
TRANSIENT SIMULATION:  LECTURE III
Modeling Nonlinearities In The Admittance Matrix Based Techniques

3.1 Switches
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Fig. 3.1:  A Network with Switching Nonlinearity

The admittance matrix can be reformulated using a different value for the switch branch resistance.
An off switch can be ideally modeled by putting gij = 0.  This procedure is quite trivial, but
involves a re-inversion of the system matrix.

Many practical switches have the property that they open only on a current zero (for
example circuit breakers).  There is no guarantee that the current zero will occur exactly at a
simulation timestep.

In the simulation, the switch might open while still carrying a current because the actual
current zero lies in between timestep (see Fig. 3.2).
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Fig. 3.2:  Current zero lies between timesteps.

Opening the switch when it is still carrying a current can cause spurious voltage spikes in the
solution, particularly when the switch is in series with an inductance as is often the case.

Two remedies exist:

i) Use a variable timestep, where we backtrack to t=t1-Dt, and use smaller timesteps so that
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the switching instant is more closely approximated.
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Fig. 3.3:  Variable timestep reduces uncertainty in switching instant.

This procedure involves inversions of the reformulated Y matrix (All gij elements and
history terms have to be reformulated for the new timestep dt).

ii) The entire solution can be interpolated to the expected switching instant, and the solution
re-started from this interpolated condition, i.e.,
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Fig. 3.4:  Interpolating to find the likely switching instant dt.

Thus if v(t-Dt) is vector of voltage solutions at (t-Dt) and v(t) is the new solution, we find
the interpolated solution

v'(tÐDt+dt) = v'(tÐDt) + dt
Dt

 v(t) Ð v'(tÐDt)

Likewise the current i'(tÐDt+dt) required for the history terms in the following timestep are now
evaluated using these v'(tÐDt+dt) voltages.  We now assume that the solution is known at tÐDt+dt
(point A) and begin taking further timesteps of period Dt from this instant onwards.  See Fig. 3.5
for an illustration of this process of adjusting the value of time.
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Fig. 3.5:  Shifting of the solution instants due to interpolation.

This technique is relatively inexpensive on computer time compared to the variable timestep
technique.  It has been used in the NETOMAC program from Siemens [1] and also in EMTDC.

If LU factorization is used for matrix studies the switches should be placed between higher
numbered nodes so that they appear towards the bottom diagonal of the admittance matrix.  It
turns out that only entries with either node number greater than that of the switch nodes have to
be re-factorized thereby saving significantly on computer time.

3.2 Functional Nonlinearities

One example of these is a nonlinear resistor.  Such nonlinearities may be similarly treated
with the value of the resistive branch being changed in a few discrete steps.
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Fig. 3.6:  Nonlinear Resistor Characteristic
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3.3 Dynamic Nonlinearities

Core saturation is one such type of nonlinearity.
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Fig. 3.7:  Example of dynamic nonlinearities.

v = dl
dt

  =  dl
di

  ¥  di
dt

    = L(i) di
dt

where a(i) is the incremental inductance (slope of the l-i curve) at a value of current = i.  As
before, we now use a trapezoidal resistance of 2L(i)/Dt, and change this every timestep.

For the 2 step characteristic the incremental inductances are two different constants and are
easy to model.

Again as there is an abrupt change of characteristic, a procedure such as variable timestep
or interpolation of solution is recommended.
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3.4 Using State Variables for Modeling Nonlinearities

For Modeling Switches, see section on modeling thyristors and diodes in the earlier state
variable lecture.

For Dynamic Nonlinearities, we can reformulate the problem by replacing current or voltage
variables with flux or charge, i.e.,
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Fig. 3.8:  Modeling a dynamic non-linearity with a state variable formulation.
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  =  vc

Since iL is a known function of l (the saturation curve), we may replace it with this function, i.e.,

dvc
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which is in the form

d
dt

 x  =  f(x) + Bu

and may be numerically integrated by a method such as the Runge-Kutte 4rth order.   Note, in
general, a direct trapezoidal solution may not be possible because an inverse of f may not be
easily calculable.
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3.5  Use of Compensating Sources [2,3]

Often, nonlinearities can be modeled via a 'compensating' source.  For example:
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Fig. 3.9:  Separating out the linear part and modeling the nonlinear part as a current source.

The inductance is then modeled as a linear inductance in parallel with a current source (or
'compensation source') as in Fig. 3.10.
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Fig. 3.10:  Equivalent Circuit for the case of Fig. 3.9.

The solution is most accurate when the magnitude of the compensation is small.  For this reason,
we model most of the circuit behaviour in the form of the lumped inductor and only leave the
saturation correction to the current source.

We could have modeled the entire response as a current source but this has a drawback.
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Fig. 3.11:  Modeling Entirely by Compensation Source.

By necessity the current has to be calculated from past information and is thus not responsive
immediately to changes in the present timestep, i.e., it behaves as an 'open circuit' to voltages in
the present timestep.  The effect of such "open circuit" terminations can be de-stabilizing.  One
way around this is to represent the one timestep behaviour by a Norton resistance (large, but not
'infinite') and to attempt to correct for the error introduced by this by using a correction source.
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Icorrection  = v(tÐDt)¥g

Fig. 3.12:  Introducing an Interface Resistor.

3.6 Hybrid Formulations

A model such as the one in Fig. 3.12 lends itself easily for installation into an admittance
matrix based simulation program because it has the admittance Ð current source equivalent
circuit.  One note of caution!  It is recommended that such an approach be used if some
continuity in the sourced variable is present such as an inductor current which does not change
instantaneously with time.  Thus non-linear inductor may be interfaced as Norton current source,
and a non-linear capacitor as the Thevenin voltage source.  Such approaches have been used to
construct complex models such as electric machines and static compensators [3,4].

3.7 Modeling the Switching Logic

In the admittance matrix based formulations, switches are usually modeled as resistors with
values that change as a function of the switching event.  We have already discussed how
switches are modeled in an earlier section, here we shall discuss how specific types of switches
such as Thyristors, Diodes, GTOs, etc. are modeled.
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Model of a diode
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Fig. 3.13:  Diode characteristics

Various idealizations of the characteristic are possible as shown in (i), (ii), and (iii) in Fig. 3.13.
Let us use idealization (ii), which is a typical approximation used in most power system

applications.
Thus we have the following representation:

goff (»0)(»0)

off state

gon » very large» very large
(on state)

Fig. 3.14

In order to develop the switching logic, a state transition diagram is useful.  Note:  A diode goes
on if it is forward biased and off if the current tries to reverse, i.e.,

Ðid vd

OFF

state state

(gon =0)ON
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Fig. 3.15:  State Transition diagram for diode switching
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The following pseudocode could be used to implement a diode connected between  nodes j & k.

if (time=0) state=off (assume an initial state)

if (state=off) then
if (vj>vk) then

state=on
g[j, k] = gon

call for matrix inversion (or factorization)
else

state=off
endif

else if (state=on) then
if (ijk<0) then

state=off
g[j, k]=0
call for matrix inversion

else
state=on

endif
endif

Similar switching programs can be developed for various other switching devices.  The addition
of interpolation/variable timestep approaches should be used in addition to the switching logic
developed here if spurious switching transients are to be avoided.
Thyristors:  The thyristor model is similar to the Diode Model, except that a firing pulse is
required for the thyristor to turn on, in addition to the forward bias condition; i.e.
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(vjk>0)>0) (pulse=1)

k
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j
+ Ð

Ù

Fig. 3.16:  State transition diagram for thyristor
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Sometimes it is important to model the effect of inadequate turnoff time, i.e., if a thyristor has
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turned off, and it is subjected to a forward bias before a sufficient 'deionization' time has elapsed,
it will conduct even in the absence of a pulse.  In that case, the following state transition diagram
results:

OFF ON

OFF
(ionized)

Fig. 3.17:  State transition diagram for Thyristor
including deionization time

Gate Turnoff Thyristor:
This device is similar to a thyristor except that it can be turned off with a turnoff with a

turnoff pulse in addition to the normal reverse bids turnoff.

Thus:

OFF ON

kj

(turn_on_ pulse=1)

Ú (turnoff_pulse=1)

Fig. 3.18:  GTO State Transition logic

Transistors, IGBTs, MOSFETs
These are turned on with a continuous on pulse applied to the gate.  Very often these

devices come with an antiparallel diode across them, i.e.  In most circuit applications the diode
usually conducts when the transistor is turned off.  Fig. 3.19 shows the state transition diagram
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for such devices.
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Fig. 3.19:  State Transition diagram for IGBT type
device with reverse conducting diode.

Other factors:  Certain switching topologies make it necessary to model the resistance of the
switch changing over several timesteps.
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Fig. 3.20

Assume in Fig. 3.20 Q1 has been on for a long time and is carrying 1A of current.  If Q1 is fired,
Q2 should turn off instantaneously.  In a simulation with discrete timesteps this may cause
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problems because if Q2 is on, firing Q1 puts a dead short across the 20V battery causing a spike
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of current.  One way around this problem is to go to a smaller timestep, and turn Q2 off
gradually, and turn Q1 on gradually as depicted in Fig. 3.20b.

Assignment 3
Do either Assignment 3A or 3B

Assignment 3A
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Fig. 3.21

a) Model the circuit in Fig. 3.21a using an admittance matrix formulation in which the matrix
value changes when the non-linear characteristic is encountered.  The non-linear inductor
characteristic is as shown in Fig. 3.21b and can be considered as a piecewise linear type of
characteristic.  Use interpolation at the exact instant of slope change.  Compare with
simulation with interpolation.

b) Solve the circuit of problem (a) with a hybrid approach in which the inductor is modeled as
a linear part inserted in the Y matrix, with the non-linear part treated as a current source.

(Hint:  l can be calculated as vdt
 

 

, and i can be found from the l-i curve of Fig. 3.21b.)

You may use simple rectangular integration for this calculation.

c) Attempt to model the inductor as a current injection.  Use a resistive interface for connecting
into the Y matrix formulation.  Experiment with various values of interface resistance.
Don't forget to compensate for this resistance.
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Assignment 3B
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Fig. 3.22

a) For the above circuit, the switch Q is closed at t=0 and opened at t=0.2s.  The switch
however opens only on a zero crossing of current (the very first one after t=0.2s).  Formulate
an admittance matrix based solution procedure to solve for i(t) and v(t).  Use interpolation
to obtain the correct switching instant.  Use ron=0.1W, roff=1000W for the switch.  Compare
with simulation without interpolation.

b) Modify the switch opening-closing logic to simulate a thyristor that is fired at a firing angle
a=30û.

t

e(t)

30û

180û pulses for
firing thyristor

(Note:  Interpolation should still be maintained).  Plot v(t) and i(t).
c) Switch s in Fig. 3.23 is closed at t=0s, opened at t=0.2s.  Use an ideal switch model in a

state variable formulation for the circuit.  Note that you must use a topologically varying
network model because this switch is ideal and cannot be represented as a varying resistance.
Plot i(t) and v(t).
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Fig. 3.23


