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Abstract

A collection H of integers is called an affine d-cube if there exist
d+ 1 positive integers x0, x1, . . . , xd so that

H =

{
x0 +

∑

i∈I
xi : I ⊆ {1, 2, . . . , d}

}
.

We address both density and Ramsey-type questions for affine d-cubes.
Regarding density results, upper bounds are found for the size of the
largest subset of {1, 2, . . . , n} not containing an affine d-cube. In 1892
Hilbert published the first Ramsey-type result for affine d-cubes by
showing that for any positive integers r and d, there exists a least
number n = h(d, r) so that for any r-coloring of {1, 2, . . . , n}, there
is a monochromatic affine d-cube. Improvements for upper and lower
bounds on h(d, r) are given for d > 2.

1 Introduction

In this section, we give a brief survey of results related to partition and
density problems for affine cubes of integers. For a more detailed survey of
these extremal problems, see [16], for example. In Section 2, we state two
results (Theorems 2.3 and 2.5) and contrast them to known bounds. The
proofs of these follow in the remaining sections.

For a set X we use the standard notations P(X) = {Y : Y ⊆ X} and
[X]s = {S ⊂ X : |S| = s}. It will often be convenient to use X = [n] =
[1, n] = {1, 2, . . . , n}. An arithmetic progression of length k will be denoted
by APk.
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1.1 Arithmetic progressions

In 1927, van der Waerden published his well known partition theorem for
integers (see also [36] for history of its proof).

Theorem 1.1 (van der Waerden [35]) For every pair of positive in-
tegers k and r, there exists a least n = W (k, r) so that for any partition of
[1, n] into r classes, one class contains an APk.

For more proofs of van der Waerden’s theorem we refer the reader to any
of, for example, [3], [13], [15], [19], [20], or [30]. The function W(k, r) is
primitive recursive (see [30]), and aside from a few small values, not much
more is known about upper bounds for W(k, r).

In 1946, Behrend proved a (lower bound) density result for subsets of
[1, n] not containing any AP3. (See [9] and [10] for related results.)

Theorem 1.2 (Behrend [1]) There exists a constant c so that for m
sufficiently large, there exists an AP3-free set B ⊂ [1,m] with

|B| ≥ me−c
√

lnm = m1−o(1).

1.2 Affine cubes

In 1892, Hilbert [22] proved the first non-trivial partition Ramsey-type
theorem. This theorem, which preceded the celebrated Schur and van der
Waerden theorems, states that in any finite coloring of the set of positive
integers, there exists a monochromatic “affine d-cube” (defined below).

Definition 1.3 A collection H of integers is called a d-dimensional affine
cube, or simply, an affine d-cube if and only if there exist d + 1 positive
integers x0, x1, . . . , xd so that

H =

{
x0 +

∑

i∈I
xi : I ⊆ [1, d]

}
.

If all sums are distinct, that is, if |H| = 2d, then we say that the affine d-cube
is replete.
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If an affine d-cube H is generated by x0, x1, . . . , xd, then we write H =
H(x0, x1, . . . , xd). For example, H(1, 1, 1) = {1, 2, 3}, while a replete affine 2-
cube is H(1, 3, 9) = {1, 4, 10, 13}. We note that H(x0, x1, . . . , xd) may differ
from, say, H(x1, x0, . . . , xd).

Hilbert originally proved that if the positive integers are colored with
finitely many colors, then one color class contains a (monochromatic) d-cube.
By compactness, a finite version also holds.

Theorem 1.4 (Hilbert [22]) For every r, d, there exists a least number
h(d, r) so that for every coloring

χ : [h(d, r)]→ [1, r],

there exists an affine d-cube monochromatic under χ.

Theorem 1.4 now follows from van der Waerden’s Theorem since an APd+1

given by {a, a+k, a+2k, . . . , a+dk} is also an affine d-cube H(a, k, k, . . . , k).
There have been many, in some sense, strengthened versions of Hilbert’s

result by eliminating the x0 in Definition 1.3. For a set {x1, . . . , xd}, the
set of all finite non-empty sums {∑i∈I xi : I ⊆ [1, d], I 6= ∅} is sometimes
called a projective d-cube (see, for example, [26]) or finite sum set. For an
infinite set {x1, x2, . . .}, the set of all finite non-empty sums is said to be an
infinite-dimensional projective cube or a Hindman set.

Rado [27], and later independently, Sanders [28] and Folkman (see [15] or
[17]), showed that for any r and d, there exists a least number n = FRS(r, d)
so that for any partition of [1, n] into r classes, one class contains a projective
d-cube. The case d = 2 is the celebrated Schur’s Theorem [29]. Hindman [23]
settled a conjecture of Graham and Rothschild [18] by showing that upon
any finite coloring of the positive integers, there exists a monochromatic
infinite-dimensional projective cube. Any known upper bounds on FRS(r, d)
are tower functions (see [34] or [16] for discussion) and for large d, there
is a huge gap between upper and lower bounds. In Theorem 2.5, we give
relatively tight bounds for h(d, r).

2 Results

In 1969, Szemerédi proved that if a set A of positive integers has positive
upper density, (i.e., lim

n→∞|A ∩ [1, n]|/n > 0) then A contains an AP4. In
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the same paper (Lemma p(δ, l), p. 93), Szemerédi gave a density version of
Theorem 1.4; this density version has since become known as “Szemerédi’s
cube lemma” (cf. [20]).

Theorem 2.1 (Szemerédi’s cube lemma [32]) For any 0 < ε < 1
and positive integer d, there exists n0 = n0(ε, d) so that for all n ≥ n0, if
A ⊂ [1, n] and |A| > εn then A contains an affine d-cube.

Szemerédi’s proof was by induction on d, and although no explicit bounds
on n0 are mentioned, the argument shows that n0(ε, d) is much larger than
(2/ε)2d .

Another proof of (a strengthened version of) Szemerédi’s cube lemma was
found by Graham et al [15] and [20]. Lovász [25] (Problem 14.12) gives two
proofs, one elegant proof using Ramsey’s theorem, and another, based on the
same idea as in [15] and [20] which actually proves the following:

Theorem 2.2 Let d ≥ 2 be given. Then there exists n0 = n0(d) so that
for every n ≥ n0, if A ⊆ [1, n] satisfies

|A| ≥ (4n)1− 1

2d−1 ,

then A contains an affine d-cube.

We point out that in the proof of Theorem 2.2 no attempt was made to
find the best possible constant. In Section 3, we modify this proof further
and obtain the following improvement in the constant and are explicit about
bounds on n0(d).

Theorem 2.3 Let d ≥ 3 be given. Then there exists n0 = n0(d) ≤
2

d2d−1

2d−1−1
−1

so that for every n ≥ n0, if A ⊆ [1, n] satisfies

|A| ≥ 21− 1

2d−1 (
√
n+ 1)2− 1

2d−2 ,

then A contains an affine d-cube.

For reference, we note a modest improvement over Theorem 2.2.

4



Corollary 2.4 For d ≥ 3 there exists n0 ≤ (2d−2
ln 2

)2 so that for every
n ≥ n0, if A ⊆ [1, n] satisfies

|A| ≥ 2n1− 1

2d−1

then A contains an affine d-cube.

We leave it to the reader to check that the hypotheses of Corollary 2.4
indeed satisfy the hypotheses in Theorem 2.3. In Section 5 we give yet
another proof of Szemerédi’s cube lemma based on an extremal result for
hypergraphs.

In [2] it was shown that h(2, r) = (1+o(1))r2; the lower bound uses Singer
sets (cyclic difference sets arising from a finite projective plane, see also [31])
and the upper bound follows from well known bounds for B2-sets, or Sidon
sets (see also [6]). Also in [2], it was noted that there exist constants c1 and
c2 so that

rc1d ≤ h(d, r) ≤ r(c2)d , (1)

where c2 ∼ 2.6 follows from Hilbert’s original proof (using Fibonacci num-
bers). Section 6 is devoted to the proof of the following improvement of both
bounds in (1) for d > 2.

Theorem 2.5 For any integers d ≥ 3 and r ≥ 2,

r(1−o(1))(2d−1)/d ≤ h(d, r) ≤ (2r)2d−1

where o(1)→ 0 as r →∞.

3 Proof of Theorem 2.3

In the proof of Theorem 2.3, we will use the following lemma without
proof.

Lemma 3.1 If n ≥ 2 and b ≥ (
√
n+ 1)/2, then

(b2)
n−1
≥ b2

2(
√
n+1)2 .

Proof of Theorem 2.3: Fix d ≥ 3 and n ≥ 2
d2d−1

2d−1−1
−1

. Let A ⊆ [1, n] satisfy

|A| ≥ 21− 1

2d−1 (
√
n+ 1)2− 1

2d−2 . (2)
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For any real x, we use the standard notation A − x = {a − x : a ∈ A}.
For each i ∈ [1, n− 1], define

Ai = A ∩ (A− i). (3)

Since
n−1∑

i=1

|Ai| =
(|A|

2

)
, (4)

we can find i1 ∈ [1, n − 1] so that |Ai1| ≥ (|A|2 )
n−1

. Similarly, there exists i2

so that for Ai1,i2 = Ai1 ∩ (Ai1 − i2), we have |Ai1,i2| ≥ (|Ai1 |
2

)
n−1

. Continuing
this process, there exist i1, i2, . . . , id−1 so that for each k = 1, . . . , d − 2, we
recursively define Ai1,i2,...,ik+1

= Ai1,i2,...,ik ∩ (Ai1,i2,...,ik − ik) satisfying

|Ai1,i2,...,ik | ≥
(|Ai1,i2,...,ik−1

|
2

)

n− 1
. (5)

Observe that Ai1 = {x : x ∈ A, x+ i1 ∈ A} and

Ai1,i2 = {x : x ∈ A, x+ i1 ∈ A, x+ i2 ∈ A, x+ i1 + i2 ∈ A}

determines an affine 2-cube. It follows that if |Ai1,i2,...,id−1
| ≥ 2, then A

contains an affine d-cube; it remains to show this inequality.
For each k, define ak = |Ai1,i2,...,ik |. We have already observed that for

A to contain a d-cube, it suffices to have ad−1 ≥ 2. Indeed, it follows from
(5) that if ad−2 ≥

√
2n then ad−1 ≥ 2, and so then A contains a d-cube. So,

assume for the moment that ad−2 ≥
√

2n; then for every i = 1, 2, . . . , d − 2,
ai ≥

√
n, and so by Lemma 3.1, and (5),

a1 ≥
(|A|

2

)

n− 1
≥ |A|2

2(
√
n+ 1)2

,

a2 ≥
(
a1

2

)

n− 1
≥ a2

1

2(
√
n+ 1)2

≥
( |A|2

2(
√
n+1)2 )2

2(
√
n+ 1)2

=
|A|4

23(
√
n+ 1)6

,

...
...

ad−2 ≥
(
ad−3

2

)

n− 1
≥ |A|2d−2

22d−2−1(
√
n+ 1)2d−1−2

.
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So to guarantee that A contains a d-cube, it suffices to have

|A|2d−2

22d−2−1(
√
n+ 1)2d−1−2

≥
√

2n,

and hence it suffices to have

|A|2d−2 ≥ 22d−2−1/2(
√
n+ 1)2d−1−1,

which we have assumed in (2).

We conclude the proof by observing that the condition n ≥ 2d+ d

2d−1 guar-
antees that |A| ≥ 2d, enough elements for a d-cube. 2

4 The number of monochromatic affine cubes

Let n ≥ R(m,m), the Ramsey number for m (under 2-colorings of edges).
Then under any 2-coloring of the edges of the complete graph Kn, one is
guaranteed at least one monochromatic copy of Km, but can one ascertain
how many monochromatic copies exist? For example, Goodman’s [14] well
known result counts the number of triangles in a graph and in its complement,
and shows that the minimum number of monochromatic triangles is n(n −
1)(n−5)/24, which is around 1/4 of all, that expected from a random coloring.
The similar question can be asked for any Ramsey-type partition theorem and
is the subject of recent investigation (see [8], [11], [24], or [33] for examples).

Let f(n, d, r) be the minimum number of monochromatic replete affine
d-cubes in any r-colored [n].

Theorem 4.1 For d ≥ 2, r ≥ 2, and n sufficiently large (larger than
h(d, r)),

nd+1

(2r)2d−1
(1− o(1)) ≤ f(n, d, r) ≤ nd+1

(d+ 1)!r2d−1
,

where o(1)→ 0 as n→∞.

Proof: To prove the lower bound, we use the technique given in the proof of
Theorem 2.3. Fix a partition C1 ∪ C2 ∪ . . . ∪ Cr = [1, n]. For each α ∈ [1, r],
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and any choice of i1, i2, . . . , id ∈ [1, n − 1], define Cα
i1

= Cα ∩ (Cα − i1), and
recursively define

Cα
i1,i2,...,ik+1

= Cα
i1,i2,...,ik

∩ (Cα
i1,i2,...,ik

− ik+1).

If x ∈ Cα
i1,i2,...,id

then {x +
∑d
j=1 εjij : εj = 0, 1} is a monochromatic affine

d-cube contained in [1, n], so the number of monochromatic affine d-cubes is

r∑

α=1

∑

i1,i2,...,id

|Cα
i1,i2,...,id

|,

(where i1, i2, . . . , id range over [1, n − 1]). Using the identity (3) and the

inequality
∑m
i=1 |ai|k ≥

(∑m

i=1
ai

m

)k
· m (for positive integers k,m, and non-

negative numbers ai) repeatedly, we calculate

r∑

α=1

∑

i1,i2,...,id

|Cα
i1,i2,...,id

| =
r∑

α=1

∑

i1,i2,...,id−1

(|Cα
i1,i2,...,id−1

|
2

)

≥ 1

2

r∑

α=1

∑

i1,i2,...,id−2

(∑
id−1
|Cα

i1,i2,...,id−1
|

n− 1

)2

(n− 1)(1− o(1))

=
1

2(n− 1)

r∑

α=1

∑

i1,i2,...,id−2

(|Cα
i1,i2,...,id−2

|
2

)2

(1− o(1))

≥ 1

21+2(n− 1)

r∑

α=1

∑

i1,i2,...,id−3

(∑
id−2
|Cα

i1,i2,...,id−2
|

n− 1

)4

(n− 1)(1− o(1))

=
1

21+2(n− 1)1+3

r∑

α=1

∑

i1,i2,...,id−3

(|Cα
i1,i2,...,id−3

|
2

)4

(1− o(1))

≥ 1

21+2+4(n− 1)1+3

r∑

α=1

∑

i1,i2,...,id−4

(∑
id−3
|Cα

i1,i2,...,id−3
|

n− 1

)8

(n− 1)(1− o(1))

=
1

21+2+4(n− 1)1+3+7

r∑

α=1

∑

i1,i2,...,id−4

(|Cα
i1,i2,...,id−4

|
2

)8

(1− o(1))

...

≥ 1

22d−1(n− 1)2d−1−d

r∑

α=1

|Cα|2d(1− o(1))
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≥ 1

22d−1n2d−1−d

(∑r
α=1 |Cα|
r

)2d

r(1− o(1))

=
nd+1

(2r)2d−1
(1− o(1))

where the last line holds since
∑r
α=1 |Cα| = n. So we have shown that the

minimum number of affine d-cubes under any r-coloring of [n] is at least
nd+1

(2r)2d−1
(1 − o(1)), and since almost all affine d-cubes are replete, this gives

the lower bound.

If H(x0, x1, . . . , xd) is a replete affine cube, then the generators x1, . . . , xd
are distinct (though this is not a sufficient condition for being replete). For
any given x0, the other xi’s can be chosen only from [1, n − x0] and hence
there are less than

(
n

d

)
+

(
n− 1

d

)
+

(
n− 2

d

)
+ . . .+

(
d+ 1

d

)
+ 1 =

(
n+ 1

d+ 1

)

replete affine d-cubes in [1, n]. A random r-coloring of [1, n] yields each
cube monochromatic with probability r

r2d
, and so we conclude that there is a

coloring with no more than
(
n+1
d+1

)
1

r2d−1
monochromatic replete affine d-cubes.

Hence, f(n, d, r) ≤ nd+1

(d+1)!r2d−1
. 2

5 Hypergraphs and Theorem 2.1

A d-uniform hypergraph is a pair G = (V, E) = (V (G), E(G)), with vertex
set V and hyperedge set E ⊂ [V ]d. Note that by this definition, each d-
set from V may occur only once as a hyperedge. For pairwise disjoint sets
X1, X2, . . . , Xd, let

G = (X1, X2, . . . , Xd, E(G))

denote a d-partite d-uniform hypergraph on vertex set V (G) = ∪di=1Xi and
edge set E(G) ⊆ [V (G)]d, where for each E ∈ E(G) and each i = 1, . . . , d,
|E ∩Xi| = 1 holds; the sets X1, . . . , Xd will be called partite sets.

Let K(d)(n1, n2, . . . , nd) denote the complete d-partite d-uniform hyper-
graph on

∑d
i=1 ni vertices, partitioned into sets of sizes n1, n2 . . . , nd, and
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having
∏d
i=1 ni edges, each edge containing exactly one vertex from each par-

tite set. The complete d-partite d-uniform hypergraph with two vertices in
each partite set will be denoted by K(d)(2, 2, . . . , 2). For any d-uniform hy-
pergraph H, the maximum number of d-hyperedges in any H-free hypergraph
on n vertices is denoted by ex(n,H). In 1964, Erdős [5] (cf. equation (4.2)
in [12]) showed that for each d and m ≥ 2d,

ex(k,K(d)(2, 2, . . . , 2)) ≤ kd−
1

2d−1 . (6)

For d > 2, there is still an order of magnitude gap between the lower and
upper bounds for ex(n,K(d)(2, 2, . . . , 2)) (see [21] for discussion). Using these
partite hypergraphs, we now give a novel proof of Theorem 2.1 by showing

that if A ⊆ [1, n] and |A| ≥ (3d)dn1− 1

2d , then A contains an affine d-cube;
we make no attempt to optimize constants (since this result is implied by
Theorem 2.3).

A hypergraph proof of Theorem 2.1: Fix d ≥ 2, m ≥ 2d, and let

n = m2. Let A ⊂ [1, n] with |A| ≥ cn1− 1

2d , where c = (3d)d. For any q ∈
[1, n], let (s(q), t(q)) ∈ ([0,m − 1])2 be the unique pair of integers satisfying
q − 1 = s(q)

√
n+ t(q). For each q ∈ A, define

Eq = {(z1, . . . , zd) ∈ ([−m,m])d :
d−1∑

i=1

zi = s(q), zd = t(q)}.

If s ∈ [0,m − 1], then are at least md−2 ways of writing s =
∑d−1
i=1 zi, where

each zi ∈ [−m,m] and so for each q ∈ [1, n], |Eq| ≥ md−2.
Now examine the d-partite d-uniform graph G = (X1, X2, . . . , Xd, E(G))

defined by letting each Xi be a distinct copy of the integers [−m,m] and set-

ting E(G) = ∪q∈AEq. Then |E(G)| ≥ |A|md−2 ≥ cn1− 1

2dmd−2 ≥ cmd− 1

2d−1 ≥
(d(2m+ 1))d−

1

2d−1 .
By the result of Erdős given in equation (6) with |V (G)| = k = d(2m+1),

there exists a copy of K(d)(2, . . . , 2) in G on, say, vertices y1, z1, y2, z2, . . .,
yd, zd, where for each i, {yi, zi} ⊂ Xi and yi < zi. Such a copy corresponds
to the affine d-cube H(x0, x1, . . . , xd), using x0 = yd + m

∑d−1
i=1 yi, for each

i = 1, . . . , d− 1, xi = (zi − yi)m and xd = zd − yd. 2
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6 Bounds on h(d, r); proof of Theorem 2.5

Proof of upper bound in Theorem 2.5: Fix d ≥ 3 and r ≥ 2 and let
n = (2r)2d−1

. Then n ≥ 22d ≥ (2d−2
ln 2

)2, large enough to satisfy the condition
in Corollary 2.4. If [1, n] is partitioned into r parts, then by the pigeon-

hole principle, one part is larger than n/r ≥ 2n1− 1

2d−1 , and so Corollary 2.4
guarantees an affine d-cube in that part. Hence h(d, r) ≤ (2r)2d−1

. 2

On the other hand, the lower bound for h(d, r) (in Theorem 2.5) requires
more development. We devote the remainder of this section to it. By defini-
tion, to prove that n ≤ h(d, r), we need to show that there exists an r-coloring
of the set [1, n] which prevents monochromatic affine d-cubes. Indeed, our
proof relies on finding, for a given d and n, as small as possible value for such
an r, a “lower coloring bound”. The following simple idea will be useful.

Lemma 6.1 If a finite collection X of distinct positive integers does not
contain any replete affine d-cubes and does not contain any arithmetic pro-
gressions of length three, then X does not contain any affine d-cubes.

Proof: Let X satisfy the assumptions. Suppose H = H(x0, x1, . . . , xd) ⊂ X
is an affine d-cube, but is not replete. Then there exist I ⊂ [1, d] and J ⊂
[1, d], I 6= J , so that

x0 +
∑

i∈I
xi = x0 +

∑

j∈J
xj,

giving ∑

i∈I\J
xi =

∑

j∈J\I
xj 6= 0.

In this case,
x0 +

∑

i∈I∩J
xi, x0 +

∑

i∈I
xi, x0 +

∑

i∈I∪J
xj,

is an arithmetic progression, contrary to our assumption. 2

We will partition [1, n] into cube-free sets in two stages. First, we partition
[1, n] into sets none of which contain any three term arithmetic progressions.
We then refine this partition into sets not containing any replete affine d-
cubes. In this case, each resulting set will not contain any AP3, nor any
replete affine d-cubes, and then we apply Lemma 6.1.
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6.1 AP3-free partitioning

Adapting Behrend’s [1] proof (cf. [16], Theorem 6.6, lower bound) gives
a partition result.

Theorem 6.2 For sufficiently large n, there exists a partition [1, n] =

X1 ∪ . . . ∪Xq, q < e3
√

lnn so that each Xi is AP3-free and |Xi| ≤ n/eln 2
√

lnn.

Proof: Set d = be
√

lnnc (not to be confused with the dimension d of the affine

cube as in the rest of this paper), k = d ln(n+1)
ln(2d)

e − 1 and for each x ∈ [1, n],
write

x =
k∑

i=0

xi(2d)i,

where for each i, 0 ≤ xi ≤ 2d − 1. Note that due to our choice of k,
(2d)k < n+ 1 ≤ (2d)k+1 holds. Put

Xn,d = {x ∈ [n] : 0 ≤ xi ≤ d− 1 for all i}.
For I ⊂ [0, k], set

yI =
∑

i∈I
d(2d)i

and
YI = yI +Xn,d = {yI + x : x ∈ Xn,d}.

This gives Y∅ = Xn,d and |YI | = |Xn,d| for every I ⊆ [0, k]. For x =∑k
i=0 xi(2d)i, let

I = I(x) = {i ∈ [0, k] : xi ≥ d};
then

x− yI(x) =
∑

i6∈I(x)

xi(2d)i +
∑

i∈I(x)

(xi − d)(2d)i

is an element of Xn,d, and so [n] =
⋃

I⊆[0,k]

YI is a partition. For an integer s

set

Xn,d,s =

{
x ∈ Xn,d :

k∑

i=0

x2
i = s

}

and for each I ⊆ [0, k], put

YI,s = yI +Xn,d,s = {yI + x : x ∈ Xn,d,s}.
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Figure 1: Partitioning integers written in base 2d

By definition, Xn,d = ∪sXn,d,s and so also YI = ∪sYI,s are partitions, where
there are (d − 1)2(k + 1) + 1 choices for s (including zero) and 2k+1 choices
for I. Thus,

[1, n] =
⋃

I⊆[0,k]

(d−1)2(k+1)⋃

s=0

YI,s

is a partition of [n] into at most q = 2k+1((d − 1)2(k + 1) + 1) parts (each
corresponding to a sphere in (k + 1)-dimensional Euclidean space).

For the case where k = 1 (two coordinates), the different YI ’s can be
thought of as translations of a square in a quadrant of the cartesian plane
(see Figure 1); the similar notion holds in k+1 dimensional Euclidean space.
We claim that each part YI,s is a collection of integers which does not contain
an arithmetic progression of length three. Since each YI,s = yI + Xn,d,s

is a translate of Xn,d,s, it suffices to show that Xn,d,s does not contain an
arithmetic progression. This has been, however, shown by Behrend [1]. Here,
we give the proof for completeness:

Suppose x =
∑
xi(2d)i, z = x+y

2
=
∑
zi(2d)i, and y =

∑
yi(2d)i are

distinct elements of Xn,d,s. For each i, since xi, yi, and zi are all less than d,

13



xi + yi < 2d, so no carrying occurs, that is, xi+yi
2

= zi. However,

s =
∑

x2
i =

∑
y2
i =

∑(
xi + yi

2

)2

implies
∑
x2
i +

∑
y2
i =

∑
(xi+yi)

2/2, which implies
∑

(xi−yi)2 = 0 and hence
x = y, a contradiction.

With the above choice of d (and hence also k) we minimize the order of
magnitude of q = 2k+1((d− 1)2(k + 1) + 1), the number of partition classes.

Note that for sufficiently large n, k <
√

ln(n+ 1) and therefore

q < 2k+1d2(k + 1)

≤ eln 2
√

ln(n+1)+1+2
√

lnn+ln
√

ln(n+1)

< e3
√

lnn

for sufficiently large n. The last inequality in the statement of the theorem
follows from the crude upper bound |YI,s| ≤ |YI | ∼ n/2k+1. 2

6.2 Replete-cube-free, density upper bound

The proof of the following result employs the standard deletion technique
(cp. [4]).

Lemma 6.3 For each d ≥ 2 and every set X of positive integers there
exists an A ⊂ X with

|A| ≥ 1

8
|X|1− d

2d−1 .

which does not contain any replete affine d-cubes.

Proof of Lemma 6.3: Fix d ≥ 2, X and let

p = |X|− d

2d−1 .

Without loss of generality, we can assume that X is large enough so that
1
8
|X|1− d

2d−1 > 2d−1, because if not, then any set A of at most 2d−1 elements
would satisfy the lemma.

14



Let Y be a random subset of X whose elements are chosen independently
with probability p.

Since any affine d-cube is determined uniquely by d+ 1 distinct integers
in X (the smallest of which plays the role of x0, the rest the roles of x0 +
x1, . . . , x0 + xd in the definition of affine d-cube), the expected number of
replete affine d-cube’s in Y is easily bounded above by

( |X|
d+ 1

)
p2d .

Therefore (by Markov’s inequality), with probability at least 1/2, the number
of replete affine d-cubes in Y does not exceed

2

( |X|
d+ 1

)
p2d <

1

3
|X|p. (7)

On the other hand, the number of elements in any random subset Y
is a binomially distributed random variable with expectation |X|p. Given

the size of |X|p, we have
⌊

1
2
|X|p

⌋
< |X|p, and a simple argument (see [7]

p. 151, for example) using the fact that the sequence {
(|X|
j

)
pj(1−p)|X|−j}|X|j=0

is increasing from j = 0 to (|X|+1)p and decreasing afterwards, we conclude
that

Prob(|Y | ≥
⌊

1

2
|X|p

⌋
) >

1

2
. (8)

Hence there exists an instance of A∗ ⊂ X satisfying both of the above events;
fix such an A∗. Due to equations (7) and (8), deleting an element from each
replete affine d-cube in A∗, we get a set A with no replete affine d-cube such
that

|A| ≥ |A∗| − 2

( |X|
d+ 1

)
>
⌊

1

2
|X|p

⌋
− 1

3
|X|p > 1

8
|X|p,

where the last inequality follows from the restriction on |X|p. 2

6.3 Partitioning into replete-cube-free sets

To prove a lower bound for h(d, r), we show a way to partition any set
into subsets, each of which does not contain a replete affine d-cube; a greedy
coloring algorithm is used.
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Lemma 6.4 For each d ≥ 2, there exists a constant c = c(d) so that for
any set of positive integers X, there exists a partition X = A0∪A1∪ . . .∪Ar
into r + 1 ≤ c|X| d

2d−1 colors so that no color class contains a replete affine
d-cube.

Proof of Lemma 6.4: Set c = 12(2d−1)
d ln 2

; we will give an r + 1-coloring
X = A0 ∪ A1 ∪ . . . ∪ Ar with no replete affine d-cube in any one color class
Ai. By Lemma 6.3, there is a set A1 ⊂ X containing no replete affine d-cube
and

1

8

( |X|
2

)1− d

2d−1

≤ 1

8
|X|1− d

2d−1 ≤ |A1| ≤ |X|/2.

Since |X\A1| ≥ |X|/2, by Lemma 6.3 (applied to sets of size |X|/2), we can
choose A2 ⊆ X\A1 containing no replete affine d-cube and

1

8

( |X|
2

)1− d

2d−1

≤ |A2| ≤ |X|
2
.

Continue this process, by Lemma 6.3 recursively choose (pairwise disjoint)
sets

A1, A2, . . . , Ar1 ,

where for each j = 1, . . . , r1, Aj ⊂ X is free of replete affine d-cubes,

Aj ⊂ X\
j−1⋃

i=1

Ai, and |Aj| > 1

8

( |X|
2

)1− d

2d−1

(9)

with r1 the least so that

|X\
r1⋃

i=1

Ai| < |X|
2
.

Without loss of generality, we can also assume that

|X\
r1⋃

i=1

Ai| ≥ |X|
4

(10)

since we can limit our greed by possibly taking Ar1 smaller than maximal
size.
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Combining (9) and (10), with Lemma 6.3, we infer that

r1 ≤
3
4
|X|

1
8

( |X|
2

)1− d

2d−1

= 12

( |X|
2

) d

2d−1

.

Again, by Lemma 6.3 (with |X|/4 as the set size), choose successively
Ar1+1, Ar1+2, . . . , Ar1+r2 , where for each j = r1 + 1, . . . , r1 + r2, the relation
(9) holds and

1

8

( |X|
4

)1− d

2d−1

≤ |Aj| ≤ |X|
4
,

with r2 the smallest so that

∣∣∣∣∣X\
r1+r2⋃

i=1

Ai

∣∣∣∣∣ <
|X|
4

while
|X|
8

<

∣∣∣∣∣X\
r1+r2⋃

i=1

Ai

∣∣∣∣∣ .

In this case,

r2 ≤
3
8
|X|

1
8

( |X|
4

)1− d

2d−1

= 12

( |X|
4

) d

2d−1

.

Continuing this greedy process using 1 + r1 + r2 + · · · rk colors, where
k = blog2 |X|c − d+ 1, we color all but at most 2d − 1 elements of X; these
remaining we call the color class A0. Thus using 1 + r1 + r2 + · · · rk colors
one can color X with no color class containing a replete affine d-cube. Since

k∑

i=1

ri ≤ 12
∞∑

i=1

( |X|
2i

) d

2d−1

=
12

2
d

2d−1 − 1
|X| d

2d−1

< 12
2d − 1

d ln 2
|X| d

2d−1

we are done. 2
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6.4 Final step in proof of lower bound for h(d, r)

We now prove for d ≥ 2, and r ≥ 2 that r
2d−1
d

(1−o(1)) ≤ h(d, r), where o(1)
tends to zero as r increases.
Proof of lower bound in Theorem 2.5: Fix n large (large enough to apply

Theorem 6.2). It suffices to provide a partition of [1, n] into at most n
d+o(1)

2d−1

parts, each part affine d-cube-free. By Theorem 6.2, let [1, n] = X1∪ . . .∪Xq

be a partition into at most q = e3
√

lnn parts, each Xi not containing any three
term arithmetic progression, and each |Xi| ≤ n/2

√
lnn. For each i = 1, . . . q,

by Lemma 6.4, partition Xi = Ai,1 ∪ . . . ∪ Ai,k(i),

k(i) ≤ 12

2
d

2d−1

|Xi|
d

2d−1 <
12

2
d

2d−1

(
n/2

√
lnn
) d

2d−1

into parts, none of which contains a replete affine d-cube. For each i =
1, . . . , q and for each j = 1, . . . , k(i), Ai,j contains neither a three term arith-
metic progression nor a replete affine d-cube, so by Lemma 6.1, each Ai,j is
affine d-cube-free. The total number of partitions is at most

q ·max k(i) ≤ e3
√

lnn · 12

2
d

2d−1 − 1
(n/2

√
lnn)

d

2d−1

= n
d+o(1)

2d−1 ,

For large n. 2

We conclude by noting that we have proved Theorem 2.5 for d ≥ 2,
however this is only an improvement over known results for d ≥ 3 (cf [2]).
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