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Abstract

For given finite (unordered) graphs G and H, we examine the existence of a Ramsey
graph F for which the strong Ramsey arrow F −→ (G)Hr holds. We concentrate on the
situation when H is not a complete graph. The set of graphs G for which there exists
an F satisfying F −→ (G)P2

2 (P2 is a path on 3 vertices) is found to be the union of
the set of chordal comparability graphs together with the set of convex graphs.
KEYWORDS: Chordal, comparability, convex, graph, induced graph Ramsey theory.

1 Notation

For a set S and a given n ∈ ω we define [S]n = {T ⊆ S : |T | = n} to be the set of all
subsets of S of size n. The power set of S is denoted by P(S).

For this discussion, a hypergraph G = (V (G), E(G)) is a finite vertex set V (G) together
with eges E(G) ⊆ P(V (G)); for an (ordinary) graph, E(G) ⊆ [V (G)]2. If H is a weak
subhypergraph of G, i.e. V (H) ⊂ V (G) and E(H) ⊆ P(V (H)) ∩ E(G), we write H ⊆ G. If
H ⊆ G and E(H) = P(V (H)) ∩ E(G) then we say H is an induced subhypergraph of G,
denoted by H � G. Letting ∼= denote graph isomorphism, we use the binomial coefficient(
G
H

)
= {H ′ � G : H ′ ∼= H}.

An ordered hypergraph (G,≤) is a hypergraph G together with a total order ≤ on V (G).
Two ordered hypergraphs are isomorphic just in case there is an order preserving graph
isomorphism between them. Definitions analogous to those given above hold for ordered
hypergraphs as well. For a hypergraph H, let ORD(H) be the set of (distinct) isomorphism
types of orderings of H. It is often convenient to abuse the notation and deliberately confuse
an isomorphism type with a hypergraph of that given type and hence we write ORD(H) =
{(H,≤0), (H,≤1), . . . , (H,≤k−1)}.
∗This research has been supported in part by NSERC grant 69-1325.
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For a given (unordered) hypergraph H and an ordered hypergraph (G,≤∗) we define

DO(H,G,≤∗) =

{
(H,≤) ∈ ORD(H) :

(
G,≤∗
H,≤

)
6= ∅

}
,

the distinct orderings of H in (G,≤∗). Let the minimum number of distinct orderings of H
in any one ordered G be denoted by

mdo(H,G) = min{|DO(H,G,≤)| : (G,≤) ∈ ORD(G)}.

For example, if an ordinary graph H is complete, then mdo(H,G) ≤ 1 for any choice of G.
For hypergraphs F , G and H, and a fixed r ∈ ω, we use the standard (strong) Ram-

sey arrow notation F −→ (G)Hr to mean that for any coloring ∆ :
(
F
H

)
−→ r, there exists

G′ ∈
(
F
G

)
so that ∆ is constant on

(
G′
H

)
. We use the analogous notation for ordered graphs.

The notation R[(G)Hr ] = {F : F −→ (G)Hr } is used to denote the Ramsey class for G in col-
oring of H’s with r colors. Observe that for these Ramsey type statements to be non-trivial
we usually only consider pairs G,H so that mdo(H,G) ≥ 1. In ordinary graphs, we use Pn
to refer to a path of length n on n+ 1 vertices and Sn = K1,n for the star on n+ 1 vertices.

2 Preliminaries

We recall the Ramsey theorem for ordered hypergraphs [1], [8], [9].

Theorem 2.1 Given r ∈ ω and ordered hypergraphs (G,≤) and (H,≤), R[(G,≤)(H,≤)
r ] 6=

∅.
An application which will be used repeatedly in the remainder has appeared in [5]. For the

purpose of exposition, we review the result here. Let K = (X,K) be a hypergraph and recall
that the chromatic number χ(K) of K is the least n ∈ ω so that there is an n-coloring of the
vertex set X yielding no monochromatic edge E ∈ K. If there is no such integer, we write
χ(K) =∞. For a given pair of hypergraphs G and H, let us define a new hypergraph KH,G

on the vertex set ORD(H) with edge set E(KH,G) = {DO(H,G,≤j) : (G,≤j) ∈ ORD(G)}.
Since for each ordering of G there corresponds an edge we may, by abuse of notation, refer to
the orderings of G as edges, i.e., we could say E(KH,G) = ORD(G), and a vertex (H,≤i) is
contained in an edge (G,≤j) if and only if (H,≤i) � (G,≤j). We now give a characterization
[5] of those triples H, G and r for which there exists a Ramsey graph.

Theorem 2.2 Let G and H be hypergraphs. ThenR[(G)Hr ] 6= ∅ if and only if χ(KH,G) > r.

Proof: Throughout the proof we fix r ∈ ω, hypergraphs G, H and K = KG,H .
Assume χ(K) > r. Enumerate both ORD(H) = {(H,≤0), (H,≤1), . . . , (H,≤t−1)} and

ORD(G) = {(G,≤0), (G,≤1), . . . , (G,≤s−1)}. Construct a graph (B,≤) =
⋃̇
j∈s(G,≤j), the

(disjoint) ordered sum of the orderings of G. By Theorem 2.1 choose (B0,≤) satisfying

(B0,≤) −→ (B,≤)(H,≤0)
r ,
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and for i = 1, . . . , t− 1 choose (again by Theorem 2.1) successively (Bi,≤) so that

(Bi,≤) −→ (Bi−1,≤)(H,≤i)
r .

We claim that Bt−1, the unordered version of (Bt−1,≤), satisfies Bt−1 −→ (G)Hr . Fix a

coloring ∆ :
(
Bt−1

H

)
−→ r. By construction there exists (B′,≤) ∈

(
Bt−1,≤
B,≤

)
so that for each i,(

B′,≤
H,≤i

)
is monochromatic. This coloring of ordered H’s in (B′,≤) induces an r-coloring ψ

of the vertices of K and since χ(K) > r, there exists a (G,≤j) in the edge set of K which

is monochromatic with respect to ψ. Thus, there exists G∗ ∈
(
Bt−1

G

)
monochromatic with

respect to ∆, giving Bt−1 ∈ R[(G)Hr ].
Now assume χ(K) ≤ r. Choose a coloring ψ : ORD(H) −→ r so that each element in

ORD(G) is multi-colored. Examine any hypergraph F and impose an arbitrary (but fixed)

ordering ≤∗ on V (F ). This naturally imposes an order on each H ′ ∈
(
F
H

)
, so color

(
F
H

)

according to ψ. That is, define ∆ :
(
F
H

)
−→ r by ∆(H ′) = ψ((H ′,≤∗)) for each H ′ ∈

(
F
H

)
,

where (H ′,≤∗) ∈ ORD(H) is the ≤∗-ordered H-subhypergraph. Since each element in

ORD(G) is multi-colored with respect to ψ, so also is each G′ ∈
(
F
G

)
with respect to ∆. This

shows that F 6∈ R[(G)Hr ], and since F was arbitrary, R[(G)Hr ] is empty. 2

This next result [5] can viewed either as a corollary to Theorem 2.1 or to 2.2.

Corollary 2.3 Fix r ∈ ω. If H and G are (unordered) hypergraphs satisfying mdo(H,G) =
1 then R[(G)Hr ] 6= ∅.

Proof: Let mdo(H,G) = 1 and fix an ordering ≤ of G so that every induced H-
subgraph of G is ≤-order-isomorphic to say (H,≤). Apply Theorem 2.1 to obtain (F,≤) ∈
R[(G,≤)(H,≤)

r ]. Using the condition |DO(H,G,≤)| = 1, it is now easy to check that the
unordered F also satisfies F −→ (G)Hr .

Alternatively, if mdo(H,G) = 1, then KH,G contains a loop, so χ(KH,G) =∞. 2

Lemma 2.4 Fix r ∈ ω and graphs B, H so that R[(B)Hr ] 6= ∅. Then for all induced
subgraphs A � B, R[(A)Hr ]6= ∅.

Proof: If F −→ (B)Hr , then clearly F −→ (A)Hr . 2

3 Applications

An ordinary graph containing no cycles is a forest, and a connected forest is a tree.

Theorem 3.1 If G is a forest, then R[(G)P2
2 ] 6= ∅.

Proof: If
(
G
P2

)
= ∅ then the result is trivial. If P3 6� G, then every connected component

of G is a star. Clearly then mdo(P2, G) = 1 and the result follows by Corollary 2.3. So assume
P3 � G. We will produce three orderings of G, namely (G,≤0), (G,≤1), and (G,≤2), so
that each of DO(P2, G,≤i), i ∈ 3, is a unique pair from ORD(P2). We then conclude that
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χ(KP2,G) > 2, (for we will have shown KP2,G contains a triangle) and so by Theorem 2.2 the
result will follow.

Fix a representation of G as a collection of rooted trees with at least one of these roots
being an inner vertex of some copy of P3 � G. Let V (G) = L1∪̇L2∪̇ · · · ∪̇Ln be a partition
of V (G) into ‘levels’, that is, each Lj is the union of the j-th levels of all the rooted trees
comprising G, where L1 is the set of all the roots. Note that we have insisted that a copy of
P3 begins in L2, goes ‘down’ to L1, then back ‘up’ through L2 and L3. Impose an order ≤2

on V (G) which respects

L1 ≤2 L2 ≤2 L3 ≤2 · · · ≤2 Ln,

and let ≤1 be the inverse order of ≤2. Lastly, fix an order ≤0 of V (G) which ‘folds’ at levels,
i.e.,

· · · ≤0 L5 ≤0 L3 ≤0 L1 ≤0 L2 ≤0 L4 ≤0 L6 ≤0 · · · ,
continuing until all levels are exhausted. Let ORD(P2) be enumerated as in Figure 1.r

r
r

(P2,≤0)

r
r
r
 
!

(P2,≤1)

r
r
r
 
!

(P2,≤2)

Figure 1: ORD(P2)

It is straightforward to verify that for i ∈ 3, DO(P2, G,≤i) = {(P2,≤j) : j 6= i} as
required. 2

Throughout the remainder of this paper, we use the notation for the three orderings of
P2 as given in Figure 1.

Notice that we can not conclude from this proof that the resulting Ramsey graph is also
a forest, even if it is minimal in some sense. Indeed, if R[(G)P2

2 ] 6= ∅, G need not be a
forest. If G is a triangle (a K3), we trivially have R[(K3)P2

2 ] 6= ∅, just choose F = G = K3.
Furthermore, the orderings of the two graphs G1 and G2 in Figure 2 show mdo(P2, Gi) = 1
for i = 1, 2 and hence each R[(Gi)

P2
2 ] is non-empty. Note that G1 consists of n copies

of K3 attached at a single vertex, while G2 is n copies of K3 all sharing a common edge.
Alternatively, we could say G1 was constructed by starting with a star Sn, replacing each
end-vertex with a copy of K2 (edge) and then joining vertices of each K2 in the same manner
as the original vertex was. Similarly, G2 could be conceived by replacing the central vertex
of Sn with an edge in a like manner. As we have already observed, mdo(Sn, P2) = 1 and so
R[(Sn)P2

2 ] 6= ∅ also holds.

This method of replacing a vertex by a K2 works in general. We first give a definition
which generalizes that for a lexicographic product. Let G be a graph with a fixed enumeration
x0, x1, . . ., xk−1 of V (G). Let Kn0 , Kn1 , . . ., Knk−1

be (vertex disjoint) complete (or null)
graphs and define the product G⊗ (n0, n1, . . . , nk−1) on the vertex set ∪̇i∈kV (Kni) by

E(G⊗ (n0, . . . , nk−1)) = ∪̇i∈kE(Kni)∪{(yi, yj) : yi ∈ V (Kni), yj ∈ V (Knj), (xi, xj) ∈ E(G)}.
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Figure 2: Vertices of a star exploded into edges.

In this product, we replace each vertex by a complete graph (possibly null) and connect each
vertex of a ‘replacement’ graph to each vertex of another ‘replacement’ graph if and only
if the replaced vertices were originally connected. If we let K0 denote a null structure (a
‘graph’ with no vertices), and K1 a single vertex, the graph G ⊗ (0, 1, 1, . . . , 1) = G \ {x0}.
For example, K4 ⊗ (0, 1, 1, 1) = K3 and K3 ⊗ (0, 1, 2) = K3.

In applying the definition of this product, we tacitly fix an enumeration of V (G); our
arguments do not depend on which. We remark that if G′ = G ⊗ (n0, n1, . . . , nk−1), then
G⊗(n0 +1, n1, . . . , nk−1) = G′⊗(2, 1, 1, 1, . . . , 1) for some appropriate enumeration of V (G′).
Using this type of inductive step, it is not hard to prove the following lemma:

Lemma 3.2 If for each i ∈ k, ni,mi ∈ ω are given with each ni ≤ mi, then

G⊗ (n0, n1, . . . , nk−1) � G⊗ (m0,m1, . . . ,mk−1)

The next theorem can be used to generate a large class of graphs G for whichR[(G)P2
2 ] 6= ∅

(for example, those obtained from forests by ‘exploding’ vertices).

Theorem 3.3 Let r ∈ ω, graphs G and H satisfy R[(G)Hr ] 6= ∅ with |V (G)| = k. If for
each edge (a, b) of H there exists w ∈ V (H) \ {a, b} so that exactly one of (w, a) ∈ E(H)
or (w, b) ∈ E(H) holds, then for any collection n0, n1, . . . , nk−1 of non-negative integers,
R[(G⊗ (n0, n1, . . . , nk−1))Hr ] 6= ∅ also holds.

Proof: We first show the result for the case when each ni > 0. In this case we use
induction on

∑
i∈k ni, the size of the vertex set of the product graph. The base step n0 =

n1 = . . . = nk−1 = 1 is the assumption. Fix positive integers n0, n1, . . ., nk−1; set G′ =
G⊗ (n0, n1, . . . , nk−1) and G′′ = G⊗ (n0 + 1, n1, . . . , nk−1), and assume R[(G′)Hr ] 6= ∅. It will
suffice to show that R[(G′′)Hr ] 6= ∅.

For each ordering ≤′ of G′ we will produce an ordering ≤′′ of G′′ so that DO(H,G′,≤′)
= DO(H,G′′,≤′′). In this case, KH,G′ will be a weak subhypergraph of KH,G′′ and so
χ(KH,G′′) ≥ χ(KH,G′) > r will give the result by Theorem 2.2.
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Fix an ordering ≤′ of G′. Since G′′ = G′ ⊗ (2, 1, . . . , 1), we can, without loss, take
V (G′′) = V (G′) ∪ {y}, where, say x ∈ V (G′) is replaced by x and y in G′′. Define an
ordering ≤′′ of G′′, an extension of ≤′ , by keeping x and y adjacent in ≤′′ (and in the same
relative position as was x in ≤′). By Lemma 3.2, DO(H,G′,≤′) ⊆ DO(H,G′′,≤′′), and so it
remains to show the reverse inclusion.

Pick H∗ ∈
(
G′′
H

)
and let (H∗,≤) � (G′′,≤′′) be with the order induced by ≤′′ . If H∗ � G′

there is nothing to show, so assume y ∈ V (H), that is, H∗ is a ‘new’ copy of H in G′′ not in G′.
If x 6∈ V (H∗), then (H∗,≤) is isomorphic to a copy of an ordered H already in G′, namely the
one with the vertex x replacing y in H∗. But if x ∈ V (H∗) then (x, y) ∈ E(H∗), and by the
definition of the product, all remaining vertices of H∗ are related to both x and y in identical
manner, contrary to the condition in the statement of the theorem. So (H∗,≤) is of the same
order-type as a copy of H already present in (G′,≤′). Thus DO(H,G′′,≤′′) ⊆ DO(H,G′,≤′),
showing DO(H,G′,≤′) = DO(H,G′′,≤′′) as required.

Now suppose some of the ni’s are zero. For each i, define mi = ni if ni 6= 0 and mi = 1 if
ni = 0. Set G′ = G⊗ (n0, n1, . . . , nk−1) and G′′ = G⊗ (m0,m1, . . . ,mk−1). By the first case,
R[(G′′)Hr ] 6= ∅, and by Lemma 3.2, G′ � G′′, and so Lemma 2.4 gives the result. 2

Corollary 3.4 Fix r ∈ ω and a connected triangle-free graph H with |V (H)| ≥ 2. Let
G be so that R[(G)Hr ] 6= ∅ and G′ = G⊗ (n0, n1, . . . , nk−1) is defined. Then R[(G′)Hr ] 6= ∅.

In particular, the above result holds for H = P2.

4 Chordal, Comparability, and Convex Graphs

An ordinary graph is chordal (also called triangulated or a rigid circuit) if every cycle
of length ≥ 4 has a chord, i.e., a chordal graph is a graph which contains no cycle on ≥ 4
vertices as an induced subgraph.

Lemma 4.1 If a graph G is so that R[(G)P2
2 ] 6= ∅ then G is chordal.

Proof: Assume G is not chordal, i.e., there exists an induced cycle of length ≥ 4 in G.
Then any ordering of G produces two distinct ordered P2’s as induced subgraphs, namely
(P2,≤1) and (P2,≤2) (the ones which have the middle vertex at either end of the order).

Fix any graph F and impose an order ≤ on V (F ). Let ∆ :
(
F
P2

)
−→ 2 be a coloring

which satisfies

∆(P
′
2) = 0 if (P

′
2,≤) ∼= (P2,≤1),

and

∆(P
′
2) = 1 if (P

′
2,≤) ∼= (P2,≤2),

where (P
′
2,≤) is a copy of P2 � F with the order ≤ imposed. Thus every G′ ∈

(
F
G

)
is

multicolored and so F 6∈ R[(G)P2
2 ], so if G is not chordal, then R[(G)P2

2 ] 6= ∅. 2

A vertex x in an ordinary graph G is simplicial if its neighbors induce a complete subgraph
of G. We use the following result of Dirac [2] (also see [3]).

6



Theorem 4.2 Every chordal graph contains a simplicial vertex, and upon removal, pro-
duces another chordal graph.

Given a partially ordered set (Q,≤), construct the graph G(Q) on vertex set Q, where
(x, y) ∈ E(G) if and only if x < y or y < x. Such a graph G(Q) is called the comparability
graph for (Q,≤). For a survey on comparability graphs, see [6].

Given a partial order (Q,≤), (Q,≤∗) is a linear extension of (Q,≤) if ≤∗ is a linear (total)
order and a ≤ b implies a ≤∗ b. Such a linear extension always exists.

An interesting (probably well known) characterization of comparibility graphs is the
following. We remind the reader that (P2,≤0) is the ‘flat’ ordering of P2 as in Figure 1.

Lemma 4.3 G is a comparability graph if and only if G has an ordering ≤0 so that
(P2,≤0) 6� (G,≤0).

Proof: Let G = G(Q) be a comparability graph for some poset (Q,≤). A linear extension
(Q,≤∗) of (Q,≤) gives rise to the ordered graph (G,≤∗) in the following manner: for x ≤∗ y,
(x, y) ∈ E(G,≤∗) if and only if x ≤ y. If (x, y) and (y, z) determine a weak (P2,≤0)-subgraph
of (G,≤∗), then transitivity of ≤ gives (x, z) to be an edge also, preventing an induced copy
of (P2,≤0).

Now suppose that G has an ordering ≤0 so that (P2,≤0) 6� (G,≤0). Look at the relational
structure (Q,≤) defined by x ≤ y if and only if (x, y) ∈ E(G) and x ≤0 y. If (x, y) and
(y, z) are (ordered) edges of (G,≤0), (x, z) is also, since (G,≤0) does not contain a copy of
(P2,≤0). Thus x ≤ z and the transitivity condition is satisfied for (Q,≤) to be a partial
order and G = G(Q) is a comparability graph. 2

On the other hand, it also serves our purpose to classify those graphs having an ordering
which admits only (P2,≤0), the ‘flat’ ordering of P2.

Lemma 4.4 Let (G,≤) be an ordering of G admitting only flat P2’s (i.e., DO(P2, G,≤) ⊆
{(P2,≤0)} ). Then there exists an order ≤∗ so that (G,≤∗) also admits only flat P2’s, and the
connected components of G determine disjoint intervals in the order. Also, if (x, y) ∈ E(G)
with x ≤∗ y, then the set of vertices {z : x ≤∗ z ≤∗ y} induces a complete subgraph of G.

Proof: Let (G,≤) admit only flat P2’s. It is easy to see that there is ≤∗ so that (G,≤∗)
also admits only flat P2’s, and components of G determine disjoint intervals in the order ≤∗.

The proof we give for the last statement of the theorem is by induction on |V (G)|. By the
first part, we can assume without loss thatG is connected. For |V (G)| ≤ 3 the result is trivial,
so let v0 ≤∗ v1 ≤∗ . . . ≤∗ vn is an enumeration of V (G) where DO(P2, G,≤∗) ⊆ {(P2,≤0)}.
Let G′ be the graph induced by V (G)\{vn} and observe that since the deletion of a vertex
can not create any new copies of P2, DO(P2, G

′,≤∗) ⊆ {(P2,≤0)}. Thus, by the induction
hypothesis, G′ satisfies the lemma. Since G does not admit any copies of (P2,≤2), it follows
that the graph induced by the neighbors of vn is complete, and since G is assumed to be
connected, so is all of G′. It now follows that for each i ∈ n− 2, (vi, vi+1) ∈ E(G). Let vj be
the least (in the order ≤∗) neighbor of vn.

It is sufficient to show that {vi : j ≤ i ≤ n} is a clique. Recursively, the pairs (vj+1, vn),
(vj+2, vn), . . ., (vn−1, vn) can be shown to be edges to avoid copies of (P2,≤2). Also, for each
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k, l with j ≤ k < l ≤ n− 1, similarly (vk, vl) ∈ E(G) can be shown since (vk, vn) and (vl, vn)
are edges and G forbids copies of (P2,≤1).. 2

Roughly speaking, we see that those graphs having an ordering which admits only flat
P2’s can be constructed by fixing a collection of intervals in an ordered set of vertices and
imposing a complete graph on vertices determined by each interval in the collection. In fact,
the converse holds as well. Any ordered graph constructed in this manner can easily be seen
to omit flat P2’s.

Recall that a subset S of a partial order (P,≤) is called convex if whenever x, y ∈ S and
x ≤ z ≤ y then z ∈ S. So in this respect, ordered graphs satisfying Lemma 4.4 have the
property that if a subset of vertices determines a clique, then it corresponds to an interval
in the linear order and hence is convex. Hence, we call those graphs G for which there exists
an ordering ≤∗ of G so that DO(P2, G,≤∗) ⊆ {(P2,≤0)} convex clique graphs, or simply
convex, without having to specify an ordering. This terminology avoids any conflation with
the term ‘interval graph’, yet captures the property.

5 Complete Classification

We can now classify those graphs G for which R[(G)P2
2 ] is non-empty.

Theorem 5.1 R[(G)P2
2 ] 6= ∅ if and only if either G is a chordal comparability graph or

G is convex.

Proof: First assume that G is chordal and is a comparability graph. We define three
orderings of G as follows.

By Theorem 4.2 there exists a simplicial vertex s0 ∈ V (G). By the same theorem, there
is s1 ∈ V (G) \ {s0}, again simplicial. Continue, exhausting V (G) and let ≤1 be an ordering
of V (G) given by s0 ≤1 s1 ≤1 . . . ≤1 s|V (G)|−1. Observe that (P2,≤1) 6� (G,≤1), because
each upper (right) neighborhood of each vertex is complete. Similarly define (G,≤2) where
≤2= (≤1)−1. Then (P2,≤2) 6� (G,≤2). Now let (G,≤0) be the ordered graph guaranteed by
Lemma 4.3 so that (P2,≤0) 6� (G,≤0). So by Theorem 2.2, R[(G)P2

2 ] 6= ∅.
Now assume that G is convex. If ≤∗ is an ordering of V (G) so that DO(P2, G,≤∗) =

{(P2,≤0)}, then by Theorem 2.2 (or Corollary 2.3) we have R[(G)P2
2 ] 6= ∅ as well.

To prove the other direction, suppose that R[(G)P2
2 ] 6= ∅. Then by Lemma 4.1, G must

chordal. It remains to show that either G is a comparability graph or G is convex. We will
use Theorem 2.2 and two orderings given by chordality in the first part of the proof.

As defined for Theorem 2.2, set K = KP2,G on vertices (P2,≤0), (P2,≤1), and (P2,≤2).
By chordality, fix two hyperedges of K, i.e., two orderings of G, each omitting (P2,≤1) and
(P2,≤2) respectively. If either of these two orderings of G omits (P2,≤0) as well, (i.e., if
either corresponds to a hyperedge of K consisting of a single vertex—a loop) we are done
since then G is a comparability graph by Lemma 4.3. So suppose that both {(P2,≤0), (P2,≤1

)} and {(P2,≤0), (P2,≤2)} are hyperedges of K, and neither {(P2,≤1)} or {(P2,≤2)} are
hyperedges. Since χ(K) ≥ 3, either {(P2,≤1), (P2,≤2)} or {(P2,≤0)} is a hyperedge of K.
In the first case, the edge omits (P2,≤0) and so by Lemma 4.3, G is a comparability graph
and we are done. In the second case, G is convex and we are done again. 2
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We add that although a convex graph is chordal, it is not necessarily a comparability
graph. For the purpose of presenting an example of such a convex graph, we recall the
following well known characterization theorem [4] (see [6] or [7] for other references) for
comparability graphs.

Theorem 5.2 G is a comparability graph if and only if G does not contain an odd number
of (not necessarily distinct) vertices v0, v1, . . . , vn = v0, so that for each i, (vi, vi+1) ∈ E(G),
but (vi, vi+2) 6∈ E(G).

Example 5.3 The graph G given by V (G) = {0, 1, . . . , 6} and E(G) = {(i, i + 1) :
i ∈ 6} ∪ {(i, i+ 2) : i ∈ 5} is convex but is not a comparability graph.
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Proof: The natural ordering of vertices as given is used to show that G is convex. The
‘semicycle’ 〈0 2 3 5 3 1 3 4 6 4 2〉 on 11 vertices satisfies the condition of Theorem 5.2. 2

This appears to be the smallest of infinitely many such examples. It would be of interest
to classify chordal comparability graphs. For examples of graphs which are one or the other
and not both, see [7]. In classifying those graphs for which R[(G)P2

2 ] is non-empty, the case
for colorings of the graph consisting of an edge and a disjoint vertex is also implicitly settled
(examine the Ramsey statements in the complement).
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