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Abstract

Three classes of finite structures are related by extremal properties:
complete d-partite d-uniform hypergraphs, d-dimensional affine cubes of
integers, and families of 2d sets forming a d-dimensional Boolean alge-
bra. We review extremal results for each of these classes and derive new
ones for Boolean algebras and hypergraphs, several obtained by employ-
ing relationships between the three classes. Related partition or coloring
problems are also studied for Boolean algebras. Density results are given
for Boolean algebras of sets all of whose atoms are the same size.

1 Introduction

In this section we state definitions and results for Boolean algebras of sets.
We defer the proofs of these main results until Sections 4 and 5. In Section
2 we present needed density theorems for certain partite hypergraphs, while
improving slightly some known bounds. Section 3 contains facts about certain
families of integers, also required for proofs regarding Boolean algebras.

For a set X, P(X) = {Y : Y ⊆ X} denotes the power set of X.

Definition 1.1 A collection B ⊆ P(X) forms a d-dimensional Boolean al-
gebra if and only if there exist pairwise disjoint sets X0, X1, . . . , Xd ∈ P(X),
all non-empty with perhaps the exception of X0, so that

B =

{
X0 ∪

⋃

i∈I
Xi : I ⊆ [1, d]

}
.

∗Mathematics and Statistics, McMaster University, Hamilton, Canada, L8S 4K1.
(triangle@math.mcmaster.ca)
†Mathematics and Computer Science, Emory University, Atlanta, GA 30322.

(rodl@mathcs.emory.edu) Supported by NSF grant DMS-9704114.
‡Courant Institute of Mathematical Sciences, New York University, New York, NY 10012.

(sidorenk@mfdd4.cims.nyu.edu.tex)

1



In general, we shall restrict ourselves to the case where X is finite. It will
often be convenient to use the notation [n] = [1, n] = {1, 2, . . . , n} and use
X = [n].

Definition 1.2 Given an n-element set X and a positive integer d, define
b(n, d) to be the maximum size of a family F ⊂ P(X) which does not contain a
d-dimensional Boolean algebra.

Note that a 1-dimensional Boolean algebra is simply a pair of sets, one
contained in the other and so, by Sperner’s theorem (see [40] for one of many
proofs),

b(n, 1) =
(

n

bn/2c
)
∼ (
√

2/π)n−1/2 · 2n.

Erdős and Kleitman [16] found that there exist constants c1 and c2 so that for
n sufficiently large,

c1n
−1/4 · 2n ≤ b(n, 2) ≤ c2n−1/4 · 2n.

Voigt [46] asked about a general bound for b(n, d). Such a question turns out
to be quite difficult, and bounds for general d are far apart. In Theorems 4.2
and 4.3 we show that for each d ≥ 1 there exists a positive constant c so that
for n sufficiently large,

n
− d

2d+1−2
(1−o(1)) · 2n ≤ b(n, d) ≤ cn−1/2d · 2n.

Definition 1.3 Given an n-element set X and positive integer d, define
r(d, n) to be the largest integer so that for every partition P(X) = F1 ∪ F2 ∪
· · ·∪Fr(d,n) into r(d, n) color classes, one class contains a d-dimensional Boolean
algebra.

We observe that r(1, n) = n and in Theorem 4.6, we show that

3
4

(1− o(1))n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2.

For d > 2, Theorem 4.7 gives bounds of the form

cn1/2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1))

.

Definition 1.4 A d-dimensional Boolean algebra B = {B0 ∪
⋃
i∈I Bi : I ⊆

[1, d]} is said to be uniform if |B1| = |B2| = . . . = |Bd|. Define bu(n, d) to
be the maximum size of a family in P([n]) which does not contain a uniform
d-dimensional Boolean algebra.

In Theorem 5.1, we show that for any ε > 0 and n large enough,

1
no(1)

2n ≤ bu(n, d) ≤ ε · 2n.
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2 Density results for complete d-partite hyper-
graphs

2.1 Notation

Here, and throughout this paper, we use the standard notation [X]s = {S ⊂ X :
|S| = s}. A simple d-uniform hypergraph is a pair G = (V, E) = (V (G), E(G)),
with vertex set V and set E ⊆ [V ]d of hyperedges, (also called d-hyperedges or
d-edges). An ordinary graph is a 2-uniform hypergraph, with hyperedges called,
simply, edges. A d-uniform hypergraph G = (V, E) is called k-partite if there ex-
ists a partition V = X1∪· · ·∪Xk of the vertex set into partite sets so that for each
E ∈ E and each Xi, |E ∩Xi| ≤ 1 (and so each hyperedge in d-partite d-uniform
hypergraph has precisely one vertex from each partite set). A d-partite hyper-
graph (V, E) with partite sets X1, X2, . . . , Xd, is denoted (X1, X2, . . . , Xd, E).
The complete d-partite d-uniform hypergraph with two vertices in each partite
set and having 2d hyperedges is denoted by K(d)(2, 2, . . . , 2). The graph C4,
also denoted K(2)(2, 2) or K2,2, is such an example.

For any d-uniform hypergraph H, we let ex(n,H) denote the maximum
number of d-hyperedges in a hypergraph on n vertices which does not contain
a copy of H. See, for example, [6], [19], [20], [24], or [43] for further references
on extremal numbers.

2.2 Known bounds for ex(n,K(d)(2, 2, . . . , 2))

2.2.1 Upper bounds

Upper bounds for ex(n,K2,2) have been well studied (see for example, [8],
[13], [15], [17], [38]). As in, for example, [38], counting pairs of vertices in
neighborhoods yields

ex(n,K2,2) ≤ (1 +
√

4n− 3)n/4 = (1 + (o))
1
2
n3/2. (1)

The same technique gives a similar bound for bipartite graphs.

Lemma 2.1 If G is an equibipartite graph on n vertices (n/2 in each partite
set), and |E(G)| > n

4 (1 +
√

2n− 3), then G contains a K2,2.

To give the lower bound on r(2, n) in Theorem 4.6, we employ a result closely
related to Lemma 2.1, one for ordered graphs originally found by Koubek and
Rödl [37]. For completeness, we include a simplified version of their proof. We
consider graphs on the vertex set {0, 1, . . . , n−1} with directed edges (i, j) where
i < j. Let ~C4 denote the particular ordered 4-cycle which has each of the first
two vertices connected to each of the last two. Let p(n) denote the maximum
number of edges in an ordered graph on n vertices which does not contain a
copy of ~C4.
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Theorem 2.2 p(n) ≤ (1 + o(1))2
3n

3/2.

Proof: Fix a graph G on vertex set {0, 1, . . . n−1} with edge set E and suppose
that G contains no ~C4. Let 1 < m < n and put m = αn. For each j =
1, . . . , n − 1, put yj = |{i < m : (i, j) ∈ E}|. If

∑n−1
j=1

(
yj
2

)
>
(
m
2

)
were to hold,

then for some a < b < m, there exist c, d with a < b < c < d inducing a ~C4, and
so

n−1∑

j=1

(
yj
2

)
≤
(
m

2

)
,

from which we infer
n−1∑

j=1

(yj − 1)2 < m2. (2)

Thus the total number of edges is
n−1∑

j=1

yj < n+
∑

(yj − 1)

< n+ (n
∑

(yj − 1)2)1/2

< n+ (nm2)1/2 (by (2))
= n+ αn3/2.

Since p((1− α)n) is an upper bound on the number of edges (i, j) with i ≥ m,

p(n) < n+ αn3/2 + p((1− α)n). (3)

Iterating (3) t− 1 more times,

p(n) < n

t−1∑

i=0

(1− α)i + αn3/2
t−1∑

i=0

((1− α)3/2) + p((1− α)tn)

= n

(
1− (1− α)t

α

)
+ αn3/2

(
1− (1− α)3t/2

1− (1− α)3/2

)
+ p((1− α)tn).

Letting t tend to infinity, (1−α)tn is eventually less than 2, and p(0) = p(1) = 0;
that is, p((1− α)tn) eventually vanishes and so

p(n) <
n

α
+

αn3/2

1− (1− α)3/2

≤ n

α
+

αn3/2

1− (1− 3
2α+ 3

4α
2)

(by series expansion)

=
n

α
+

2
3

(
n3/2

1− α/2
)

<
n

α
+

2
3

(1 + α)n3/2.
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Since α was arbitrary, p(n) ≤ (1 + o(1))2
3n

3/2. 2

In [15], Erdős gave an upper bound on K(d)(l, l, . . . , l)) for general d and l
(see also [24], equation (4.2)). We require only the case l = 2; in the original,
the proof yields a constant c < 1, and for simplicity, we omit it.

Theorem 2.3 (Erdős [15]) For each d and n sufficiently large,

ex(n,K(d)(2, 2, . . . , 2)) ≤ nd− 1
2d−1 .

This result is central in our finding an upper bound for b(n, d).

2.2.2 Lower bounds

In the special case where q is a prime power and n = q2 + q+ 1, Reiman [41]
showed

ex(n,K2,2) > (
√

4n− 3− 1)(n− 1)/4 = (1− o(1))
1
2
n3/2,

verifying that the upper bound (1) is asymptotically correct. Füredi [25] has
since shown that Reiman’s construction (see Problem 10.36 in [39]) is optimal,
giving ex(n,K2,2) precisely for those certain n. Unfortunately, for d ≥ 3, known
upper and lower bounds for ex(n,K(d)(2, . . . , 2)) are still very far apart.

In [15], it was stated that there is a universal constant C so that for any in-
tegers l > 1 and d > 1 and n sufficiently large, ex(n;K(d)(l, . . . , l)) ≥ nd−C/ld−1

.
Unfortunately, the proof for this claim has not been found (see also [24], p. 259).
By the probabilistic deletion method (see [14], [20]), for every d ≥ 2 there is a
constant c = c(d) so that for n sufficiently large,

ex(n,K(d)(2, 2, . . . , 2)) > cn
d− d

2d−1 . (4)

For d = 2, (4) yields only ex(n,K2,2) > cn4/3, still far from known constructive
lower bounds.

2.3 New lower bounds on ex(n,K(d)(2, 2, . . . , 2))

Our aim in this section is to lower the exponent in (4); this can be achieved
for many values of d ≥ 3 by employing a modification of the probabilistic dele-
tion method which uses affine subspaces.

We begin by examining the case d = 3. From (4) and Theorem 2.3, one has

cn18/7 < ex(n,K(3)(2, 2, 2)) ≤ n11/4

(for n large enough).
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Theorem 2.4 For n sufficiently large,

ex(n,K(3)(2, 2, 2)) >
n13/5

4 · 38/5
(1− o(1)).

In the proof of Theorem 2.4 (and subsequently, Theorem 2.5) we will freely
use the following well known fact (for example, see [10], p. 137). The number
of r-dimensional affine subspaces contained in an s-dimensional vector space on
`s points is

`s

`r

[
s
r

]

`

=
`s(`s − 1)(`s − `) · · · (`s − `r−1)
`r(`r − 1)(lr − `) · · · (`r − `r−1)

= (1 + o(1))`(s−r)(r+1).

where o(1) → 0 as ` → ∞. For the sake of clarity, we do not write d·e or b·c
and we make no effort to optimize constants in the following proof.

Proof of Theorem 2.4: Let ` ≤ (n/3)1/5 be a prime satisfying l5 = (n/3)(1−
o(1)). The existence of such an ` is guaranteed by the prime number theorem
(for example, see [4], Exercise 13, p. 102) for any n large enough (where o(1)→ 0
as n→∞). Set m = `5 and let V be a 5-dimensional vector space over GF(`).
Let X, Y be pairwise disjoint vertex sets each of cardinality m and disjoint from
V . We will construct a 3-uniform 3-partite hypergraph G′ = (X,Y, V, E ′) on
3m ∼ n vertices with no copies of K(3)(2, 2, 2) by first, naming a collection of
triples Ê ⊂ X × Y × V , then deleting some triples to form E ′.

Let L denote the set of lines (1-dimensional affine subspaces) and R be the
collection of 3-dimensional affine subspaces in V . Then |L| = (1 + o(1))`8, each
R ∈ R contains `3 vertices and (1 + o(1))`4 lines, and |R| = (1 + o(1))`8.

For each x ∈ X, y ∈ Y independently select at random Rxy ∈ R and put

E = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Rxy}.
Note that |E| = m2`3 = `13 for any member of our random space.

Let Q = Q(E) be a random variable counting the number of quintuples
(x1, x2, y1, y2, L) such that x1, x2 ∈ X, y1, y2 ∈ Y , L ∈ L and

L ⊆ Rx1y1 ∩Rx1y2 ∩Rx2y1 ∩Rx2y2 . (5)

Since for a fixed line L ∈ L and x ∈ X, y ∈ Y , the probability that L is
contained in Rxy is (1 − o(1))`−4 (the number of lines in Rxy divided by the
total number of lines), the expected number of lines L satisfying (5) is [(1 −
o(1))`−4]4(1+o(1))`8 = (1−o(1))`−8. Summing over all x1, x2 ∈ X, y1, y2 ∈ Y ,
we infer that the expected number of quintuples satisfying (5) equals

E(Q) =
(
m

2

)2

(1− o(1))`−8 = (1− o(1))
`12

4
.

Fix Ĝ = (X,Y, V, Ê) with Q(Ê) ≤ E(Q). For every x1, x2, y1, y2, L satis-
fying (5), fix one pair xi, yj , i ∈ {1, 2}, j ∈ {1, 2}, say, x1, y1 and delete all
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hyperedges of the form (x1, y1, z) : z ∈ L. This way, we delete ` hyperedges
for each quintuple satisfying (5) and thus Q(Ê) · ` ≤ ( 1

4 − o(1))
)
`13 hyperedges

altogether. Deleting these hyperedges from Ĝ we obtain a 3-uniform hyper-
graph G′ = (X,Y, V, E ′) with ( 3

4 − o(1))`13 hyperedges. To prove the theorem,
it remains only to show that G′ contains no K(3)(2, 2, 2).

Indeed, suppose that {x1, x2, y1, y2, z1, z2} is the vertex set of a copy of
K(3)(2, 2, 2) contained in G′; then (5) holds for the line L containing z1 and
z2. However, Ê\E ′ contains all triples of the form (x1, y1, z), z ∈ L, and hence
neither (x1, y1, z1) nor (x1, y1, z2) are in E ′, contradicting our assumption. 2

For larger d, if one attempts to similarly improve on (4) by extending the
affine space technique of Theorem 2.4, a certain condition on d must be met.
We first examine this condition, give the theorem, then after the proof, briefly
mention why this condition was necessary.

For d ≥ 3 define s = s(d) to be the smallest positive integer s (if it exists) so
that sd−1

2d−1
is an integer. By the Chinese remainder theorem, s(d) exists precisely

when d and 2d − 1 are relatively prime, and this holds, for example, when d is
a prime or a power of 2, and does not hold when, for example, d = 6.

Theorem 2.5 If d ≥ 3 is so that s = s(d) exists then there is a constant
c = c(d) and n0 = n0(d) so that for all n ≥ n0,

ex(n,K(d)(2, 2, . . . , 2)) > cn
d− d−1/s

2d−1 ,

Proof: Fix d ≥ 3 and s = s(d) and put

r =
s(d+ 1− 2d)− 1

1− 2d
= s− sd− 1

2d − 1
.

We imitate the proof of Theorem 2.4 (where d = 3, s = 5 and r = 3) and so
only outline the calculations.

Choose a prime ` ≤ (n/d)1/s satisfying `s = (1 − o(1))n/d, and let V be a
s-dimensional vector space over GF(`) on m = `s points. LetR be the collection
of r-dimensional affine subspaces of V and let L be the lines.

Let G = (X1, X2, . . . , Xd−1, V, E) be a random d-partite d-uniform hyper-
graph defined as follows. Each of X1, . . . , Xd−1 and V are pairwise disjoint
m-vertex sets. The hyperedge set E is defined by, for each x1 ∈ X1, . . . , xd−1 ∈
Xd−1 fixing at random Rx1,...,xd−1 ∈ R, and then setting

E = {(x1, . . . , xd−1, v) : x1 ∈ X1, . . . , xd−1 ∈ Xd−1, v ∈ Rx1,...,xd−1}.
The random G has |E| = md−1`r = `s(d−1)+r hyperedges.

Let Q = Q(E) be the random variable counting the number of (2d−1)-tuples
(x1, x1, x2, x2, . . . , xd−1, xd−1, L) (where each xi, xi ∈ Xi and L ∈ L) such that

L ⊆
⋂
{Rz1,z2...,zd−1 : (z1, . . . , zd−1) ∈ {x1, x1} × · · · × {xd−1xd−1}} (6)
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As before, the expected number of (2d− 1)-tuples satisfying (6) is

E(Q) =
(
m

2

)d−1(# of lines in an R

|L|
)2d−1

|L|

∼ 1
2d−1

`2(d−1)s

(
`2r−2

`2s−2

)2d−1

`2s−2

=
1

2d−1
`2sd−2−(s−r)2d

=
1

2d−1
`
2sd−1− sd−1

2d−1
2d−1

=
1

2d−1
`
sd− sd−1

2d−1
−1
.

Fix a hypergraph Ĝ = (X1, X2, . . . , Xd−1, V, Ê) with Q(Ê) ≤ E(Q). For each
(2d− 1)-tuple (x1, x1, . . . , xd−1, xd−1, L) satisfying (6), fix say, x1, x2, . . . , xd−1,
and for each v ∈ L delete the d-hyperedge (x1, . . . , xd−1, v) from Ê . Let G′ =
(X1, . . . , Xd−1, V, E ′) be the hypergraph which remains after deletion of these
edges. Since at most

Q(Ê) · ` ≤ 1
2d−1

`
sd− sd−1

2d−1

d-hyperedges have been deleted, we have

|E ′| ≥ 2d−1 − 1
2d−1

`
sd− sd−1

2d−1

= cn
d− d−1/s

2d−1

remaining edges, where c is a constant depending only on d. As in the proof of
Theorem 2.4, the hypergraph G′ contains no K(d)(2, . . . , 2). 2

In the statement of Theorem 2.5, we required that s(d) exists, or equivalently,
that gcd(d, 2d − 1) = 1. We now outline why this condition was necessary. For
the deletion aspect of the proof to work, we needed E(Q) · ` ≤ |Ê|, that is,
2sd− 1− (s− r)2d ≤ s(d− 1) + r, giving r ≤ s(2d−d−1)+1

2d−1
. On the other hand,

for this technique to yield an improvement over the exponent in (4), we require
r > s(2d−d−1)

2d−1
. Combining these inequalities, we get 0 < r(2d−1)−s(2d−d−1) ≤

1, and so r(2d− 1)− s(2d− d− 1) = 1. Thus 2d− 1 and 2d− d− 1 are relatively
prime, hence so are d and 2d − 1.

For example, when d = 4, Theorem 2.5 applies with s = 4 (and r = 3);
together with the upper bound given by Theorem 2.3, we get a constant c so
that

cn15/4 ≤ ex(n,K(4)(2, 2, 2, 2)) ≤ n31/8

holds for all sufficiently large n.
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3 Integers and cubes

3.1 Sidon sets

A Sidon set is a collection of integers whose pairwise sums a + b, (a 6= b)
are all distinct; these are also referred to as B2-sets. In the proof of the upper
bound in Theorem 4.6, we use the following result due to Singer [44] to produce
a partition into Sidon sets. See also [21] for a simple construction of a single
Sidon set, but with different bounds.

Theorem 3.1 (Singer) Let m be a prime power. There exist m+ 1 integers

0 ≤ x1 < x2 < . . . < xm+1 ≤ m2 +m

so that the m2 +m differences xi − xj , 1 ≤ i 6= j ≤ m+ 1, are distinct modulo
m2 +m+ 1.

For example, with m = 4, the integers 0, 1, 6, 8, and 18 have distinct
differences (modulo 21).

3.2 Affine cubes

Definition 3.2 For a non-negative integer x0 and positive integers x1, . . . , xd,
the family

H(x0, x1, . . . , xd) =

{
x0 +

∑

i∈I
xi : I ⊆ [1, d]

}

is called a d-dimensional affine cube, or simply, an affine d-cube.

Very closely related to Boolean algebras, we will be concerned with both
coloring and density results for affine d-cubes. The first result in this direction
is perhaps the first non-trivial result in Ramsey theory, published in 1892.

Theorem 3.3 (Hilbert [36]) For every r, d, there is a least number h(d, r)
so that for every coloring χ : [h(d, r)] → [r], there exists an affine d-cube
monochromatic under χ.

In [9] it was shown that h(2, r) = (1 + o(1))r2. Also in [9], it was noted that
there exist constants c1 and c2 so that

rc1d ≤ h(d, r) ≤ rcd2 , (7)

where c2 ∼ 2.6 follows from Hilbert’s proof (using Fibonacci numbers). We note
some improvements to this in Theorem 3.8.

Theorem 3.4 (Behrend [5]) There exists a constant c so that for m suf-
ficiently large, there exists B ⊂ [m] not containing any arithmetic progressions
of length three, and satisfying

|B| ≥ me−c
√

lnm = m1−o(1).
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By definition, for any affine d-cube H, |H| ≤ 2d trivially holds; we say that
an affine d-cube H is replete if |H| = 2d, that is, if all the sums defining H are
distinct. We now list some results from [33] and [34], for later use in Section 4.

Lemma 3.5 For each d, and every set X of positive integers, there exists
A ⊂ X not containing any replete affine d-cubes and

|A| ≥ 1
8
|X|1− d

2d−1 .

The following lemma is a combination of Theorem 3.4 and a special case of
Lemma 3.5, stated separately for later use in the proof of Theorem 4.2. The
notation [a, b] indicates a closed interval of integers.

Lemma 3.6 For every d there is a constant c so that for every k and every
m, there is a set S ⊂ [k + 1, k + m] containing no replete affine d-cubes nor
containing any arithmetic progression of length 3, yet has at least

|S| ≥ cm1− d

2d−1
(1−o(1))

elements.

Proof: By Theorem 3.4, let B ⊂ [1,m] containing no arithmetic progression,
and with

|B| ≥ me−
√

lnm = m1−o(1).

The translation of B, Bk = {b+ k : b ∈ B} also has no arithmetic progression.
With Bk playing the role of X, Lemma 3.5 yields S as desired. 2

Szemerédi [45] (Lemma p(δ, l), p. 93) gave a density version of Hilbert’s
theorem. Two more proofs of Szemerédi’s “cube lemma” were given in [39]
(problem 14.12), one of which was modified to give the following.

Theorem 3.7 For each d there exists a constant c so that for n sufficiently
large, if A ⊆ [1, n] satisfies |A| ≥ 2n1− 1

2d−1 , then A contains an affine d-cube.

Finding non-trivial lower bounds for density results seems to be quite hard.
An upper bound for the number h(d, r) is the trivial one obtained by an asso-
ciated density result, say Theorem 3.7.

Theorem 3.8 For each d ≥ 2, r ≥ 2,

r
2d−1
d (1−o(1)) ≤ h(d, r) ≤ (2r)2d−1

,

where o(1) tends to 0 as r increases.
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4 Boolean Algebras

4.1 Lower bound for b(n, d); a density result

To streamline the proof of the theorem, we provide the following simple
estimate regarding the number of subsets of a set which are close to the average
size.

Lemma 4.1 For n sufficiently large and each i satisfying −√n/2 ≤ i ≤√
n/2, (

n

n/2 + i

)
≥ 1√

e

(
n

n/2

)
.

Proof: It suffices to show the result for i =
√
n/2, which we shall assume is an

integer (as well as n/2).
(

n
n/2−√n/2

)
(
n
n/2

) =

√
n/2−1∏

j=0

n/2− j
n/2 +

√
n/2− j

=

√
n/2−1∏

j=0

(
1−

√
n

n+
√
n− 2j

)

≥
(

1− 1√
n

)√n/2

≥
(
e
−1/
√
n

1−1/
√
n

)√n/2

> e−1/2,

where the penultimate inequality follows from 1− x ≥ e−x/(1−x). 2

Theorem 4.2 For each d > 2 and n sufficiently large,

2nn−
d

2d+1−2
(1−o(1)) ≤ b(n, d).

Proof: Fix n and let X be a set of n elements. We will construct a large family
F of subsets of X which contains no d-dimensional algebra.

Applying Lemma 3.6 with m =
√
n and k = n

2 −
√
n

2 − 1, let

S ⊂
[
n

2
−
√
n

2
,
n

2
+
√
n

2

]

be a collection of
|S| = n

1
2− d

2d+1−2
(1−o(1))

11



integers that contains no replete affine d-cube and no arithmetic progression of
length three. Define

F = {Y ⊂ X : |Y | ∈ S}.
Calculating the size of F ,

|F| =
∑

s∈S

(
n

s

)

> |S|e−1/2

(
n

n/2

)
(by Lemma 4.1)

∼ |S| 1√
πen

2n

= 2nn−
d

2d+1−2
(1−o(1))

.

So F contains the desired number of elements. It remains to show that F does
not contain a d-dimensional algebra.

Suppose, in hopes of a contradiction, that there exist pairwise disjoint sub-
sets of X, say, B0, B1, . . . , Bd so that the family

B =

{
B0 ∪

⋃

i∈I
Bi : I ⊆ [1, d]

}

is contained entirely in F . If all of the sets in B are different sizes, then the set

{|B| : B ∈ B} =

{
|B0|+

∑

i∈I
|Bi| : I ⊆ [1, d]

}
⊂ S

is a replete affine d-cube, a contradiction.
So there must be two elements of B with the same size. Suppose that C,D ∈

B satisfy |C ∩D| = a and |C| = |D| = a+ b. Since B is a Boolean algebra, the
sets C ∩D, C, and C ∪ D are contained in B, but in this case, the respective
sizes (which are members of S) a, a+ b, a+ 2b form an arithmetic progression,
another contradiction.

We conclude that F does not contain any d-dimensional Boolean algebras.
2

4.2 Upper bound for b(n, d)

The proof of the following density result is based on the proof of a similar
statement in [42].

Theorem 4.3 For each d ≥ 1 there exists a constant c so that

b(n, d) ≤ cn−1/2d · 2n.

12



First we give a preparatory discussion of chains in Boolean lattices, then
give the proof of Theorem 4.3 which relies both on these notions and a result
from Section 2 on hypergraphs.

Let Y be a set of t vertices. A collection C ⊆ P(Y ) of subsets of Y is a chain
if and only if for every A,B ∈ C, either A ⊂ B or B ⊂ A. A chain C ⊆ P(Y ) is
symmetric if for every C ∈ C there exists C ′ ∈ C so that {|C|, |C ′|} = {dt/2e+
i, bt/2c− i} for some i ≥ 0. A chain is convex if whenever A ⊂ B ⊂ C and both
A and C are in the chain, then so is B.

There are a number of methods by which a t-dimensional Boolean lattice can
be partitioned into

(
t
bt/2c

)} disjoint symmetric convex chains (one is inductive,
likely due to de Bruin; also see [1], [2], pp. 436, 439, [31], or [32], p. 30).

Let C = {C1, C2, . . . , C( t
bt/2c)} be a decomposition of P(Y ) into disjoint sym-

metric convex chains, and let C>2i ⊂ C denote the subcollection of those chains
having length greater than 2i. Since each chain C ∈ C>2i contains a different
set with bt/2c − i vertices, it follows that

|C>2i| =
(

t

bt/2c − i
)
.

For any permutation π : Y → Y of the vertices of Y and for any chain
C ∈ C, the collection

π(C) = {π(C) : C ∈ C}
is also a chain, so

π(C) = {π(C) : C ∈ C}
is also a symmetric chain decomposition of P(Y ), with π(C>2i) ⊂ π(C).

Lemma 4.4 Let Y be a set of t elements. Fix D ⊂ Y and let

C = {C1, C2, . . . , C( t
bt/2c)}

be a fixed decomposition of the power set P(Y ) into disjoint symmetric convex
chains. If π : Y → Y is a permutation chosen randomly from the set of t!
permutations of Y , then

prob(D ∈ π(C) for some C ∈ C>2i) >
(

1− 2i+ 2
t

)i
.

Proof: If |D| ≤ bt/2c − i or |D| ≥ bt/2c + i, then since π(∪C>2i) contains all
sets of these sizes, then D ∈ π(C) for some C ∈ C>2i, that is, the probability is
1.

Now fix D ⊂ Y with bt/2c− i < |D| < bt/2c+ i. Set S = ∪C>2i∩ [Y ]|D|. Let
π : Y → Y be a random permutation. For a fixed S ⊂ Y chosen with |S| = |D|,

Prob(π−1(D) = S) =
|D|!(t− |D|)!

t!
=

1(
t
|D|
) .

13



Hence,

Prob(D ∈ π(S)) = Prob(π−1(D) ∈ S)

=
∑

S∈S
Prob(π−1(D) = S)

=
|S|(
t
|D|
)

=
|C>2i|(

t
|D|
)

≥
(

t
bt/2c−i

)
(

t
bt/2c

)

=
i−1∏

j=0

bt/2c − j
dt/2e+ i− j

≥
i−1∏

j=0

t/2− 1/2− j
t/2 + 1/2 + i− j

≥
i−1∏

j=0

(
1− i+ 1

t/2 + 1/2 + i− j
)

>

(
1− 2i+ 2

t

)i
. 2

The following fact follows from a simple averaging argument; we omit the
proof.

Lemma 4.5 Let H = (V1, . . . , Vd, E(H)) be a given d-partite d-uniform hy-
pergraph and let v ≤ min1≤i≤d{|Vi|}. For each i = 1, . . . , d, there exist vertex
sets Wi ⊆ Vi, |Wi| = v, so that the the subgraph H ′ induced by ∪di=1Wi has edge
density at least that of H, that is,

|E(H ′)|
vd

≥ |E(H)|
|V1| · . . . · |Vd| .

We are now prepared to prove an upper bound for b(n, d).

Proof of Theorem 4.3: Let X be a set of n elements and fix a positive integer
d. Let

c = 10d2−1/2d−1
dd−1/2d . (8)
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and F ⊂ P(X) satisfy
|F| ≥ cn−1/2d2n. (9)

We will show that F contains a Boolean algebra of dimension d.
Partition X = X1 ∪X2 ∪ . . .∪Xd into d sets, each with size bn/dc ≤ |Xj | ≤

dn/de. For each j = 1, . . . d, fix Cj , a symmetric chain decomposition of P(Xj);
for i to be determined later, let C>2i

j ⊆ Cj be the subcollection of those chains
longer than 2i. For each j = 1, . . . , d let πj : Xj → Xj denote a permutation
of Xj chosen randomly from the collection of all |Xj |! permutations on Xj (the
permutations π1, π2, . . . , πd are chosen independently). Let Fπ1,...,πd ⊂ F be a
random subset of F defined by

Fπ1,...,πd = {F ∈ F : ∀j = 1, . . . , d, ∃D(j) ∈ πj(C>2i
j ) with F ∩Xj ∈ D(j)}.

(10)
By Lemma 4.4, for any F ∈ F ,

Prob (F ∈ Fπ1,...,πd) >
d∏

j=1

(
1− 2i+ 2

|Xj |
)i
. (11)

Fix i = b
√
n/dc, sufficient for our purpose in what follows. Then for sufficiently

large n, as |Xj | ≥ bn/dc, the right hand side of (11) can be further bounded
from below by

(
1− 2

√
bn/dc+ 2
bn/dc

)b√n/dcd
>

(
1− 2.1√

n/d

)(
√
n/d)d

>

(
1
e2.1

)d
> (.1)d.

Hence the expected number of sets in Fπ1,...,πd is

E(|Fπ1,...,πd |) > (.1)d|F|. (12)

Fix a choice of π̂1, . . . , π̂d for which (12) is realized. For each j = 1, . . . , d,
set Dj = π̂j(C>2i

j ), the family of disjoint chains in Xj longer than 2i, and write

Dj =
{
Dj,kj : 1 ≤ kj ≤

( |Xj |
b|Xj |/2c − i

)}
.

Put G = Fπ̂1,...,π̂d . Note that by (10) and (12),

G = {F ∈ F : ∀j = 1, . . . , d, ∃D(j) ∈ Dj with F ∩Xj ∈ D(j)},
and

|G| > (.1)d|F|. (13)

For each choice of k1, . . . , kd (the ki’s not necessarily distinct), define the set
system

D1,k1 ⊗ · · · ⊗ Dd,kd = {∪dj=1Dj,kj : Dj,kj ∈ Dj,kj},

15



and also define
D =

⋃

k1,,...,kd

(D1,k1 ⊗ · · · ⊗ Dd,kd),

where now we have G = F ∩ D. Also for each j = 1, . . . , d, set sj = | ∪Dj | the
number of sets in chains in Dj . Furthermore, put

Gk1,...,kd = F ∩ (D1,k1 ⊗ · · · ⊗ Dd,kd).

We observe that by (10) and (13),

|G| =
∣∣∣∣∣∣
⋃

k1,...,kd

Gk1,...,kd

∣∣∣∣∣∣
= |F ∩ D| > (.1)d|F|.

Since ∑

k1,...,kd

|D1,k1 | · · · |Dd,kd | = s1 · · · sd < 2n,

we infer that there is a choice of k̂1, . . . , k̂d so that

|Gk̂1,...,k̂d
|

|D1,k̂1
| · · · |Dd,k̂d |

≥ |G|
s1 · · · sd >

(.1)d|F|
2n

. (14)

Using (9), we obtain from (14),

|Gk̂1,...,k̂d
| > c(.1)d · n−1/2d |D1,k̂1

| · · · |Dd,k̂d |. (15)

By Lemma 4.5, for each j = 1, . . . , d, choose D∗
j,k̂j
⊂ Dj,k̂j with |D∗

j,k̂j
| =

2b
√
n/dc so that for

G∗
k̂1,...,k̂d

= F ∩ (D∗
1,k̂1
⊗ · · · ⊗ D∗

d,k̂d
),

the corresponding inequality to (15) holds, namely,

|G∗
k̂1,...,k̂d

| > c(.1)d · n−1/2d |D∗
1,k̂1
| · · · |D∗

d,k̂d
|

= c(.1)d · n−1/2d · (2b
√
n/dc)d.

For m = d · 2b
√
n/dc, then n ≥ (m/2)2 · 1/d, and hence

|G∗
k̂1,...,k̂d

| > c(.1)d
((m

2

)2 1
d

)−1/2d(m
d

)d

= c(.1)d21/2d−1
d−d+2−dmd−1/2d−1

. (16)

By the choice of c, (8) and (16) yield

|G∗
k̂1,...,k̂d

| > md−1/2d−1
. (17)
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For each j = 1, . . . , d consider Yj = D∗
j,k̂j

as a vertex set, vertices being
subsets of Xj in the chain D∗

j,k̂j
. Using the d-partite d-uniform hypergraph

H = (Y1, . . . , Yd,G∗k̂1,...,k̂d
),

then Theorem 2.3 (with d · 2b
√
n/dc as the number of vertices) and (17) imply

that there is a copy of K(d)(2, 2, . . . , 2) in H. That is, for each j = 1, . . . , d,
there are A0

j , A
1
j ∈ D∗j,k̂j with A0

j 6= A1
j , and, say, A0

j ⊂ A1
j , so that for any

choice of (δ1, . . . , δd) ∈ {0, 1}d,

Aδ11 ∪ . . . ∪Aδdd ∈ G∗k̂1,...,k̂d
⊂ F .

In this case,
{Aδ11 ∪ . . . ∪Aδdd : (δ1, . . . , δd) ∈ {0, 1}d}

is the desired d-dimensional Boolean algebra (see [30], Lemma 5.7) (with meet
(A0

1 ∪ · · · ∪A0
d) and join (A1

1 ∪ · · · ∪A1
d)) completing the proof. 2

4.3 Bounds on r(d, n); partition results

An easy proof by induction yields that for any positive integer n, r(1, n) = n.
We now examine the case d = 2.

Theorem 4.6 For n sufficiently large,

(1− o(1))
3
4
n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2.

Proof: We first show the lower bound. Let ε > 0, and fix a coloring

P([n]) = F1 ∪ F2 ∪ · · · ∪ Fr,

where r ≤ 3
√
n

4(1+ε) . By the pigeon-hole principle, there is one family Fk containing
at least (

n
2

)
3
√
n

4(1+ε)

∼ (1 + ε)
2
3
n3/2

intervals [i, j] ⊂ [n]. By Theorem 2.2, the graph ([n],Fk) induced by these
intervals contains a ~C4 on, say, vertices a < b < c < d. The intervals [a, c],
[b, c], [b, d], [a, d] form a monochromatic 2-dimensional Boolean algebra (where
X0 = [b, c], X1 = [a, b], and X2 = [c, d]), proving the lower bound.

To see the upper bound, it suffices to give a (1 +o(1))n1/2-coloring of P([n])
which multicolors every 2-dimensional Boolean algebra; this will be done in a
manner similar to that used in [9] and in [11] (or summarized in [29]). Let m be
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a prime power and let 0 ≤ x1 < x2 . . . < xm+1 < m2 +m+ 1 be as in (Singer’s)
Theorem 3.1. For each j = 1, . . . ,m+ 1, define

Yj = {xi − xj (mod m2 +m+ 1) : 1 ≤ i ≤ m+ 1, i 6= j} ⊂ [1,m2 +m],

and put Y0 = {0}. A simple calculation shows that if {a, b, c, d} ⊂ Yj for some
j, and a + b = c + d, then {a, b} = {c, d}. Furthermore, the Yj ’s partition the
set [0,m2 +m] and for each j 6= 0, |Yj | = m.

For each j = 0, 1, 2, . . . ,m+ 1, define

Sj = {X ⊂ [1,m2 +m] : |X| ∈ Yj}.
This defines a decomposition of the power set of [1,m2 +m] into m+ 2 classes.
If for some j, there were sets A,B,C,D ∈ Sj with |A| + |B| = |C| + |D|,
then {|A|, |B|} = {|C|, |D|}, and so these four sets do not form a 2-dimensional
Boolean algebra (see [16]).

Now for a given n, let m = m(n) be the smallest prime power so that n ≤
m2+m. Since the ratio between consecutive prime powers tends to one, (as n→
∞) the minimum number of color classes required to prevent a monochromatic
2-dimensional Boolean algebra is at most m + 2 = (1 + o(1))

√
m2 +m = (1 +

o(1))
√
n. 2

In the proof of the lower bound r(2, n) ≥ (1 − o(1)) 3
4

√
n, the colors of only(

n
2

)
sets (intervals) mattered, not the entire power set, so one might suspect

that the lower bound can be improved. We note that the above idea extends a
proof technique using only n2/4 sets, an argument following from ideas in [16],
and [18] (as mentioned in [3]) which yields r(2, n) ≥ (1− o(1))

√
n/2; instead of

using all intervals and Theorem 2.2, use only those containing n/2 and n/2 + 1,
and then apply Lemma 2.1 to the corresponding bipartite graph.

For general d, upper and lower bounds on r(d, n) are still far apart.

Theorem 4.7 For d > 2, there exists a constant c1 so that

c1n
1/2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1))

,

where o(1) tends to 0 as n tends to infinity.

Proof: To prove the lower bound, let c be the constant from Theorem 4.3
and put c1 = 1/c. If we color P([n]) with fewer than c1n

1/2d colors, then one
color class contains cn−1/2d2n elements. By Theorem 4.3 one class contains a
d-dimensional Boolean algebra.

For a number r, to prove that r(d, n) < r, it suffices to produce a partition
P([n]) = F1∪· · ·∪Fr so that each Fi contains no d-dimensional Boolean algebra
of sets. It follows from the proof of the lower bound in Theorem 3.8 that there
exists a partition [n] = S1 ∪ S2 ∪ · · · ∪ Sr, with r = n

d

2d−1
(1+o(1)), each class

containing no replete affine d-cube, nor any arithmetic progressions. For each
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i = 1, . . . , d, put Fi = {F ⊂ [n] : |F | ∈ Si}. As in the proof of Theorem 4.2,
it is now not difficult to see that each Fi does not contain any d-dimensional
Boolean algebras. 2

5 Uniform Boolean algebras

Recall that a d-dimensional Boolean algebra B = {B0 ∪
⋃
i∈I Bi : I ⊆ [1, d]}

is called uniform if B1, . . . , Bd are all the same size, and bu(n, d) is the maxi-
mum size of a family in P([n]) which does not contain a uniform d-dimensional
Boolean algebra.

Theorem 5.1 For each d, and any ε > 0, there exists n0 so that for every
n ≥ n0,

1
no(1)

2n ≤ bu(n, d) ≤ ε · 2n.

In Theorem 4.3 we showed that if a subset of P([n]) is chosen with cn−1/2d2n

elements, then this subset contains a d-dimensional Boolean algebra. If the
factor cn−1/2d is weakened to some fixed ε > 0, then, for all n large enough, the
d-dimensional Boolean algebra guaranteed by Theorem 4.3 can be taken to be
uniform. The main tool used to see this is a density version of the Hales-Jewett
theorem, which we now briefly describe.

Let A = {a1, a2, . . . , at} be an alphabet of t distinct letters. Let Am = {f :
[m]→ A} denote the set of words (also called points) f = (f(1), f(2), . . . , f(m))
of length m formed by letters from A. A combinatorial line in Am is a collection
of words {g1, . . . , gt} ⊂ Am so that there exists a partition of the coordinates
[m] = F ∪M [F-ixed and M-oving] so that all gi’s agree on the fixed coordinates,
and vary over the alphabet on the moving coordinates, that is, for every gp, gq

gp(i) = gq(i) for each i ∈ F , and

gp(j) = ap for each j ∈M .

A density version of the Hales-Jewett theorem [35] was proved by Furstenberg
and Katznelson [28] (or see [27] for survey paper):

Theorem 5.2 For any ε > 0 and any alphabet A, |A| = t, there exists m0 so
that for m ≥ m0, if S ⊂ Am satisfies |S| ≥ εtm, then S contains a combinatorial
line.

Proof of upper bound in Theorem 5.1: Put A = P([d]), t = 2d = |A|,
and without loss, assume that m = n/d is an integer. Any word from Am has
the form f = (S1, . . . , Sm), where for each i = 1, . . . ,m, Si ⊂ [d]. We will use
special notation to describe subsets of [n] = [md]. For each i = 1, . . . ,m, let
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[d]i = {1i, 2i, . . . , di} be a copy of [d] and write [n] = [md] = ∪mi=1[d]i, the union
of m disjoint copies of [d]. Consider the bijection ψ : Am → P(md) defined by

ψ((S1, . . . , Sm)) = ∪mi=1{si : s ∈ Si}.
For example, with d = 2, m = 6 and f = (∅, {2}, {1, 2}, ∅, {2}, {1}), we have

ψ(f) = {22, 13, 23, 25, 16}.
Now fix ε > 0 and d and let m be so large that Theorem 5.2 applies, and

let L = {f1, f2, . . . , ft} be a combinatorial line in Am with fixed coordinates
F ⊂ [m] and moving coordinates M ⊂ [m]. We claim that the family ψ(L) =
{ψ(fj) : j = 1, . . . , t} is a d-dimensional uniform Boolean algebra.

Let B0 be the union of those subsets of [d]i’s determined by the fixed coor-
dinates; to be precise, for each i = 1, . . . ,m, put f1(i) = Si and

B0 =
⋃

i∈F
φ(f1(i)) =

⋃

i∈F
{si : s ∈ Si}.

Thus, B0 can be interpreted as ψ(f1) provided f1 is chosen so that f1(j) = ∅
(or ∅j) for each j ∈M . For each j = 1, 2, . . . , d, put Bj = {ji : i ∈M}. Clearly
|B1| = |B2| = . . . = |Bd| = |M |, and all the Bj ’s are disjoint. Now, since for
any set J ⊂ [d], there is a word f ∈ L so that for every i ∈M , f(i) = J , we see
that for each J ⊂ [1, d],


B0 ∪

⋃

j∈J
Bj


 ∈ ψ(L). 2

Proof of lower bound in Theorem 5.1: Essentially, one duplicates the proof
of Theorem 4.2, except without mention of the “Hilbert set”.

Let S ⊂ [n2 −
√
n

2 , n2 +
√
n

2 ] which contains no arithmetic progression of
length 3 and is as large as possible. By Behrend’s theorem (Theorem 3.4,
using m =

√
n, and then translating the set B by n

2 −
√
n

2 − 1), we can have
|S| = (n1/2)1−o(1) = n1/2−o(1). Defining S = {X ⊂ [n] : |X| ∈ S},

|S| ≥
(

n

n/2−√n
)
|S| ∼ c 2n√

n
|S| = 2n

no(1)
.

It is now not difficult to see that S contains no d-dimensional uniform
Boolean algebra. 2

6 Conclusion

It might be reasonable to look for a relationship between lower bounds for
ex(n,K(d)(2, 2, . . . , 2)) and b(n, d)—after all, upper bounds are analogous, and
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one is used to prove the other (see the proof of Theorem 4.3). Efforts to find
the putative correspondence have failed as of yet. If one can improve the known
upper bound on ex(n,K(d)(2, 2, . . . , 2)) for some d > 2, then one immediately
improves other results in this paper (e.g., Theorem 4.3).

One could ask extremal questions for families of sets forbidding only certain
types of substructures in a Boolean algebra, as in union-free families; instead of
investigating these here, we refer the reader to [3] and [22] for an introduction
and further references. We may consider the work here as one kind of extension
of Sperner’s Lemma; many other interesting extensions of Sperner’s Lemma
have been made in similar directions, for example, [12], [23], and [26]. Another
perspective may be taken from the point of hypercubes and extremal questions
thereof (e.g., see [7]).

To summarize, we list some of the bounds mentioned in this paper. For
d = 2:

1− o(1)
2n1/2

≤ ex(n,K2,2)
n2

≤ 1 + o(1)
2n1/2

;

(1− o(1))r2 ≤ h(2, r) ≤ (1 + o(1))r2;

(1− o(1))
3
4
n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2;

c1n
−1/4 ≤ b(n, 2)

2n
≤ c2n−1/4.

For d ≥ 3:

c

n
d

2d−1

≤ ex(n,K(d)(2, 2, . . . , 2))
nd

≤ 1

n
1

2d−1
;

r
2d−1
d (1−o(1)) ≤ h(d, r) ≤ (2r)2d−1

;

cn
1

2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1));

1

n
d

2d+1−2
(1−o(1))

≤ b(n, d)
2n

≤ c

n1/2d
.

Acknowledgments. The authors would like to thank Peter Frankl for his
help with an early draft of this paper.

21



References

[1] M. Aigner, Lexicographic matching in Boolean algebras, J. Combin.
Th. Ser. B 14 (1973), 187–194.

[2] M. Aigner, Combinatorial Theory, Grundlehren der mathematischen
Wissenschaften 234, Springer-Verlag, New York, 1979.

[3] M. Aigner, D. Duffus, and D. Kleitman, Partitioning the power set
into union-free classes, Discrete Math. 88 (1991), 113–119.

[4] T. M. Apostol, Introduction to analytic number theory, (Undergrad-
uate texts in mathematics) Springer-Verlag, New York, 1976.

[5] F. A. Behrend, On sets of integers which contain no three elements
in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331-332.

[6] B. Bollobás, Extremal Graph Theory, Academic Press, New York,
1979.

[7] P. Brass, H. Harborth, and H. Nienborg, On the maximum number of
edges in a C4-free subgraph of Qn, J. Graph Theory 19 (1995), 17–23.

[8] W. G. Brown, On graphs that do not contain a Thomsen graph,
Canad. Math. Bull. 9 (1966), 281–285.

[9] T. C. Brown, F. R. K. Chung, P. Erdős, and R. L. Graham, Quantita-
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