matrix can be represented by a graphmatrix can be represented by a graph.
 For any square sparse matrix, the number 

f i i h h l h dof vertices in the graph equals to the order 
of the matrix.

 If aij is a none-zero entry, there is an edge 
from node i to node j in the directed graph.



3.4 LU factorization 
 For a symmetric matrix, a connection from node i  

to node j implies there must be a connection fromto node j  implies there must be a connection from 
node j  to node i. So, the arrows may be dropped.



3.4 LU factorization 

 The fill-in will greatly affect the operation 
numbers needed to perform Guass Elimination 
and Forward/Backward substitution.

 Therefore we need to find the best ordering to Therefore, we need to find the best ordering to 
generate the least fill-ins.

 However, the bad news is that: Determining the 
b t d i i th li i ti hi hbest ordering in the elimination process which 
results in the minimum number of fill-ins is NP-
H dHard . 



3.4 LU factorization 
 This implies that minimizing the work of 

performing Gauss Elimination is moreperforming Gauss Elimination is more 
costly than itself, which is a P-Hard  
problemproblem.

 The good news is that we can approximate 
this minimum using graph-based heuristics.

 One such heuristic is to always select the One such heuristic is to always select the 
vertex with minimum degree.



3.4 LU factorization 
 For example:



3.5 Typical sparse solveryp p
 One typical solver consists of the following 

steps:steps:

 Symbolic analysis

 Numerical factorization

 Forward and backward substitution



3.6 IEEE-14 system casey
 The linear equation of the IEEE-14 system 

has 60 unknown variableshas 60 unknown variables.

0
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3.6 IEEE-14 system casey
 LU factorization with natural ordering

L U
0
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L
0

10

U

20
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3.6 IEEE-14 system casey
 Non-zero pattern after Approximate Minimum 

Degree orderingDegree ordering.

00

10

20

30

40

0 10 20 30 40 50 60

50

60

nz = 375



3.6 IEEE-14 system casey
 LU factorization after AMD

0
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0
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3.6 IEEE-14 system casey
 Non-zero pattern of Bordered Block Diagonal 

(BBD) form(BBD) form.
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3.6 IEEE-14 system casey
 LU factorization of the BBD form

0
L

0
U

10

20

10

20

30

40

30

40

0 20 40 60

50

60
0 20 40 60

50

60

nz = 278 nz = 278



Discussion and Suggestiongg
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