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Abstract

It is known that for a graph on n vertices bn2/4c + 1 edges is sufficient for the
existence of many triangles. In this paper, we determine the minimum number of
edges sufficient for the existence of k triangles intersecting in exactly one common
vertex.

1 Notation

With integers n ≥ p ≥ 1, we let Tn,p denote the Turán graph, i.e., the complete p-partite
graph on n vertices where each partite set has either bn/pc or dn/pe vertices and the edge set
consists of all pairs joining distinct parts. Kr represents the complete graph on r vertices.

For a graph G and a vertex x ∈ V (G), the neighborhood of x in G is denoted by NG(x) =
{y ∈ V (G) : (x, y) ∈ E(G)}, or when clear, simply N(x). The degree of x in G, denoted by
degG(x), or deg(x), is the size of NG(x). We use δ(G) and ∆(G) to denote the minimum
and maximum degrees, respectively, in G. For a subset X ⊂ V (G), let G[X] denote the
subgraph of G induced by X. A matching in G is a set of edges from E(G), no two of which
share a common vertex, and the matching number of G, denoted by ν(G), is the maximum
number of edges in a matching in G.
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2 The main theorem

Suppose that we are given some fixed graph H. What is the maximum number, ex(n,H),
of edges in a graph G on n vertices that does not contain a copy of H as a subgraph? A
graph G on n vertices with ex(n,H) edges and without a copy of H is called an extremal
graph for H, (often said to forbid H). For n ≥ |V (H)| adding one more edge to any one of
the extremal graphs will produce a graph with a copy of H.

A graph on 2k+1 vertices consisting of k triangles which intersect in exactly one common
vertex is called a k-fan and denoted by Fk. For each k, the chromatic number of Fk is three,
and so by the Erdős–Stone theorem [12], ex(n, Fk) = (1 + o(1))n2/4. Our main result is to
determine ex(n, Fk) for every fixed k whenever n is large.

Theorem 2.1 For every k ≥ 1, and for every n ≥ 50k2, if a graph G on n vertices has
more than

bn
2

4
c+

{
k2 − k if k is odd,
k2 − 3

2
k if k is even

(1)

edges, then G contains a copy of a k-fan. Furthermore, the number of edges is best possible.

To prove the lower bound for ex(n, Fk) we present the following graph, Gn,k. For odd
k (where n ≥ 4k − 1) Gn,k is constructed by taking a complete equi-bipartite graph and
embedding two vertex disjoint copies of Kk in one side. For even k (where now n ≥ 4k − 3)
Gn,k is constructed by taking a complete equi-bipartite graph and embedding a graph with
2k−1 vertices, k2− (3/2)k edges with maximum degree k−1 in one side. With a little more
effort we can prove that the Gn,k’s are the only Fk-extremal graphs (for n ≥ 50k2).

Obviously, ex(n, Fk) =
(
n
k

)
for 1 ≤ n ≤ 2k, and it is easy to check that ex(2k + 1, Fk) =

2k2− 1 (if k ≥ 2), which is smaller than (1) for odd k and larger than (1) for even k (k ≥ 4).
However, we conjecture that (1) gives ex(n, Fk) for all n ≥ 4k (rather than n ≥ 50k2).

In Section 3 a survey of some known related results is given. Section 4 contains theorems
and lemmas used in the proof of the main theorem. In Section 5 we prove that an extremal
graph with large minimum degree is almost bipartite, and in Section 6 we give a lemma
which gives the upper bound (1) for almost bipartite graphs. The proof of the main theorem
follows in the last section.

3 Some extremal results concerning triangles

We briefly examine some results in extremal graph theory. For further results see [3, 21].

Theorem 3.1 (Turán [22]) If G is a graph on n vertices that does not contain a copy of
Kr then |E(G)| ≤ |E(Tn,r−1)|, with equality only if G ∼= Tn,r−1.

The following is a corollary Mantel [18] discovered long before Turán’s theorem:

ex(n,K3) = bn
2

4
c. (2)
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With bn2/4c edges, we can have a graph containing no triangles, but with the addition
of just one more edge, not only one triangle is produced, but as Rademacher proved in 1941
(unpublished) in fact at least bn/2c appear. Erdős gave a simplification of the proof in [7].
The complete bipartite graph Kbn/2c,dn/2e with an additional edge adjoined shows that bn/2c
is best possible here.

Moon and Moser [19] proved that if G is any graph on n vertices, then it contains at
least |E(G)|(4|E(G)| − n2)/(3n) triangles. Lovász [15] showed that this theorem can be
derived from the sieve formula (see [3] for discussion). Concerning the number of triangles,
Bollobás [2] proved the following conjecture by Nordhaus and Stewart [20]: If G is a graph
on n vertices and n2/4 ≤ |E(G)| ≤ n2/3, then G contains at least (n/9)(4|E(G)| − n2)
triangles. The best lower bound for the number of triangles was proved by Fisher [13]. That
bound is off from the optimal one only by a lower order term (in most cases). Observe that
with |E(G)| = n2/4 + 1, Moon–Moser’s result gives at least n/3 triangles, while Bollobás’
theorem yields (4/9)n triangles, and Rademacher’s theorem guarantees n/2 triangles, the
best possible.

Lovász and Simonovits [17] proved that any graph on n vertices with bn2/4c + t edges
contains at least tbn/2c triangles if t < n/2. The cases t = 1, 2, 3 were done by Erdős [7] in
1955. A few years later he [8] extended it to t < cn for some small positive constant c.

A key to the above result was the following lemma from Erdős [8, 9]. There exists a
constant ρ > 0 so that for n sufficiently large, bn2/4c + 1 edges in a graph on n vertices
yields at least ρn triangles having a common edge. In an unpublished manuscript, Edwards
[6] showed that we can take ρ = 1/6 and via an appropriate bn/2c-regular graph, that this
is best possible.

Many of these results have generalizations to larger complete graphs; we mention just one
interesting example: a graph on n vertices and |E(Tn,p−1)|+ 1 edges has an edge contained
in at least np−2/(10p)6p copies of Kp (Erdős [10, 11]).

Now we return to our main object, forbidding Fk. The case k = 1 is just (2) so the upper
bound in (1) gives ex(n, F1) for all n. Now we ask how many edges are required to guarantee
the existence of F2. Let us call F2 a bowtie.

Theorem 3.2 For n ≥ 5, every graph on n vertices with at least bn2/4c+2 edges contains
two triangles intersecting in a single vertex. Hence, ex(n, F2) = bn2/4c+ 1.

For sufficiently large n, the above result is a special case of the following theorem of
Bollobás ([3] Problem 36, p.365) where he settled a conjecture posed by Busolini [4] in 1956.
For any given p ≥ 3 and k ≥ 1 if n is sufficiently large (n > np,k), then a graph on n vertices
and |E(Tn,p−1)| + k edges contains k edge-disjoint copies of Kp which form a connected
subgraph. Here we are able to settle the case for F2 for all possible values of n.

Proof of Theorem 3.2: We use induction on n. There are only two graphs with 5
vertices and 8 edges, both of which contain a bowtie. So assume that for some n > 5, every
graph with n − 1 vertices and b(n− 1)2/4c + 2 edges contains a bowtie. Let G be a graph
on n vertices with bn2/4c + 2 edges. As bn2/4c − b(n− 1)2/4c = bn/2c, we can use the
induction hypothesis for G\x if there is any vertex x with degG(x) ≤ bn/2c.

If δ(G) ≥ bn/2c + 1, then the number of edges of G is at least (bn/2c + 1)n/2. This is
larger than bn2/4c+ 2 for n = 6, and for all n ≥ 8, a contradiction.
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When n = 7, |E(G)| = 14 and δ(G) ≥ 4, the graphG is 4-regular. Any suchG contains an
F2. One way to see this is to consider any vertex x of G; the graph G\x, has degree sequence
4, 4, 3, 3, 3, 3. There are only three graphs with this degree sequence; it is straightforward to
verify that two of these contain a bowtie, and to the third, reaffixing x produces the required
bowtie.

To see that ex(n, F2) ≥ bn2/4c + 1, examine the complete bipartite graph on n vertices
and adjoin one more edge; this graph is F2-free. 2.

4 Preliminaries

In this section we give some preparatory lemmas for the proof of the main theorem.

Define f(ν,∆) = max{|E(G)| : ν(G) ≤ ν,∆(G) ≤ ∆}. Chvátal and Hanson [5] proved
that for every ν ≥ 1 and ∆ ≥ 1,

f(ν,∆) = ν∆ +
⌊

∆

2

⌋ ⌊
ν

d∆/2e

⌋
≤ ν∆ + ν. (3)

We will frequently use the following special case proved by Abbott, Hanson and Sauer [1]:

f(k − 1, k − 1) =

{
k2 − 3

2
k if k is even,

k2 − k if k is odd.
(4)

The extremal graphs are exactly those we embedded into Tn,2 in Section 2 to obtain the
extremal Fk-free graph Gn,k.

Lemma 4.1 If G is Fk-free, then for any x ∈ V (G),

|E(G[N(x)])| ≤ (k − 1)|N(x)|.

Proof. As G[N(x)] contains no k-matching we have that the number of its edges is
bounded by f(k − 1, |N(x)| − 1), so the lemma follows from (3). 2

Lemma 4.2 If G is Fk-free, then for ∆ = ∆(G),

|E(G)| ≤ (n−∆)∆ + (k − 1)∆ ≤ n2/4 + (k − 1)∆.

Proof. Select x′ ∈ V (G) with degG(x′) = ∆. There are n −∆ vertices in V (G)\N(x′),
each with degree at most ∆, and, by Lemma 4.1, there are at most (k − 1)∆ edges in
G[N(x′)]. In all, |E(G)| ≤ (n−∆)∆ + (k − 1)∆. The second inequality is elementary. 2
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5 Structure of the extremal graphs

In Sections 5 and 6, the main theorem is proved only for graphs with large minimum
degree. As the cases k = 1 and k = 2 are settled by (2) and by Theorem 3.2 respectively,
we now assume that k ≥ 3. The aim of this section is to prove the following lemma.

Lemma 5.1 Suppose that G is an Fk-free graph on n vertices with n ≥ 24k2, and with
minimum degree δ > (n/2) − k, maximum degree ∆ > n/2. Then there exists a partition
V (G) = V0∪̇V1, so that V0 6= ∅, V1 6= ∅, and for each i = 0, 1 and for every x ∈ Vi, the
following hold:

ν(G[Vi]) ≤ k − 1 and ∆(G[Vi]) ≤ k − 1; (5)

degG[Vi](x) + ν (G1−i[N(x) ∩ V1−i]) ≤ k − 1. (6)

Proof. We give the proof in a sequence of claims.

Claim 1 The inequality ∆ < (n/2) + 3k holds.

Proof of Claim 1. Fix x′ with maximum degree. By Lemma 4.1, there exists a vertex
y ∈ N(x′) with |N(y) ∩N(x′)| ≤ 2(k − 1). Then

n−∆ = |V (G)\N(x′)| ≥ |N(y)| − 2(k − 1) ≥ δ − 2(k − 1). 2

Claim 2 /it Let x′ be a vertex of maximum degree. Define the sets V0 and V1 so that

|N(y) ∩N(x′)| > 2k − 1

2k
∆ for y ∈ V0,

and

|N(y)\N(x′)| > 2k − 1

2k
(n−∆) for y ∈ V1.

Then V (G) = V0∪̇V1 is a partition of the vertex set V (G) into nonempty parts.

Proof of Claim 2. Obviously, V0 ∩ V1 = ∅, otherwise there was a vertex of degree at
least n(2k−1)/(2k) contradicting Claim 1. Both V0 and V1 are nonempty. Indeed, x′ belongs
to V0 and its neighbor y from the proof of Claim 1 belongs to V1 since

|N(y)\N(x′)| ≥ |N(y)| − 2(k − 1)

≥ δ − 2(k − 1)

>
n

2
− k − 2k + 2 (since δ > n

2
− k)

>
n

2
+ k − 16k2

4k
− 1

2

≥ n

2
+ k − n

4k
− 1

2
(since n ≥ 16k2)

=
(

1− 1

2k

)(
n

2
+ k

)

>
2k − 1

2k
(n− δ) (since δ > n

2
− k)

≥ 2k − 1

2k
(n−∆).
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Finally, we have to prove that each vertex z ∈ V belongs to V0∪V1. If |N(z)∩N(x′)| ≤ 4k,
then z ∈ V1, because for n ≥ 20k2, we have

|N(z)\N(x′)| ≥ |N(z)| − 4k ≥ δ − 4k >
2k − 1

4k
n ≥ 2k − 1

2k
(n−∆).

If |N(z) ∩ N(x′)| > 4k, then there exists a vertex w ∈ N(z) ∩ N(x′) such that both
|N(w) ∩ N(x′)| ≤ 2k and |N(w) ∩ N(z)| ≤ 2k. This follows from the fact that for each x
ν(G[N(x)]) < k, so the subgraph induced by a neighborhood cannot have more than 2k− 2
vertices of degree at least 2k. We obtain

|N(w)\(N(x′) ∪N(z))| ≥ |N(w)| − 4k ≥ δ − 4k.

This implies that |N(x′) ∪N(z)| ≤ n− δ + 4k, so

|N(x′) ∩N(z)| = |N(x′)|+ |N(z)| − |N(x′) ∪N(z)| ≥ ∆ + δ − (n− δ + 4k) >
2k − 1

2k
∆,

where the last inequality is implied again by the facts that (n/2) − k < δ, ∆ > n/2, and
n ≥ 24k2. Thus we obtain z ∈ V0. 2

An obvious consequence of the definition of the V0 and V1 is the following:

Claim 3 Every 2k vertices from V0 have a common neighbor (in N(x′)) and every 2k vertices
from V1 have a common neighbor (in V (G)\N(x′)). Moreover, every two vertices from V0

have at least 2k− 1 common neighbors (in N(x′)) and every 2 vertices from V1 have at least
2k − 1 common neighbors (in V (G)\N(x′)). 2

Proof of (5). If Gi contains a k-matching, say (y1, y2), (y3, y4), . . . , (y2k−1, y2k), then
since each of these yj’s have a common neighbor, say y, we get an Fk with center y, a
contradiction. If for some y ∈ Vi, |N(y) ∩ Vi| ≥ k, say with neighbors y1, . . . , yk in Vi,
then since (by Claim 3), each pair (y, yi) has at least k common neighbours outside the set
Y = {y, y1, . . . , yk}. This implies that one can find distinct vertices x1, . . . , xk outside Y ,
such that the triples of the form (y, yj, xj) determine k triangles having the common vertex
y. 2

Proof of (6). Let x0 ∈ V0 have neighbors x1, x2, . . . , xa in V0 and neighbors y1, z1,
y2, z2, . . ., yb, zb in V1 where, for each j = 1, . . . , b, (yj, zj) ∈ E(G1). By (5), both a and b are
less than k. Suppose for the moment that a + b ≥ k. Then by Claim 3, for each 1 ≤ i ≤ a
there exist at least a vertices outside the set {x0, x1, . . . xa, y1, . . . , yb, z1, . . . , zb} connected to
both x0 and xi. Now the existence of a k-fan with central vertex x0 is immediate, contrary
to our initial assumptions. This also completes the proof of Lemma 5.1. 2

6 Proof of the main lemma

The aim of this section is to prove Lemma 6.2, which is the key to the proof of the main
result in this paper. We begin with another technical lemma.
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Lemma 6.1 Let H be a graph and b a nonnegative integer such that b ≤ ∆(H)− 2, and
let ν = ν(H), ∆ = ∆(H). Then

∑

x∈V (H)

min{degH(x), b} ≤ ν(b+ ∆). (7)

Proof. We proceed by induction on ν. The inequality is trivial if ν = 0.
Suppose first that there is a vertex s ∈ V such that ν(H\s) = ν − 1. Replacing the

vertex s, the left-hand side of (7) increases by at most min{degH(s), b} + degH(s) and the
right-hand side increases by b+ ∆ and we are done.

Suppose now that ν(H\x) = ν holds for every x ∈ V (H). Such a graph is said to be
matching-critical. Gallai [14] (see also [16], p. 89) proved that a connected matching-critical
graph C with matching number ν(C) has exactly 2ν(C) + 1 vertices (so it is also factor-
critical). So a matching-critical graph is a vertex disjoint union of factor-critical components.
Let C be such an odd component of size 2a + 1. Then ν(C) = a. The partial sum over
vertices in C is

∑

x∈V (C)

min{degH(x), b} ≤ (2a+ 1) min{2a, b} ≤ a(b+ ∆),

for if b ≥ 2a, the middle part is (2a+1)2a and since ∆ ≥ b+2 ≥ 2a+2 , (2a+1)2a ≤ a(b+∆)
holds; while if b < 2a the middle part is (2a+1)b, and because (a+1)b/a = b+b/a < b+2 ≤ ∆,
we have (2a+ 1)b ≤ ab+ a∆. Summing over all components gives (7). 2

Let G be a graph with a partition of the vertices into two non-empty parts V (G) = V0∪̇V1,
G0 = G[V0], G1 = G[V1], and define

Gcr = (V (G), {(v0, v1) ∈ E(G) : v0 ∈ V0, v1 ∈ V1}),

where “cr” denotes “crossing”. For each i ∈ {0, 1, cr} let di(x) = degGi(x) and νi = ν(Gi).
One may note that in this section, even though G is Fk-free, we do not use the restrictions

for δ and n.

Lemma 6.2 Suppose G is partitioned as above so that (5) and (6) are satisfied. If G is
Fk-free, then

|E(G0)|+ |E(G1)| − (|V0|·|V1| − |E(Gcr)|) ≤ f(k − 1, k − 1). (8)

Proof. Observe that Gcr is a bipartite graph, and |V0|·|V1| − |E(Gcr)| is the number of
edges missing from the complete bipartite graph. By (5) and the definition of f , we see that
for each i = 0, 1, |E(Gi)| ≤ f(k− 1, k− 1), and so the left hand side of (8) is bounded above
by 2f(k− 1, k− 1). Delete vertices of G so that the left hand side of (8) is maximal, and let
G be minimal in this sense.

We now claim that for each i = 0, 1 and every x ∈ Vi,

di(x)− (|V1−i| − dcr(x)) > 0. (9)
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In fact, if for some x ∈ V0, d0(x)− (|V1| − dcr(x)) ≤ 0 holds, then

|(E(G0\x)|+ |(E(G1)| − (|V0\x|·|V1| − |E(Gcr\x)|
= |(E(G0)|+ |(E(G1)| − (|V0|·|V1| − |E(Gcr)|)− (d0(x)− |V1|+ dcr(x))

≥ |(E(G0)|+ |(E(G1)| − (|V0|·|V1| − |E(Gcr)|),
contradicting the minimality of G. Hence (9) holds.

We also claim that for each i = 0, 1,

di(x)− (|V1−i| − dcr(x)) ≤ k − 1− ν1−i. (10)

To see (10), we need only observe that,

di(x)− [|V1−i| − dcr(x)] ≤ k − 1− [ν (G1−i[N(x) ∩ V1−i]) + |V1−i| − dcr(x)] (by (6))

≤ k − 1− ν1−i,

where the last inequality holds since any matching in G1−i which extends a matching in
G1−i[N(x) ∩ V1−i] can have at most |V1−i| − dcr(x) additional edges (even though some
endpoints of additional edges may be in N(x) ∩ V1−i ). This proves (10).

We can also assume that for each i = 0, 1,

1 ≤ νi ≤ k − 2, (11)

by the following arguments. If ν0 = 0, then G0 is empty, and in this case,

|E(G1)| − (|V0|·|V1| − |E(Gcr)|) ≤ |E(G1)| ≤ f(k − 1, k − 1);

thus (8) holds trivially, verifying the lemma. If ν0 = k − 1, then by (9) and (10), we would
have

0 < d1(x)− (|V0| − dcr(x)) ≤ 0,

a contradiction. The similar arguments hold for i = 1, proving (11).
We may further suppose that

2 ≤ νi. (12)

Indeed, if for some i, νi = 1, then (11) implies that ν1 + ν2 ≤ k − 1. As

f(ν1,∆) + f(ν2,∆) ≤ f(ν1 + ν2,∆)

always holds, we get that |E(G0)|+ |E(G1)| ≤ f(k − 1, k − 1) and (8) follows.
Now apply Lemma 6.1 for the graph Gi (i = 0, 1) with ∆ = k− 1 and b = k− 1− ν1−i ≤

∆− 2 (by (12)). Using (7) and (10), we get
∑

x∈Vi
[di(x)− (|Vi−1| − dcr(x))] ≤ ∑

x∈Vi
min{di(x), k − 1− ν1−i} ≤ νi(2(k − 1)− ν1−i). (13)

The sum in the left hand side equals 2|E(Gi)|+ |E(Gcr)| − |V0||V1|, so adding these two (for
i = 0, 1) gives

2|E(G)| = 2|E(G0)|+ 2|E(G1)|+ 2|E(Gcr)|
≤ ν0(2(k − 1)− ν1) + ν1(2(k − 1)− ν0) + 2|V0|·|V1|
= 2[k2 − 2k + 1− (k − 1− ν0)(k − 1− ν1)] + 2|V0|·|V1|.

This yields |E(G)| ≤ k2 − 2k + |V0| · |V1| (by (11), k − 1 − νi ≥ 1), finishing the proof of
Lemma 6.2. 2
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7 End of the proof

We can summarize Lemma 6.2 and Lemma 5.1 as follows.

Lemma 7.1 Suppose that G is an Fk-free graph on n vertices with n ≥ 24k2, and with
minimum degree δ > (n/2)− k. Then |E(G)| ≤ bn2/4c+ f(k − 1, k − 1) holds.

Proof. If ∆(G) ≤ n/2, then |E(G)| ≤ n2/4 and we are done. Otherwise, we can apply
Lemma 5.1 to get a decomposition of G into G0, G1, Gcr. The graph Gcr consists of the edges
between V0 and V1. Lemma 6.2 implies that

|E(G)| = |E(G0)|+ |E(G1)|+ |E(Gcr)|
≤ |V0|·|V1|+ f(k − 1, k − 1)

≤ n2

4
+ f(k − 1, k − 1),

and we are done again. 2

Proof of Theorem 2.1. Suppose that n ≥ 50k2, and that G is an Fk free graph
on n vertices. We need to show that G has at most bn2/4c + f(k − 1, k − 1) edges. If
δ(G) > (n/2) − k, then Lemma 7.1 can be applied and we are done. If |E(G)| ≤ n2/4,
then there is nothing to prove. The last case is, when there exists a vertex x = xn with
degG(xn) ≤ (n/2)− k and |E(G)| > n2/4.

Denote G by Gn, and let Gn−1 = Gn \ xn. Note that for the new graph

|E(Gn−1)| = |E(Gn)| − δ(Gn) >
(n− 1)2

4
+ k − 1

4
.

If there exists a vertex xn−1 ∈ V (Gn−1) with degGn−1(xn−1) ≤ (n − 1)/2 − k, then delete
it to obtain Gn−2 = Gn−1\xn−1. Continue this process as long as δ(Gv) ≤ (v/2) − k, and
after n − ` steps we get a subgraph G` with δ(G`) > (`/2) − k. We claim that ` > n/2 (so
` ≥ 24k2). Indeed, by induction, we can see that |E(G`)| ≥ `2/4 + (n − `)(k − (1/4)). On
the other hand, Claim 2 says |E(G)| ≤ `2/4 + (k − 1)`.

We can apply Lemma 7.1 to get |E(G`)| ≤ `2/4 + f(k − 1, k − 1) which gives

|E(G)| ≤ `2/4 + f(k − 1, k − 1) +
n∑

i=`+1

(
i

2
− k) < n2/4 + f(k − 1, k − 1). 2

References

[1] H. L. Abbott, D. Hanson, and N. Sauer, Intersection theorems for systems of sets,
J. Combin. Th. Ser. A 12 (1972), 381–389.

[2] B. Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Phil.
Soc. 79 (1976) 19–24.

9



[3] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1979.

[4] D. T. Busolini, Some extremal problems in graph theory, Thesis, Reading, England,
1976.
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of Graphs, (eds. P. Erdős, G. Katona, Proceedings, Tihany, Hungary 1966), Academic
Press, New York, 1968.
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