
Appendix B:  Numerical Stability of a 

Discretized System Using Rectangular and 

Trapezoidal Integration 

In this appendix, stability of a discretized system using different integration methods 

is analyzed. Consider a system described by the following state-space equation, which is 

presumed to be stable. , ,X U and Y  are vectors of state variables, inputs and outputs. 

[ ] [ ]

[ ] [ ]

X A X B U

Y C X D U

 = + = +

i

(B.1) 

The discrete form of this set of equations is shown in (B.2). The matrices [ ]G  and 

[ ]H  can be expressed in terms of [ ]A and [ ]B depending on the method of discretization. 

( ) [ ] ( ) [ ] ( )

( ) [ ] ( ) [ ] ( )

X t G X t t H U t t

Y t C X t D U t

 = −∆ + −∆ = +
(B.2) 

In Appendix  B.1, the rectangular rule of integration is used to discretize (B.1) and 

subsequently the numerical stability of this discretized system is analyzed. Similar 

analysis is performed for the method of trapezoidal integration in Appendix  B.2.  

Since the original system is stable, the eigenvalues of matrix [ ]A  are located in the 

left side of the imaginary axis in the complex plane. It will be shown in this appendix 

that, after applying the trapezoidal integration, the eigenvalues of matrix [ ]G  will be 

inside the unity circle regardless of the value of the simulation time-step. This conclusion 

cannot be made for the eigenvalues of matrix [ ]G  after application of the rectangular 

integration. 
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B.1 Stability of the System Using Rectangular Integration 

The first equation of (B.1) is integrated for the time interval of [ ]t t t−∆ : 

 ( ) [ ] ( ) [ ] ( )( ) ( )
t

t t
X t A X B U d X t t

τ
τ τ τ

= −∆
= + + −∆∫  (B.3) 

Using the rectangular rule of integration: 

 

( ) [ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( )

[ ] [ ] [ ] [ ]where and

X t A t X t t B t U t t X t t

G X t t H U t t

G I A t H B t

= ∆ ⋅ −∆ + ∆ ⋅ −∆ + −∆

= ⋅ −∆ + ⋅ −∆

= + ∆ = ∆

 (B.4) 

Now, the goal is to find out the condition in which all the eigenvalues of matrix [ ]G  

are enclosed in the unity circle. If λ′  is one of the eigenvalues of matrix [ ]G , (B.5) 

applies: 

 0I Gλ′ − =  (B.5) 

Equation (B.5) can be expressed in terms of matrix [ ]A : 

 

[ ]( )

( ) [ ]

( )
[ ]

0

1 0

1
0

I I A t

I A t

t I A
t

λ

λ

λ

′ − + ∆ =

′⇒ − − ∆ =

′ −
⇒ ∆ − =

∆

 (B.6) 

or 

 ( )

0

1
where or 1

I G

t
t

λ

λ
λ λ λ

− =

′ −
′= = ⋅∆ +

∆

 (B.7) 
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According to definition, λ  is an eigenvalue of matrix [ ]A  and its relation with λ′ is 

shown in (B.7). The condition for the discretized set of equations (B.4) to be numerically 

stable is that the eigenvalues of matrix [ ]G  must be in the unity circle: 

 1 1 1tλ λ′ ≤ ⇒ ∆ + ≤  (B.8) 

Every complex value like λ  can be in the form of (B.9): 

 a jbλ = +  (B.9) 

From (B.8) and (B.9): 

 
( )

( ) ( )2 2

1 1

1 1

a bj t

a t b t

+ ∆ + ≤

⇒ ∆ + + ∆ ≤
 (B.10) 

This means: 

 
( )

22 2

2Re2
or

a
t t
a b

λ

λ

−−
∆ ≤ ∆ ≤

+
 (B.11) 

Equation (B.11) must be valid for every eigenvalue of matrix [ ]A , therefore the 

maximum simulation time-step which provides a stable discretized system is:  

 
( )

2

2Re
minct

λ

λ

 −  ∆ =    
 (B.12) 

Based on the complex variable theory, the location of the eigenvalue loci of matrices  

[ ]A  and [ ]G  are evaluated and plotted in Figure  B.1. All the eigenvalues of the matrix 

[ ]A  are located in a circle on the left hand side of the complex plane. The imaginary axis 

is tangent to this circle. Multiplying [ ]A  by ct∆ , maps these eigenvalues into another 
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circle on the left hand side half plane with the unity radius. Finally, adding the identity 

matrix I to [ ] cA t∆ , transfers the eigenvalues into the unity circle.  

[ ]( )eig A

[ ]( )ceig A t∆

[ ]( )ceig I A t+ ∆

Re

Im

 

Figure  B.1: Eigenvalue loci of matrix [A] and matrix [G] using rectangular integration 

B.2 Stability of the System Using Trapezoidal Integration 

Application of the trapezoidal integration for discretizing the state-space equations 

results in the following equation: 

 

( ) [ ] ( ) [ ] ( )

[ ] [ ] [ ]

[ ] [ ] [ ]( )

( )
( ) ( )

1

1

2 2

where:
2

2

X t G X t t H U t

t t
G I A I A

t
H I A t B

U t U t t
U t

∗

−

−

∗

= ⋅ −∆ + ⋅

    ∆ ∆   = − +           ∆ = − ∆     + −∆ =

 (B.13) 

Assuming λ′  is one of the eigenvalues of matrix [ ]G , (B.14) applies: 

 0I Gλ′ − =  (B.14) 
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Equation (B.14) can be expressed in terms of matrix [ ]A : 

 

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

1

1 1

1

0
2 2

0
2 2 2 2

0
2 2 2

t t
I I A I A

t t t t
I A I A I A I A

t t t
I A I A I A

λ

λ

λ

−

− −

−

   ∆ ∆  ′ − − + =       

       ∆ ∆ ∆ ∆      ′⇒ − − − − + =                   

        ∆ ∆ ∆      ′⇒ − ⋅ − − + =                  

 (B.15) 

The determinant of the product of two matrices is the product of the determinants of 

the matrices, therefore: 

 [ ] [ ] [ ]
1

0
2 2 2

t t t
I A I A I Aλ

−     ∆ ∆ ∆    ′− ⋅ − − + =             
 (B.16) 

This means: 

 

[ ] [ ]

( ) ( ) [ ]

( )
( )

[ ]

( )
( )

[ ]

0
2 2

1 1 0
2

1
0

1 2

12
0

1

t t
I I A A

t
I A

t
I A

I A
t

λ λ

λ λ

λ

λ

λ

λ

∆ ∆′ ′− − − =

∆′ ′⇒ − − + =

′ − ∆
⇒ − =

′ +

′ −
⇒ − =

′∆ +

 (B.17) 

Equation (B.17) shows thatλ , defined in (B.18), is an eigenvalue of the matrix[ ]A . 

 
( )
( )

112 2or
1 1

2

t

tt

λλ
λ λ

λ λ

∆
+′ −

′= = − ∆′∆ + −
 (B.18) 
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In the following, it is proven that as long as the eigenvalues of [ ]A  are in the left side 

of the imaginary axis in the complex plane, the eigenvalues of matrix [ ]G  stay in the 

unity circle. An eigenvalue of matrix [ ]G is expressed in terms of real and imaginary parts 

of an eigenvalue of [ ]A ( a jbλ = + ). 

 
( )

( )

1
2

1
2

t
a bj

t
a bj

λ

∆
+ +

′ = − ∆
+ −

 (B.19) 

And the magnitude of λ′  is evaluated in (B.20) 

 

( )

( )

2 2

2 2

1
2

1
2

1
2 2

1
2 2

t
a bj

t
a bj

t t
a b

or
t t

a b

λ

λ

∆
+ +

′ = − ∆
+ −

   ∆ ∆  + +       ′ =
   ∆ ∆  − +       

 (B.20) 

The condition for λ′  to be in the unity circle is:  

 

2 2 2

2 2

1 1 1
2 2 2 2

1 1
2 2

t t t t
a b a b

t t
a a

λ
       ∆ ∆ ∆ ∆      ′ ≤ ⇔ + + ≤ − +                   

   ∆ ∆  ⇔ + ≤ −       

 (B.21) 

Since the eigenvalues of matrix [ ]A are on the left hand side of the complex plane (i.e. 

0a ≤ ), (B.21) is always correct regardless of the value of the time-step t∆ . This proves 

the stability preserving nature of the trapezoidal integration. 




