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Abstract

In 1973, Deuber published his famous proof of Rado’s conjecture re-
garding partition regular sets. In his proof, he invented structures called
(m, p, c)-sets and gave a partition theorem for them based on repeated
applications of van der Waerden’s theorem on arithmetic progressions.
In this paper, we give the complete proof of Deuber’s, however with the
more recent parameter set proof of his partition result for (m, p, c)-sets.
We then adapt this parameter set proof to show that for any k,m, p, c,
every Kk-free graph on the positive integers contains an (m, p, c)-set, each
of whose rows are independent sets.

1 Introduction

Deuber’s proof of Rado’s conjecture appeared first in German [3] and various
forms have since appeared in surveys (see, e.g.,[4], [16], [18]). The main tool
in Deuber’s proof is a structure called an (m, p, c)-set. We give a proof of
Deuber’s theorem to detail the connection between (m, p, c)-sets and partition
regular systems. Some parts of the proof given here can be found in the above
sources, but this proof follows a slightly different outline given by Deuber [5].

We also examine a parameter set proof for Deuber’s partition result on
(m, p, c)-sets. Although this proof has been outlined to various degrees in the
literature, we will need to closely examine the technique for later use, and so
we include the proof in complete detail for reference.

In trying to answer questions regarding independent sets in triangle-free
graphs, (m, p, c)-sets arise in a very natural way. As a step in answering such
questions, we prove that for any k,m, p, c, every Kk-free graph on the positive
integers contains an (m, p, c)-set, each of whose rows are independent sets.
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In the next section, we describe Rado’s conjecture regarding partition reg-
ular sets and Deuber’s solution. In Section 3, we give the notation and major
theorems for parameter sets. The parameter set proof for Deuber’s partition
theorem for (m, p, c)-sets appears in Section 4. In Section 5 we review some
of the recent research done regarding arithmetic structure of independent sets
in Kk-free graphs on natural numbers. Finally, in Section 6, we prove the
statement in the abstract regarding independent rows of (m, p, c)-sets.

We use N, Z, and Q to denote the natural numbers (not including zero),
the integers, and the rationals, respectively. We also use the notation [a, b] =
{z ∈ Z : a ≤ z ≤ b} and occasionally abbreviate [1, n] by [n]. A partition of
a set X into r parts can be interpreted as a colouring ∆ : X −→ [r], where a
subset of any one colour class ∆−1(j) is called monochromatic. Both partition
and colouring conventions will be used in this paper.

2 Rado’s conjecture and Deuber’s solution

Definition 2.1 Let M be an m by n matrix with integer entries. The linear
system Mx = 0 is partition regular (over N) if for any finite partition N =
C1 ∪ · · · ∪ Cr, there exists i and y ∈ (Ci)n so that My = 0. The matrix M is
partition regular if and only if the linear system Mx = 0 is partition regular.

If the matrix M in the above definition were to have rational coefficients,
multiplying by an appropriately large number gives an equivalent system with
integer coefficients.

A solution to the equation x+ y− 2z = 0 is a 3-term arithmetic progression
of the form {x, (x+ y)/2, y} and so the equation is partition regular by van der
Waerden’s theorem [24]. Corresponding to a triple x, y, x + y is the equation
x+ y − z = 0, and so is also partition regular by Schur’s theorem [23]. On the
other hand, the system x + y = 3z is not partition regular (see, e.g., [9], [16],
or [18] for details and more examples).

In his thesis, Rado [20] gave a characterization of partition regular systems
in terms of something called the “columns property”—which we now define.

Definition 2.2 Let A = [a1 . . .an] be a matrix with integer entries and
column vectors ai. We say that A has the columns property if there exists a
partition [n] = I1∪· · ·∪Im so that

∑
i∈I1 ai = 0, and for each j = 1, 2, . . . ,m−1,

there exist rational numbers αi,j so that
∑

i∈I1∪...∪Ij
αi,jai =

∑

i∈Ij+1

ai.

Theorem 2.3 (Rado [20]) If A is a matrix with integer coefficients, the
system Ax = 0 is partition regular if and only if A has the columns property.
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Rado extended his results in [21] to include other cases, for example, to
systems Ax = b where entries from A are algebraic numbers, entries in b are
complex and solutions are complex. In [16] is a short proof of how partition
regularity over N is equivalent to partition regularity over Z\{0} or Q\{0},
however we continue to use only solutions in N. See, for example, [1] and [2]
for other extensions of Rado’s theorem.

Definition 2.4 A set X ⊂ N is called partition regular (or large) if and
only if for every partition regular matrix P , X contains a solution of P , that
is, there exists x ∈ Xn so that Px = 0.

Rado conjectured that if a large set was partitioned into finitely many sets
then one of these sets was again large. This conjecture remained open for forty
years until Deuber [3] proved it in his PhD thesis. His main tool was a structure
he invented called an “(m,p,c)-set”; we will outline Deuber’s proof of the Rado
conjecture, but we invite the interested reader to see the thorough works [4],
[16] and [18] for more details.

We remind the reader of the notation [−p, p] = {z ∈ Z : −p ≤ z ≤ p} which
appears in the following definition.

Definition 2.5 A set of integers M is an (m, p, c)-set if each element of
M is positive, and there exists positive integers x0, x1, . . . , xm so that M is a
union M = R0(M) ∪R1(M) ∪ · · · ∪Rm(M), where

R0(M) = {cx0 + λ1x1 + λ2x2 + . . .+ λmxm : λ1, . . . , λm ∈ [−p, p]},
R1(M) = {cx1 + λ2x2 + . . .+ λmxm : λ2, . . . , λm ∈ [−p, p]},

...
...

Rm−1(M) = {cxm−1 + λmxm : λm ∈ [−p, p]},
Rm(M) = {cxm}.

In this case we write M = (x0, x1, . . . , xm)p,c and we say that Rk(M) is the
(k + 1)-th row of M .

Deuber’s original definition had the generators starting with x1, and so,
for example, his notion of an (1, p, c) set was a singleton {cx1}, whereas we
use generators starting x0, and so the singleton {cx0} is a (0, p, c)-set. From
the definition of an (m, p, c)-set with generators x0, x1, . . . , xm, the xi’s must
decrease rapidly in size in order that entire set consists of non-negative integers,
and for any m, p, c, an (m, p, c)-set exists by first choosing xm arbitrarily, then
xm−1 large enough, and so on. The generators of an (m, p, c)-set can be chosen
so that any element of the set appears in exactly one row and is determined by
precisely one linear combination therein.
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The key connection between solutions to partition regular systems and
(m, p, c)-sets is that they are “cofinal”:

Theorem 2.6 (Deuber) (i) For every partition regular matrix A, there
exists m, p, c so that every (m, p, c)-set contains a solution of Ax = 0, and (ii)
for every m, p, c, there exists a partition regular matrix A (usually huge) to that
every solution of Ax = 0 contains an (m, p, c)-set.

Proof of (i): By Rado’s theorem, A has the columns property, that is,
there exists a partition [n] = I1 ∪ · · · ∪ Im so that

∑
i∈I1 ai = 0, and for each

j = 1, 2, . . . ,m−1, there exist rationals αi,j so that
∑

i∈I1∪···∪Ij
αi,jai =

∑

i∈Ij+1

ai.

Let c be a common multiple of the denominators of the αi,j ’s, and let p =
maxi,j |cαi,j |. We claim that m, p, c are as desired. For each k = 1, . . . ,m, let
Ak be the submatrix of A with columns indexed by I1 ∪ · · · ∪ Ik. We will prove
by induction on k that every (k, p, c)-set contains a solution of Akx = 0.

For k = 0, the claim holds since
∑
i∈I1 ai = 0 and so any x with all entries

identical is a solution.
Suppose that the claim is true for some k ≥ 0, and examine a (k+1, p, c)-set

(x0, x1, . . . , xk+1)p,c. By induction hypothesis, for each i ∈ I1 ∪ · · · ∪ Ik there is
yi ∈ (x0, x1, . . . , xk)p,c, so that

∑

i∈I1∪···∪Ik
aiyi = 0. (1)

By the columns property of A,
∑

i∈I1∪···∪Ik
αi,kai =

∑

i∈Ik+1

ai.

Putting βi = −cαi,k and multiplying by xk+1 gives
∑

i∈I1∪···∪Ik
aiβixk+1 +

∑

i∈Ik+1

aicxk+1 = 0. (2)

Adding equations (1) and (2) yields
∑

i∈I1∪···∪Ik
ai(yi + βixk+1) +

∑

i∈Ik+1

aicxk+1 = 0.

Each yi ∈ (x0, x1, . . . , xk)p,c and since βi,j ∈ [−p, p] we have each yi +βixk+1 ∈
(x0, x1, . . . , xk+1)p,c. Also cxk+1 ∈ (x0, x1, . . . , xk+1)p,c. So we have exhib-
ited a solution of Ak+1x = 0 contained in (x0, x1, . . . , xk+1)p,c, completing the
inductive step and hence the proof of (i).
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Proof of (ii): The proof is by induction on m. For m = 0, the system
cy1 − cy2 − y3 = 0 is partition regular and its solution contains an element of
the form cb, and {cb} is a (0, p, c)-set.

Now supppose that Ay = 0 is a partition regular system whose every so-
lution contains an (m, p, c)-set. Let A = (aij) be r × n with integer entries,
and let [n] = I1 ∪ · · · ∪ I` be the partition guaranteed by the columns property.
Examine the (r + (2p+ 1)n)× (2n+ 1) matrix

A′ =




a11 a12 . . . a1n 0 . . . . . . 0 0
...

...
...

...
...

...
ar1 ar2 . . . arn 0 . . . . . . 0 0

c 0 . . . 0 −c 0 . . . 0 p
c 0 . . . 0 −c 0 . . . 0 p− 1
...

...
...

...
...

...
...

c 0 . . . 0 −c 0 . . . 0 −p
0 c . . . 0 0 −c . . . 0 p
0 c . . . 0 0 −c . . . 0 p− 1
...

...
...

...
...

...
...

0 c . . . 0 0 −c . . . 0 −p

...
...

0 0 . . . c 0 0 . . . −c p
0 0 . . . c 0 0 . . . −c p− 1
...

...
...

...
...

...
...

0 0 . . . c 0 0 . . . −c −p




.

For each j = 1, . . . , `, put I ′j = Ij ∪ {i + n : i ∈ Ij} and put I ′`+1 = {2n + 1}.
With the partition [2n+ 1] = I ′1 ∪ · · · ∪ I ′`+1, A′ satisfies the columns property
and so is partition regular.

Let (y′1, . . . , y
′
2n+1) ∈ N2n+1 be a solution to A′y = 0 and put Y =

{y′1, . . . , y′2n+1}. Then by induction hypothesis, {y′1, . . . , y′n} ⊂ Y contains an
(m, p, c)-set X = (x0, . . . , xm)p,c (looking at the first r equations in Ay = 0).
Setting y′2n+1 = xm+1, it is not too difficult to verify that the (m+ 1, p, c)-set

(x0, . . . , xm, xm+1)p,c = {x+ λxm+1 : x ∈ X,λ ∈ [−p, p]} ∪ {cxm+1}

is contained in Y . 2
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Deuber’s classic characterization of partition regular sets now follows di-
rectly from definitions and Theorem 2.6.

Corollary 2.7 (Deuber) X ⊂ N is partition regular if and only if for
every m, p, c, there is an (m, p, c)-set contained in X.

Proof: Let X be partition regular, and let m, p, c be given. By (ii), find P
so that every solution of Px = 0 contains an (m, p, c)-set. By Definition 2.4,
there exists y ∈ Xn so that Py = 0, and so y ‘contains’ an (m, p, c) set. Now
suppose that for every m, p, c, X contains an (m, p, c)-set. Let P be partition
regular, and by (i), fix m, p, c so that every (m, p, c)-set contains a solution of
Px = 0. By assumption, X contains an (m, p, c)-set and hence a solution of
Px = 0. 2

Partitioning large sets is thus tantamount to partitioning (m, p, c)-sets, and
Deuber found a partition theorem for these, completing the last major link in
the proof of Rado’s conjecture.

Theorem 2.8 (Deuber) For every m, p, c, r, there exists n, q, d so that for
every (n, q, d)-set X and for every finite partition X = X1∪· · ·∪Xr, there exists
i and an (m, p, c)-set Y so that Y ⊂ Xi.

We defer the proof of Theorem 2.8 to the next section; we will not follow
the original but instead give a parameter set version. We first conclude how
Theorem 2.8 proves Rado’s conjecture.

Theorem 2.9 (Deuber) For every large X and every finite partition X =
X1 ∪ · · · ∪Xr, some Xi is large.

Proof: Without loss, assume that r = 2. In hopes of a contradiction, assume
that the theorem is false, that is, there exists a partition X = X1 ∪X2 so that
neither X1 nor X2 is large. By Corollary 2.7, there exist m1, p1, c1,m2, p2, c2
so that for every (m1, p1, c1)-set M1 and (m2, p2, c2)-set M2 both M1 6⊆ X1 and
M2 6⊆ X2. Let m, p, c be large enough so that any (m, p, c)-set contains both an
(m1, p1, c1)-set and an (m2, p2, c2)-set (we leave this as an exercise to find such
m, p, c). By Theorem 2.8 there exists n, q, d and so that for every partition of
an (n, q, d)-set N = N1 ∪N2 one of N1 or N2 contains an (m, p, c)-set. Since X
is large, it contains an (n, q, d)-set N ′. Putting X ′1 = N ∩X1 and X ′2 = N ∩X2,
one of X ′1 or X ′2 contains a (m, p, c)-set M ′. Supposing X ′1 contains M ′, this
contradicts M1 6⊂ X1. 2

Added remarks: If for each m, p, c an (m, p, c)-set is fixed, the set of sums
using at most one element from each (m, p, c)-set was found to be partition reg-
ular in [13]. One of Deuber’s students, Meike Schröder [22], used a generalized
columns property and (m, p, c)-sets to characterize partition regular systems of
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linear inequalities. Also, Prömel (another student of Deuber) has written a very
poignant note [17] in memory of Deuber.

In the next section, we give the necessary information about parameter sets
to prove Theorem 2.8 in Section 4 and an adaptation thereof in Section 6.

3 Parameter words

See [19] for a recent survey of results, applications, and notation for param-
eter words. Let A be a finite alphabet and ξ1, ξ2, . . . , ξm be symbols not in A,
called parameters. As usual, we use An = {f : n→ A}. For 0 ≤ m ≤ n, define
the set of m-parameter words of length n over A by

[A]
(
n

m

)
=

{
f : n→ (A∪ {ξ1, ξ2, . . . , ξm}) : ∀j ≤ m, f−1(ξj) 6= ∅,

and, ∀i < j,minf−1(ξi) < minf−1(ξj)

}
.

So [A]
(
n
m

)
can be viewed as a set of ordered n-tuples containing each of

ξ1, . . . , ξm at least once, and if i < j, the first occurrence of ξi must precede
the first occurrence of ξj . Observe that An = [A]

(
n
0

)
. For f ∈ [A]

(
n
m

)
and

g ∈ [A]
(
m
k

)
we define the composition f ◦ g ∈ [A]

(
n
k

)
by

f ◦ g =
{
f(i) if f(i) ∈ A,
g(j) if f(i) = ξj .

It is straightforward to check that composition of parameter words is associative.
The shorthand notation f ◦ [A]

(
m
k

)
= {f ◦ g : g ∈ [A]

(
m
k

)} is often useful.
For f ∈ [A]

(
n
m

)
, define the space of f , sp(f) = f ◦ [A]

(
m
0

)
, to be the set of

(0-parameter) words from [A]
(
n
0

)
which are formed by replacing all occurrences

of any one parameter with the same element from A throughout the word.
The space of a parameter word is often referred to as a parameter set. An m-
dimensional (combinatorial) subspace of An (or simply, m-space) is the space
of some word in [A]

(
n
m

)
. If f ∈ [A]

(
n
1

)
then we say sp(f) is a combinatorial

line in An. For example, for some alphabet A, if f ∈ [A]
(

4
2

)
is given by f =

(a, ξ1, ξ2, ξ1), then sp(f) = {(a, x1, x2, x1) : x1, x2 ∈ A} is a 2-dimensional
subspace of A4, and for g = (ξ1, b), sp(f ◦ g) = {(a, x, b, x) : x ∈ A} is a
one-dimensional subspace of sp(f).

There are two main theorems regarding parameter sets which we require.

Theorem 3.1 (Hales-Jewett [12]) For each finite alphabet A and posi-
tive integers m and r, there exists n = HJ(|A|,m, r) so that for any r-colouring
∆ : [A]

(
n
0

) −→ [r] there exists f ∈ [A]
(
n
m

)
so that f ◦ [A]

(
m
0

)
is monochromatic.

The Hales-Jewett theorem was generalized from colouring of points (0-
spaces) to colouring of k-spaces.
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Theorem 3.2 (Graham-Rothschild [11]) Let m ≥ k ≥ 0, r ≥ 1 and a
finite alphabet A be given. Then there exists n = GR(|A|, k,m, r) so that for
every r-colouring ∆ : [A]

(
n
k

) −→ [r], there exists f ∈ [A]
(
n
m

)
so that f ◦ [A]

(
m
k

)
is monochromatic.

4 Proof of partition theorem for (m, p, c)-sets

Leeb [14] first suggested a parameter set proof (which repeatedly invokes the
Hales-Jewett theorem) for Deuber’s partition theorem for (m, p, c)-sets (Theo-
rem 2.8). Prömel [16] developed Leeb’s idea and wrote a very elegant parameter
set proof for Deuber’s theorem. For reference, we repeat it here (with kind per-
mission). The proof is non-trivial, so we give it complete with all details; the
technique will be repeated in the next section.

We repeat the statement of Deuber’s partition theorem for (m, p, c)-sets,
however with colouring notation:

Theorem 2.8 For every m, p, c, and r, there exists n, q, d so that for any
(n, q, d)-set X and any colouring ∆ : X −→ [r], there exists an (m, p, c)-set Y
which is monochromatic.

Proof: Throughout the proof, r is fixed (in fact, it suffices to prove the theorem
for r = 2, but the extra generality comes at no extra cost). Assume, also with
loss of generality, that p > c, since if p is smaller, we carry out the proof for a
larger p′, then restrict the alphabet of coefficients for the found (m, p′, c)-set to
find an (m, p, c)-set contained within.

For each k = 0, 1, . . . , rm, let qk = c2
rm−k−1p, dk = c2

rm−k
, and Ak =

[−qk, qk]. Note that dk−1 = d2
k and that qk−1 = qkdk. Now let rm+ 1 = nrm <

nrm−1 < . . . < n1 < n0, satisfy the recursion

nk − k = HJ(|Ak+1|, nk+1 − k, r)

for each k = 0, 1, . . . , rm − 1. Put n = n0, q = q0, d = d0, let X = N0 be an
(n, q, d)-set, and fix an r-colouring ∆ : N0 −→ [r].

The first idea in the proof is to examine the colouring ∆ restricted to the
first row of X = N0, and in this row, find a monochromatic first row of some
(n1, q1, d1)-set N1 ⊂ N0. We then look at the second row of N1, and find a
monochromatic second row of some (n2, q2, d2)-set N2 ⊂ N1. The first row of
N2 will be contained in the first row of N1, and hence is also monochromatic
(though perhaps of a different colour than the second row). We iterate this
procedure recursively until we find a sequence N1, N2, . . . , Nrm where X =
N0 ⊃ N1 ⊃ . . . ⊃ Nrm and each Nk is an (nk, qk, dk)-set so that for each
i = 0, . . . , k − 1, Ri(Nk) is monochromatic. We now give the details to the
recursion.
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Recursion step: For some k ≥ 0, assume we have found an (nk, qk, dk)-set

Nk = Nk(w0, w1, . . . , wnk)qk,dk ⊂ N0

where for each i < k, Ri(Nk) is monochromatic with respect to ∆ (note that
for k = 0, this is a vacuous assumption). Furthermore assume that for each
i = 0, 1, . . . , nk, we have wi =

∑
j∈Ii βi,jxj where each βi,j ∈ [−q0, q0], where

the Ij ’s are disjoint, and min(Ij) < min(Ij′) whenever j < j′ (note that in the
case k = 0, each Ij = {j}, and so this assumption is again trivial).

The colouring ∆ restricted to Rk(Nk) induces another colouring ∆k+1 :
[Ak+1]

(
nk−k

0

) −→ [r] of each f = (f(k + 1), . . . , f(nk)) ∈ [Ak+1]
(
nk−k

0

)
defined

by
∆k+1(f) = ∆(dkwk + dk+1f(k + 1)wk+1 + . . .+ dk+1f(nk)wnk),

where for each j = k+ 1, . . . , nk, f(j) ∈ [−qk+1, qk+1] = Ak+1, thus dk+1f(j) ∈
[−qk, qk] = Ak, and so ∆k+1 is a partial colouring of the (k + 1)-th row of Nk.
By the choice of nk, there exists h = (h(k+ 1), . . . , h(nk)) ∈ [Ak+1]

(
nk−k
nk+1−k

)
, so

that sp(h) is monochromatic. Fix such an h with parameters λk+1, . . . , λnk+1 ;
name the set of fixed coordinates Ck = {i : h(i) ∈ Ak+1}, and the sets of moving
coordinates by Ck+1 = {i : h(i) = λk+1}, . . ., Cnk+1 = {i : h(i) = λnk+1}. By
the notation used for parameter sets, we have k < min(Ck+1) < min(Ck+2) <
. . . < min(Cnk+1) and that all the Ci’s are pairwise disjoint.

Translating this, there exists Sk ⊂ Rk(Nk), of the form

Sk=




dkwk + dk+1

∑

i∈Ck
h(i)wi + λk+1

∑

i∈Ck+1

dk+1wi + . . .+ λnk+1

∑

i∈Cnk+1

dk+1wi

: λk+1, . . . , λnk+1 ∈ Ak+1





=




dk+1

(
dk+1wk +

∑

i∈Ck
h(i)wi

)
+ λk+1

∑

i∈Ck+1

dk+1wi + . . .+ λnk+1

∑

i∈Cnk+1

dk+1wi

: λk+1, . . . , λnk+1∈Ak+1





which is monochromatic.
Set zk = dk+1wk +

∑
i∈Ck h(i)wi and for each j = k + 1, . . . , nk+1, put

zj =
∑
i∈Cj dk+1wi. Define

Nk+1 = Nk+1(dk+1w0, dk+1w1, . . . , dk+1wk−1, zk, . . . , znk+1)qk+1,dk+1 ,

which we claim is an (nk+1, qk+1, dk+1)-set. To see that Nk+1 is indeed an
(nk+1, qk+1, dk+1)-set, we need to show that Nk+1 consists of non-negative in-
tegers. For this it suffices to show that Nk+1 ⊂ Nk.
Claim: Nk+1 ⊂ Nk.
Proof of Claim: By construction, Rk(Nk+1) = Sk ⊂ Rk(Nk) and so Rk(Nk+1)
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is a (monochromatic) subset of Nk ⊂ N0. For each j = 0, . . . , k − 1,

Rj(Nk+1)
= Rj

(
Nk+1(dk+1w0, dk+1w1, . . . , dk+1wk−1, zk, . . . , znk+1)qk+1,dk+1

)

=



dk+1(dk+1wj) +

k−1∑

i=j+1

λidk+1wi +
nk+1∑

i=k

λizi : λj+1, . . . , λnk+1 ∈ Ak+1





⊂


dkwj +

k−1∑

i=j+1

λ
′
iwi +

nk+1∑

i=k

λ
′
izi : λ

′
j+1, . . . , λ

′
nk+1 ∈ Ak





= Rj (Nk(w0, w1, . . . , wnk)qk,dk) ,

since for each i = j + 1, . . . , k − 1, λi ∈ Ak+1 implies that λidk+1 = λ
′
i ∈ Ak.

To complete the proof of the claim that Nk+1 ⊂ Nk, it remains to see that
for any j > 0, we have Rk+j(Nk+1) ⊂ Nk. To check this, fix j > 0 and let
x ∈ Rk+j(Nk) be arbitrary, given by

x = dk+1zk+j + ξk+j+1zk+j+1 + . . .+ ξnk+1znk+1

where each ξi ∈ Ak+1 is fixed. Then

x = dk+1

∑

i∈Ck+j

dk+1wi + ξk+j+1dk+1

∑

i∈Ck+j+1

wi + . . .+ ξnk+1dk+1

∑

i∈Cnk
wi

which is an element of Rmin(Ck+j)(Nk) ⊂ Nk, because min(Ck+j) is indeed the
smallest element of ∪nk+1

i=k+jCi. This concludes the check that Rk+j(Nk+1) ⊂ Nk,
and hence the proof of the claim that Nk+1 ⊂ Nk.

Claim: Each of the rows R0(Nk+1), . . . , Rk(Nk+1) are monochromatic.
Proof of Claim: We have shown that for each j = 0, . . . , k − 1, Rj(Nk+1) ⊂
Rj(Nk) holds and since each for j < k, Rj(Nk) is monochromatic by assump-
tion, so is each Rj(Nk+1). By construction, Sk = Rk(Nk+1) is monochromatic,
finishing the proof of the claim.
End of recursion step.

Observe that qrm = p, drm = c. Using the above recursion, find successively
N1 ⊃ N2 ⊃ . . . ⊃ Nrm, where,

Nrm = Nrm(y0, y1, . . . , yrm)p,c ⊂ N0

is an (rm, p, c)-set with each of the rows R0(Nrm), R1(Nrm), . . ., Rrm−1(Nrm)
monochromatic under ∆. Since Rrm(Nrm) = {cyrm} is a single element, it is
also monochromatic. Hence all rm+1 rows of Nrm are monochromatic. By the
pigeonhole principle, there exists a subfamily of m+1 rows Ri0(Nrm), Ri1(Nrm),
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. . ., Rim(Nrm), all of which receive the same colour. In this case, since the
leading generator in each Ri(Nrm) is yi, then

M = M(yi0 , yi1 , . . . , yim)p,c ⊂ Nrm
is the desired monochromatic (m, p, c)-set. 2

5 Independent sets in Kk-free graphs

For a set S let [S]2 denote the set of unordered distinct pairs of elements of
S. Let G = (V (G), E(G)) be a graph on vertex set V (G) with edges E(G) ⊂
[V (G)]2. A subset X ⊂ V (G) is said to be independent in G if [X]2∩E(G) = ∅.
The complete graph on n vertices is denoted by Kn.

Erdős [7] and Hajnal (see [8]) inspired questions about arithmetic structure
on independent sets in Kk-free graphs on N. For example, in a triangle-free
graph on N, can one always find an independent set of the form x, y, x + y?
Luczak, Rodl and Schoen [15] proved that in any Kk free graph on N, arbi-
trarily large finite sum-sets could be found independent. In [6] certain infinite
analogues were discussed. In [10], arbitrarily large multiple arithmetic progres-
sions could be found independent and arithmetic progressions together with
their difference, also independent. Many, including Deuber, Leader, Prömel,
Rodl, and this author have been actively pursuing the question: If G is a Kk-
free graph on N, can one solve any partition regular system of equations in an
independent set, that is, are there arbitrarily large independent (m, p, c)-sets?
In the next section appears only one step to answering this question in the
affirmative. We now look at some of the techniques in [10], since one of these
is a notion central to the proof in the next section.

The following guarantees independent lines in a Hales-Jewett cube whose
elements are vertices of a Kk-free graph.

Theorem 5.1 ([10]) Given k and alphabet A = {a1, a2, . . . , al}, with l ≥ 2
letters, there exists n so that for every Kk-free graph G = (An, E(G)), there
exists h ∈ [A]

(
n
1

)
so that sp(h) is independent in G.

Just as van der Waerden’s theorem follows directly from the Hales-Jewett
theorem, the following is a direct consequence of Theorem 5.1.

Corollary 5.2 ([10]) Given k and `, if G is a Kk-free graph on the positive
integers, then there exists a `-term arithmetic progression which is independent
in G.

Generalizing Theorem 5.1 from lines to spaces was done by replacing the
alphabet A with Ap, however we give the direct proof here for completeness.
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Theorem 5.3 ([10]) Given k, p, and alphabet A with |A| = l ≥ 2 letters,
there exists n = IS(|A|, k, p) so that for every Kk-free graph G on vertex set
An, there exists h ∈ [A]

(
n
p

)
so that sp(h) = h ◦ [A]

(
n
0

)
is independent in G.

Proof: Fix m ≥ k− 1 and put n = GR(|A|, p,mp, (lp2
)

+ 1). Suppose that G is
a graph on An which is Kk-free. Let C = {{w, z} : w ∈ Ap, z ∈ Ap, w 6= z} and
fix some linear order ≺ on these

(
lp

2

)
pairs. Define a colouring ∆ : [A]

(
n
p

) −→
C ∪ {0} of each h ∈ [A]

(
n
p

)
according to where edges first occur in sp(h) as

follows:

∆(h) =
{ {w, z} if {w, z} is least in (C,≺) so that (h ◦ w, h ◦ z) ∈ E(G),

0 if E(G) ∩ [sp(h)]2 = ∅.
So ∆(h) = 0 means that no edge occurs in the graph induced by sp(h). Under
this colouring, guaranteed by the choice of n, fix f ∈ [A]

(
n
mp

)
and c ∈ C ∪ {0}

so that for each g ∈ [A]
(
mp
k

)
, ∆(f ◦ g) = c. We want to show that c = 0.

Seeking a contradiction, suppose that c 6= 0. Then c = {w, z} for some fixed
words w, z ∈ Ap, that is, for every h ∈ f ◦ [A]

(
mp
p

)
, ∆(h) = {w, z}. We now

need to describe some particular parameter words gi,j , and to do this simply,
we give two local definitions. Let ξ ∈ [∅](pp

)
be an abbreviation for the word

(ξ1, . . . , ξp). We also use the notation xy to mean simple concatenation of two
parameter words, x and y; for example, ww = (w(1), . . . , w(p), w(1), . . . , w(p))
and ξξ = (ξ1, . . . , ξp, ξ1, . . . , ξp). Now for each 0 ≤ i ≤ j ≤ m, examine the
word

gij = ww · · ·w︸ ︷︷ ︸
i copies

ξξ · · · ξ︸ ︷︷ ︸
j−i

zz · · · z︸ ︷︷ ︸
m−j

.

Notice that when i 6= j, gi,j ∈ [A]
(
mp
p

)
, and for each i, gi,i ∈ [A]

(
mp
0

)
. Put

hi,j = f ◦ gi,j . We claim that the m+ 1 vertices of the form hi,i, i = 0, 1, . . . ,m
determine a complete graph. To see this, observe that for every i < j,

hi,i = hi,j ◦ z ∈ sp(hi,j)

hj,j = hi,j ◦ w ∈ sp(hi,j),

and since ∆(hi,j) = {w, z}, (hi,i, hj,j) ∈ E(G). Thus we obtain a complete
graph on m+ 1 vertices, a contradiction since m+ 1 ≥ k.

Hence c = 0, and so there exists g ∈ [A]
(
mp
p

)
so that for h = f ◦g, ∆(h) = 0,

that is, sp(h) = h ◦ [A]
(
p
0

)
is independent. In fact, for the case p = 1, for all

g ∈ [A]
(
m
1

)
, sp(f ◦ g) is an independent set. 2

For integers s and `, a s-fold arithmetic progression of length l is a set of
integers of the form {a0 + λ1a1 + λ2a2 + . . . + λsas : λ1, . . . , λs ∈ [0, l − 1]}.
Just as Corollary 5.2 was an easy consequence of Theorem 5.1, so too the next
result follows from Theorem 5.3.
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Corollary 5.4 ([10]) For every k, s ≥ 1, and l ≥ 2, there exists an n so
that for any Kk-free graph G on [1, ln], there is an s-fold arithmetic progression
of length l which forms an independent set in G.

6 Independent rows of (m, p, c)-sets

Theorem 6.1 For every k,m, p, c there exists n, q, d so that for any (n, q, d)-
set N = N(x0, . . . , xn)q,d and any Kk-free graph G on N , there exists an
(m, p, c)-set M = M(y0, . . . , ym)p,c so that

(1) each row of M is an independent set in G, and
(2) there are disjoint sets J0, J1, . . . , Jm with min(J0) < min(J1) < · · · <

min(Jm) and constants βi,j so that y0 =
∑
j∈J0

β0,jxj , . . . , ym =
∑
j∈Jm βn,jxj;

so for i < j, Ri(M) is contained in an earlier row of N than is Rj(M).

Proof: The proof is similar to that of the parameter set proof for Deuber’s
partition theorem for (m, p, c)-sets, except that rather than using the Hales-
Jewett theorem at each step, we invoke Theorem 5.3.

Assume, without loss of generality, that p > c. For each s = 0, 1, . . . ,m,
define qs = c2

m−s−1p, ds = c2
m−s

and let As = [−qs, qs]. Note that for each
s ≥ 1, ds−1 = d2

s, qs−1 = qsds, and As ⊂ As−1. Using the notation in Theorem
5.3, let m+ 1 = nm < nm−1 < . . . < n1 < n0, satisfy the recursion

ns − s = IS(|As+1|, k, ns+1 − s)

for each s = 0, 1, . . . ,m − 1. Put n = n0, q = q0, d = d0 and let N = N0 =
N0(x0, x1, . . . , xn0)q,d be an (n, q, d)-set, and let G be a Kk-free graph with
vertex set N .

Recursion step: For some s ≥ 0, assume we have found an (ns, qs, ds)-set

Ns = Ns(w0, w1, . . . , wns)qs,ds ⊂ N0

where for each i < s, Ri(Ns) is an independent set (note that for s = 0, this is
a vacuous assumption). Furthermore, assume that for each i = 0, 1, . . . , ns, we
have wi =

∑
j∈Ii βi,jxj where each βi,j ∈ [−q0, q0], then the Ij ’s are disjoint,

and min(Ij) < min(Ij′) whenever j < j′ (note that in the case s = 0, each
wj = xj where Ij = {j}, and so this assumption is again trivial).

Examine the function αs+1 : [As+1]
(
ns−s

0

) −→ Rs(Ns) defined by

αs+1(f(s+ 1), . . . , f(ns)) = dsws + ds+1f(s+ 1)ws+1 + . . .+ ds+1f(ns)wns ,

where for each j = s + 1, . . . , ns, f(j) ∈ [−qs+1, qs+1] = As+1, and thus
ds+1f(j) ∈ [−qs, qs] = As. By choice of ns, there exists h ∈ [As+1]

(
ns−s
ns+1−s

)
, so

that sp(h) is independent. Fix such an h with parameters λs+1, . . . , λns+1 and
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put Cs = {i : h(i) ∈ As+1}, Cs+1 = {i : h(i) = λs+1}, . . ., Cns+1 = {i : h(i) =
λns+1}. Note that min(Cs+1) < min(Cs+2) < . . . < min(Cns+1) and that the
Ci’s are pairwise disjoint. This means that there exists Ss ⊂ Rs(Ns), of the
form

Ss=




dsws + ds+1

∑

i∈Cs
h(i)wi + λs+1

∑

i∈Cs+1

ds+1wi + . . .+ λns+1

∑

i∈Cns+1

ds+1wi

: λs+1, . . . , λns+1 ∈ As+1





=




ds+1

(
ds+1ws +

∑

i∈Cs
h(i)wi

)
+ λs+1

∑

i∈Cs+1

ds+1wi + . . .+ λns+1

∑

i∈Cns+1

ds+1wi

: λs+1, . . . , λns+1∈ As+1





which is independent.
Set

zs = ds+1ws +
∑

i∈Cs
h(i)wi

and for each j = s+ 1, . . . , ns+1, put zj =
∑
i∈Cj ds+1wi. Define

Ns+1 = Ns+1(ds+1w0, ds+1w1, . . . , ds+1ws−1, zs, zs+1, . . . , zns+1)qs+1,ds+1 ,

To see that Ns+1 is indeed an (ns+1, qs+1, ds+1)-set, we need to show that Ns+1

consists of non-negative integers, for which it suffices to show that Ns+1 ⊂ Ns.
By construction, Rs(Ns+1) = Ss ⊂ Rs(Ns) and so Rs(Ns+1) is a (independent)
subset of Ns. It is also easy to see that for each j = 0, . . . , s − 1, Rj(Ns+1) ⊆
Rj(Ns). Now for some j ≥ 1, let x ∈ Rs+j(Ns+1) be arbitrary and given by

x = ds+1zs+j + ηs+j+1zs+j+1 + . . .+ ηns+1zns+1

where each ηi ∈ As+1 is fixed. Then

x = ds+1

∑

i∈Cs+j
ds+1wi + ηs+j+1ds+1

∑

i∈Cs+j+1

wi + . . .+ ηns+1ds+1

∑

i∈Cns
wi

and since min(Cs+j) is indeed the smallest element of ∪ns+1
i=s+jCi, we have

x ∈ Rmin(Cs+j)(Ns) ⊂ Ns.

Hence Rs+j(Ns+1) ⊆ Ns, and so Ns+1 ⊂ Ns.
We have noted that for each j = 0, . . . , s−1, Rj(Ns+1) ⊂ Rj(Ns) holds, and

since each for j < s, Rj(Ns) is an independent set by assumption, so is each
Rj(Ns+1). By construction, Ss = Rs(Ns+1) is an independent set, and so each
of the rows R0(Ns+1), . . . , Rs(Ns+1) are independent sets. Lastly, since the sets
of coordinates Ci were disjoint and the sets Ii were disjoint, the generators of
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Ns+1 are linear combinations over disjoint collections of xj ’s. This completes
the recursion step.

Observe that for s = m, we have qs = p, ds = c. Using the above recursion,
find successively N1 ⊃ N2 ⊃ . . . ⊃ Nm = M , where M = (z0, z1, . . . , zm)p,c ⊂
N0 is an (m, p, c)-set and each of the first m rows R0(M), R1(M), . . . , Rm−1(M)
are independent sets. We also observe that Rm(M) consists of a single element,
and so is also an independent set. Hence all m+ 1 rows of M are independent
sets. 2
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[19] H. J. Prömel and B. Voigt, Graham-Rothschild parameter sets, in
Mathematics of Ramsey Theory, (J. Nesetril, V. Rödl, eds.) Springer-
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