
TRANSIENT SIMULATION:  LECTURE IV

Modeling Of Transmission Lines

4.1 Transmission Line Equations in Frequency Domain

In the frequency domain, the equations for an n conductor transmission line are:

Ð 
¶V

¶x
 = Z(w)  I

Ð 
¶I

¶x
 = Y(w)  V (4.1)

where Z(w) = R(w) + j X(w)

Y(w) = G(w) + j B(w)

For most frequencies of interest we may approximate the complicated series expansions for Y
and Z due to Carson [1] by the formulae due to Wedepohl et al [2] and Deri et al [3]:

Zii = Zii(int) + Zii(ext)
where

Zii(int) = 
rim
2pri

 coth (0.7777 mri) + 
0.3565ri

pri
2

 W/m (4.2a)

with m(w) = 
jwmo

ri

and Zii(ext) = 
jwmo

2p
  ln 2hi+de

ri
(4.2b)

where de = 
r

jwmo

and Zij = 
jwmo

2p
 ln 

(yiÐyj)2 + (hi+hj+2de)2

(yiÐyj)2 + (hiÐhj)2
 W/m

with de as before. (4.2c)
Here ri is the conductor resistivity (W-m), r is the earth resistivity, ri is the conductor radius (or
GMR for bundled conductors) for conductor i.
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where I(x) and V(x) are the 
voltage
phasors at a distance x along a 



Fig. 4.1:  Variables describing the geometry

Similarly [Y] = (Yij)
where [Y] = PÐ1

Pij  = j2pweo
Ð1 ln 

(yiÐyj)2 + (hi+hj)2

dij
(4.3)

where dij  = (yiÐyj)2 + (hiÐhj)2    for i¹j

= ri       for i=j

4.2 Admittance Matrix Model for One Conductor Lossless Line

Here ri=0, r=0.  Assume a single conductor line [4]
Eqn. 4.2 and 4.3

Zii(int) = 0,   Zii(ext) = jw mo

2p
 ln 2hi

ri
 = jwL

and Pii  = (j2peow)-1 ln 2h
ri

or

jYii  =
wpeo

ln 2h
ri

  = jwC2

where L and C are inductance/capacitance per unit length.
Thus:

Ð 
¶V

¶x
 = jwL I

Ð 
¶I

¶x
 = jwC V

        frequency domain form
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Ð 
¶V

¶x
 = L 

¶i

¶t

Ð 
¶I

¶x
 = C 

¶v
dt

      time domain form (4.4)

¶ Alembert's solution to (4.4) is:
i(x, t) = f1(xÐct) + f2(x+ct)
v(x, t) = Z f1(xÐct) Ð f2(x+ct)
where c = 1/ LC (phase velocity),     Z = L/C (characteristic impedances)

(4.5)

Note on rearranging,

v(x, t) + Z i(x, t) = 2Zf1(xÐct)
v(x, t) Ð Z i(x, t) = Ð2Zf2(x+ct)

(4.6)

From (4.6) it is clear that an observer moving at velocity c along the line will see the quantity
v+Zi= constant, because for him, xÐct=constant.  Let the observer leave m at time tÐt and

Fig. 4.2

arrive at k at time t, where t=d/c, d being the line length.
Thus,

vm=(tÐt) + Zim,k(tÐt) = vk(t) + Z(Ðikm(t))
or rearranging

ikm(t) = 1
Z

 vk(t) + Ik(tÐt)

where Ik(tÐt) = Ð 1
Z

 vm(tÐt) Ð imk(tÐt)

Similarly, (4.7)
imk(t) = 1

Z
 vm(t) + Im(tÐt)

where Im(tÐt) = Ð 1
Z

 vk(tÐt) Ð ikm(tÐt)

Thus we have the following Norton representation of the T-line:
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Fig. 4.3:  Norton Representation

Example:  Plot v1(t), i12(t), v2(t), i21(t) if

L = 400 nH/m, C = 40 pf/m, d = 2´105m

Thus t = d LC      = 800ms

±
0

10V

0.1W

100W

Thus:

0

100A
10s

Note: Z = L
C

 = 100W

where
I1(tÐt) = Ð 1

100
 v2(tÐt) Ð i21(tÐt)

I2(tÐt) = Ð 1
100

 v1(tÐt) Ð i12(tÐt)

then
         10.01 v1 = Js Ð I1(tÐt)
and     0.02 v2 = ÐI2(tÐt)

   for the two networks

from which V1(t) and V2(t) may be evaluated and hence the currents:
i12 = v1

100
 + I1(tÑt)

i21 = v2
100

 + I2(tÑt)

Listed below in FORTRAN program to solve for these voltages and currents, and typical results
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are shown in Figs. 4.4 through 4.6 for various terminations on the line.
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C****************************************************************************

C Solution of Simple Transmission line problem

C****************************************************************************

       real delt,fintim,prtime,v1,I1(20),I2(20),i12,i21

       real L,C,Js

C____________________________________________________________________

C open datafile for reading and output file for answer:

       open(unit=10,file='inp_file2')

       open(unit=11,file='out_file2')

       write(11,*) 'This is the solution of a simple T-line problem'

C____________________________________________________________________

C Reading the datafile:

C

       read (10,*) delt,fintim,prtime,tup

       read(10,*)L,C,d,Rs,Rl

C Z is the char. imp., Rs is the source res., and Rl the load res.

C____________________________________________________________________

C Initialization

       Z=sqrt(L/C)

       g1=1/Rs+1/Z

       g2=1/Rl+ 1/Z

       z1=1/g1

       z2=1/g2

       v1=0.0

       v2=0.0

      Do i =1,20

       I1(i)=0.0

       I2(i)=0.0

      enddo

       time=0.0

C____________________________________________________________________

C Setting the loop on time:

       nstep=fintim/delt

       nprt = prtime/delt

       ndelay = d*sqrt(L*C)/delt

C____________________________________________________________________

C The numerical solution:

C

       Do 1 J=1,nstep+1

C

C      Setting the source current:

         if(time.LT.tup)then

            Js=0.0

         else

            Js=100.0
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         endif



C (Note: at this time the values of v1  i12,etc,on the right hand side

C are from the previous timestep (t-delt) as the soln for time=t has

C as yet not been found!)

C_____________________________________________________________________

C Now the solution:

         v1 = (Js-I1(ndelay))*z1

         v2 = -I2(ndelay)*z2

C

         i12 = v1/Z+I1(ndelay)

         i21 = v2/Z+I2(ndelay)

C_____________________________________________________________________

C Calculating the history term (for use ndelay timesteps later...).:

      Do i=1,19

         ii=20-i

        I1(ii+1)=I1(ii)

        I2(ii+1)=I2(ii)

      enddo

         I1(1) = -1/Z*v2- i21

         I2(1) = -1/Z*v1- i12

C Writing the soln. to an output file:

C

         if(mod(J-1,nprt).eq.0) write(11,1111) time, v1, i12,v2,i21,

     .                          I1(ndelay),I2(ndelay)

1111     format(f8.5,6G12.5)

C_____________________________________________________________________

C Updating time:

C     

         time=time+delt

1      continue

C.....Now loop back for the next timestep.

C_____________________________________________________________________

       write(6,*)'Thats all..folks!'

       stop

       end
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Results:    RL = 100W  (Characteristic impedance)

Note: a) The 800ms delay due to travel time.
b) The lack of reflections due to characteristic impedance termination.
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RL = 106W

Note: a) The 800ms delay between the sending and receiving end.
b) The re-inforcement of the voltage signal due to reflections to twice its

original magnitude.
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c) The period of the oscillation = 1.6 ms (2 travel times).



RL = 0.1W

Note: a) The zero voltage on the short circuited receiving end.
b) The current shows the same delays and periodic steps seen earlier, but

is building up to V1
R

 = v1
0.2W

 (actually for a true s/c termination it will build to

infinity).
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4.3 Multiconductor Lossless Line

Some theorems required for this material are now given below:

Theorem 4.1:  The eigenvector matrix T for a n´n square matrix A with n distinct eigenvalues

l1...ln, diagonalizes A, i.e.

TÐ1 A  T  = L  (a diagonal matrix
where Lij = dijlj

The eigenvector matrix is a matrix whose ith column is an eigenvector corresponding to the
eigenvalue li.  A proof of this is straightforward and may be looked up in a suitable book on
linear algebra.

If A has repeated eigenvalues a strictly diagonal form is sometimes not possible.  However
in transmission line problems such a situation does not arise.

Example 4.2
Consider the matrix

A = 1     0
3     2

   which has eigenvalues l1 = 1, l2 = 2 (found by solving |AÐlI| = 0.

To find the first eigenvector p we have Ap = l1p

or 1     0
3     2

  
p1
p2

  =  1 
p1
p2

i.e. p1 = p1 and 3p1 + 2p2 = p2    or    3p1 = Ðp2.  As the two equations are linearly dependent, we

may choose any value for p1 (as long as we don't obtain the singular vector 0
0

 ), and then p2 =

Ð3p1.  Thus  1
Ð3

  is a suitable eigenvector.  Similarly for the eigenvalue l2 = 2:

1     0
3     2

  
p1
p2

  =  2 
p1
p2

or p1 = 2p1 and 3p1 + 2p2 = 2p2 .

Thus p1 = 0, p2 is arbitrary.   0
1

 is therefore one suitable eigenvector.

Thus   T = 1     0
Ð3     1

   is a possible transformation matrix

with TÐ1 = 1     0
3     1

   ,  we have

TÐ1 AT = 1     0
3     1

 ¥ 1     0
3     2

 ¥ 1     0
3     1

 = 1     0
0     2

= 
l1     0

0       l2

  , which is diagonal.
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Theorem 4.2   If Y and Z correspond to the per unit length admittance and impedance matrices of
a transmission line with zero resistivity above a lossless earth, then ZY=YZ is a diagonal matrix.

Proof:  From equation 4.2

Z = [Zij]     where  (for i¹j)

Zij = 
jwmo

2p
 ln 

Dij

dij

where Dij = (yiÐyj)2 + (hi+hj)2  ,  dij  = (yiÐyj)2 + (hiÐhj)2

likewise Y = PÐ1   where P = [Pij]

and Pij = 1
2pÎojw

 ln 
Dij

dij

Thus we find
Zij = Ðw2moÎoPij i¹j

Similarly Zii = Ðw2moÎoPii (4.7)

and thus Z = Ðw2moÎoP

or ZY = Ðw2moÎoI

where I is the identity matrix.  Thus ZY is diagonal and similarly so is YZ.
Note:  Since [Z] = jw(L),  Y = jw(C)  it follows that

[L][C] = [C][L] is diagonal as well.

Theorem 4.3    If [L][C] = [C][L] = L where L is diagonal and [L] and [C] are n´n nonsingular
matrices with distinct eigenvalues, then the matrix T which diagonalizes [L] also diagonalizes
[C], i.e.  if TÐ1 [L] T is diagonal, then so is TÐ1 [C] T.

Proof:   Let TÐ1 [L] T = LL

However [L] [C] = L  so [L] = LCÐ1

Thus TÐ1 [LCÐ1] T = LL

or L TÐ1[CÐ1] = LL    as L is diagonal.
Thus TÐ1[CÐ1] T = LÐ1LL which is still diagonal
Inverting TÐ1 C T = (LÐ1LL)

Ð1 = LC  which is diagonal.

Consider now a multiphase lossless transmission line, for which we readily derive the time
domain equations in a form analogous to the derivation of Eqn. 4.4.

Ó A.M. Gole, University of Manitoba, 1998 page 49

Thus:

Ani gole




Ð 
¶v

¶x
 = [L] di

dt

Ð 
¶i

¶x
 = [C] dv

dt

(4.8)

The only difference between Eqns. 4.4 and 4.8 being that the latter is a vector-matrix equation.
Note that we cannot directly obtain a d'Alembert type solution for Eqn. 4.8 because each component
equation is coupled and involves voltages or currents from more than one phase.  Our attempt is
to transform Eqn. 4.8 into two sets of n decoupled equations which can then be solved by the
method of d'Alembert.
Consider the matrix T such that

TÐ1 [L] T = L' where L' is diagonal.
Then by Theorem 4.3,  TÐ1 [C] T = C' is also diagonal.

Consider the transformation v = T v'.  Then equation 4.8 becomes

Ð 
¶Tv

¶x
 = [L] dTi

dt

Ð 
¶Ti

¶x
 = [C] dTv

dt

(4.9)

or

Ð 
¶v'

¶x
 = TÐ1 [L] T  di'

dt

Ð 
¶i'

¶x
 = TÐ1 [C] T  dv'

dt

or

Ð 
¶v'

¶x
 = L' di'

dt

Ð 
¶i'

¶x
 = C' dv'

dt

(4.9a)

Eqn. 4.9a is a collection of pairs of n uncoupled equations because L', C' are diagonal.

Ð 
¶vj

'

¶x
 = Lj

'  
dii

'

dt

Ð 
¶ij

'

¶x
 = Cj

'  dv'
dt

  i=1,2,...n (4.9b)
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Thus we get the n solution pairs



ij
'  = f1(xÐcjt + f2(x+cjt)

vj
'  = Zj (f1(xÐcjt) Ð f2(x+cjt)

(4.10)

in a manner analogous to equation 4.5.
Here cj = 1/ LjCj  ,  Zj = Lj/Cj

The quantities v and i are called phase quantities and v' and i' are called modal quantities.
We thus obtain in the manner analogous to Eqn. 4.7 the equivalent circuit shown in Fig. 4.7.

Fig. 4.7:  Multiconductor line in Modal Domain

In Fig. 4.7 the history terms are analogous to the ones developed earlier, i.e. for the jth mode.

Ijkm
' (tÐZj

' ) = Ð 1
Zj

'
 vjm

'  (tÐtj
' ) Ð ijmk

' (tÐtj
' )

Ijmk
' (tÐZj

' ) = Ð 1
Zj

'
 vjk

'  (tÐtj
' ) Ð ijkm

' (tÐtj
' )

where Zj
'  = Lj/Cj  ,   tj

'  = d LjCj   d being the length of the line

(4.11)

When included in an admittance type formulation the Z' (orY') should be transferred to the phase
domain for inclusion in the network's Y matrix, i.e. Zo = TÐ1Z'T   or Yo = TÐ1 Y' T

Ó A.M. Gole, University of Manitoba, 1998 page 51

Inmk
' (tÐtn

' )

I1km
' (tÐt1

' )

vnmk(t)Zn
'

Ð

+

Zn
'

Ð

+

vnk
' (t)

Z2
'Z2

' v2mk(t)v2k
' (t)

+

Ð

i2km(t)

Z1
' v1mk(t)v1k

' (t)

+

Ð

i1km(t) i1mk(t)

Z2
'

+

Ð

i2mk(t)

+

Ð

I2km
' (tÐt2

' )

Inkm
' (tÐtn

' )

I2mk
' (tÐt2

' )

I1mk
' (tÐt1

' )



External
Network

T T
External
Network

Modal characteristic
impedance transferred
to phase

Modal history terms

Fig. 4.8:  Interfacing to the external network

The method of solving the system with a transmission line now includes the following steps:

1) Calculate the transformation matrix T.
2) Calculate the modal impedance matrix Z' or admittance matrix Y' (Note:  Yi

'  = 1
Zi

'
 ) from

Eqn. 4.10.
3) Calculate the transferred characteristic impedance matrix Zo (or Yo) as seen by the external

networks.
4) Form the admittance formulations for these networks using the standard techniques.
5) Calculate the history injections from equations 4.11.  Note, you need modal voltages and

currents to calculate these, so at every timestep you must evaluate v' = TÐ1v,  i' = TÐ1i.
6) The actual injections into the external systems are [T]Imk and [T]Ikm respectively.
7) Calculate all voltages and thence currents in the external network and return to Step 5 and

then to the next timestep.
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Using transformation matrices Fe and Fi.

Assignment 4:

conductor 2

25m

p=0

conductor 1

12m

m0  = 4p x 10-7  weber/A-m
Î0 = 8.854 x 10-12  coul/N-m2

The 2 conductor transmission line is shown above

±0

10V

0.1W

0

Characteristic
impedance load

Terminate it with a characteristic impedance load and excite it with the 10V step shown.  Show
voltages and current waveforms on each phase at the sending and receiving ends.  Also plot the
model quantities.

Repeat with an open circuit termination.
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Gmr1=0.0682m

pi=0

Gmr2=0.1077m

20m



4.4 Inclusion of Line Resistance

If the frequency dependence of line resistance is ignored, the line may be modelled as two
lossless sections with lumped resistor values R/4 at each end and a lumped resistor value of R/2
in the centre as shown in Fig. 4.9.

Fig. 4.9:  Simple model of lossy line.

Dommel [4] claims that the incremental accuracy obtained by modeling the line with a larger
number of sections is only marginal and not worth the effort.  Fig. 4.10 shows the resultant
current source Ð admittance formulation for the line in Fig. 4.9.

k k' m' ml n

Fig. 4.10:  Equivalent circuit of lossy line.

If the midpoint information is not required then the circuit in Fig. 4.10 can be collapsed to that
shown in Fig. 4.11 which is similar to the one in Fig. 4.3.

Z

+

Ð

Z

+

Ð

Fig. 4.11:  Collapsing Fig. 4.10 to eliminate central node.

The impedances and history currents in Fig. 4.11 are given by the following equations as the
reader may show:
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Z = L
C

 + R
4

   ,   t = d LC  

vk vmIk Im
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R/2
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' Il In
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'

ZC ZC ZC ZC
ZC= L

C

d=line 

ÐÐ
vk

R/4+ R/4 +
vm

R/4 R/4

l n

  
d/2 d/2

 

R/2
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Ani gole


Ani gole
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Ik(tÐt) = 1+h
2

 ¥ Ð 1
Z

 em(tÐt) Ð imk(tÐt) (4.12)

           + 
1Ðh
2

 ¥ Ð 1
Z

 ek(tÐt) Ð ikm(tÐt)

and similarly for Im with k, m interchanged.

Here    h = 
Z Ð 1

4
 R

Z + 1
4

 R

The question arises as to what value of R should be used.  If earth resistivity is ingored only the
term Zii (int) is a function of frequency (see eqn. 4.2), and this model is most valid as the rest of
the mutual impedance terms remain frequency independent (thereby keeping the conditions
similar to the lossless core).

At dc, eqn. 4.2a for the internal resistance yields

Zii(int) = 
ri 

jwmo

ri

2pri
 + coth 0.7777 

jwmo

ri
 ¥ ri  + 

0.3565 ri

pri2
Lim
w®0

 

= 
ri

pri2
(4.13)

which is the dc resistance of the conductor (per unit length).

However, at any other frequency Zii(int) is complex for ri¹0 and thus yields different resistance
values for different frequencies (the so called 'skin-effect').  We may thus choose a value for R
that matches the line resistance at the frequency of most interest to our particular study.

For a multiconductor line we use a model such as in Figures 4.9 through 4.11 for each
mode of the line.  The modes are decomposed and recombined from phase quantities in the
manner of section 4.3.  This results in a different resistance for each mode.  The transformation
matrices T and TÐ1 are evaluated as in section 4.3 (without considering the resistive terms,
otherwise they would be complex and frequency dependant!)  The modal resistance matrix is
then the real (and diagonal!) part of TÐ1 [Z]T.

4.4 Transmission Line Parameter Calculations for a Lossy Line

With the inclusion of earth resistance the line parameters do not appear in the convenient
form [Z]=jw[L] and Y=jw[C] as discussed in section 4.2.  Also it is no longer true that the matrix
that diagonizes Z will also diagonalize Y.  We still wish to use the treatment discussed in section
4.3 and 4.4, i.e., the assumption of a lossless line, but we should select a set of parameters that
gives us most accuracy where desired.
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The two parts of eqn. 4.1 can be substituted into each other to form the equations:
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¶2
V

¶x2
 = (ZY) V

¶2
I

¶x2
 = (YZ) I

(4.14)

Now consider the Transformation TVV' = V  ,m  TII' = I
where TV is such that

TV
Ð1 (ZY) TV  = LZY

TI
Ð1 (YZ) TI  = LYZ

(4.15)

i.e., TV diagonilizes the first equation of the pair 4.14 and TI diagonlizes the second.
Note that (ZY)T = YTZT = (YZ) because Y and Z are symmetric.
Thus LZY = LYZ = L because symmetric matrices have the same eigenvalues.
Thus let us call

A=ZY

AT=YZ
(4.16)

Now   TV
Ð1 A TV = L

on transposing:

TV
T AT (TV

Ð1)T = LT
 = L  (from eqn. 4.15a)

But this is the same as the second equation in 4.15 if we consider TV
T = TI

Ð1.

Thus we may choose TI = (TV
Ð1)T to satisfy equation 4.15b.

Now consider
TV

-1 ZY TV = L
Hence TV

Ð1 Z (TI TI
Ð1) Y TV = L

or TV
Ð1 Z TI  TI

Ð1 Y TV  = L (4.17a)

Similarly by considering the second equation in 4.15,

TV
Ð1

 Z TITI
Ð1

 Y TV  = L (4.17b)

It can be shown that if PQ=QP=L the P and Q themselves must be diagonal.  Thus,

TI
Ð1 Y TV    and TV

Ð1 Z Ti    are diagonal

or
TI

Ð1 Y TV = Ym

TV
Ð1 Z Ti = Zm

(4.18)
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Now Ym and Zm are not of the form jwC', jwL', but for small losses are approximately so.  We
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thus select a frequency of interest wo and evaluate

C' = 
Ym

jwo

L' = 
Zm

jwo

TVO = TV (wo)

TIO = TI (wo)

(4.19)

We now (follow an identical procedure to that explained in section 4.3) but, use matrices TVO and
TIO instead of the matrix T and TÐ1 in the calculations between phase and mode quantities.

4.6 Treatment of Frequency Dependence

As can be seen from eqns. 4.2 and 4.3, Z(w) and Y(w) are in general functions of frequency.
Carson [1] has solved such equations for linear terminations using frequency domain solution
methods, in an exact manner.  Unfortunately modeling in the time domain has proved to be quite
difficult.  The treatment below is due to Marti [5].  For a single conductor line with equations
(4.1) (repeated here), we have:

Ð 
¶V

¶x
 = Z(w)  I

Ð 
¶I

¶x
 = Y(w)  V

  Z, Y = impedance/admittance per unit length (4.1)

with I and V as phasors, ([5], [6]).

mk

length = l

Figure 4.11.  Transmission Line

Vk (w) = cosh[g(w)l]Vm(w) Ð ZC(w) sinh[g(w)l]Im(w)
(4.20)

Ik (w) = 1
ZC(w)

 sinh[g(w)l]Vm(w) Ð cosh[g(w)l]Im(w)

and conversely for Vm, Im
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Here ZC(w) = Z
Y

 = 
(R+jwL)
(G+jwC)

g(w) = ZY = (R+jwL) (G+jwC)

As in eqn. (4.6) we form the functions

Fk(w) = Vk(w) + ZC(w) Ik(w)
Bk(w) = Vk(w) Ð ZC(w) Ik(w)

(4.21)

and likewise for m, we have

Fm(w) = Vm(w) + ZC Im(w)
Bm(w) = Vm(w) Ð ZC Im(w)

(4.22)

We can eliminate Vm, Im, Vk, Ik to get:

Bk(w) = A1(w)Fm(w)
Bm(w) = A1(w)Fk (w)

(4.23)
where A1(w) = eÐg(w)L  = 1

cosh[g(w)L] + sinh[g(w) l]

A1(w) is called the weighting function and a1 (Fourier inverse of A1(w) is called the impulse
response function.
Note that eqns. 4.21 and 4.22 can be used to solve for the Transmission line.  The schematic
representation of eqn. 4.21 (for  Bk Bm only) is as in Fig. 4.12.

+

Ð

+

Ð

± ±

Fig. 4.12:  Schematic representation of Eqn. 4.23 for Bk, Bm.

When the circuit of Fig. 4.12 is drawn in the time domain, it is as in Fig. 4.13.
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Fig. 4.13:  Time domain Form.

Now

bk(t) = FÐ1 A1(w) ¥ FR(w)

         = fm(tÐx)a1(x) dx
t

¥

bm(t) =  fk(tÐx)a1(x) dx
t

¥

(4.24)

Note that the old values of fm(t) and fk in eqn. 4.24 are old (history) values and are known from
previous timesteps.

ZC is approximated by a Foster I type realization (approximation) [5] of the true ZC; and is of the
form

........

Fig. 4.14:  Foster I Realization of ZC

It is not required to do an infinite integral as suggested by eqn. 4.24.  This is so because a1(t) has
the form shown in Fig. 4.15 and only has any significant value between t=t and t=t+p (say).

Thus only values of fm(tÐx) between x=t and x=t+p need be considered in the integration to
obtain bk(t).

t t

Fig. 4.15:  Graph of a1(t).
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We have only shown the single conductor case.  For the multiconductor case we also obtain

a1(t)

t+p

CnC2C1

Ro

R1 R2 Rn

gole
Pencil



frequency dependent transformation matrices.  For transmission lines we can often ignore the
frequency dependence and equate TV and TI to those calculated for the most important frequency
of interest to us.  The treatment for cables however requires the use of frequency dependent
matrices and is a topic of continuing research.
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