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Credit default swaps

Credit risk is an investor’s risk of loss arising from a borrower who
does not make payments as promised.

The Depository Trust & Clearing Corporation estimates that the size of the
global credit derivatives market in 2010 was $1.66 quadrillion US
Dollars. Credit default swaps (CDSs) are the simplest and most
popular credit derivatives.

Single-name CDS: A bilateral agreement where the protection buyer
transfers the credit risk of a reference entity to the protection seller by
paying premiums up to the maturity or default of the reference entity.
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The Lévy first-passage model

Under the risk-neutral setting:

A firm’s asset process V = {Vt, t ≥ 0} follows

Vt = V0 eZt ,

where Z = {Zt, t ≥ 0} is a Lévy process with downward jumps.

E(Vt) = V0 ert with r the constant interest rate.

For a threshold level L < V0, default time is defined as

τ = inf {t : Vt ≤ L} = inf {t : ln(V0/L) + Zt ≤ 0} .
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Shifted CMY process

We assume
Zt = µt− St

with µ > 0 and S = {St, t ≥ 0} from the family of CMY processes with
C, M > 0 and 0 ≤ Y < 1.

CMY process: the stochastic process that starts at zero and has
stationary and independent CMY-distributed increments.

Lévy measure of Z:

Π(dx) = CeMx(−x)−1−Ydx, x < 0.

Laplace exponent of Z:

ψ(s) := ln E(esZ1) = µs + CΓ(−Y)
(
(M + s)Y −MY

)
.
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Y = 0: Z reduces to a shifted gamma process with

ψ(s) = µs− C ln(1 + s/M).

Y = 0.5: Z reduces to a shifted inverse Gaussian process with

ψ(s) = µs− 2
√

πC(
√

s + M−
√

M).

Z has paths of infinite jumps and bounded variation.

See Carr et al. (2002; JB) for properties of the CMY processes.
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Remarks on the model

According to the empirical study by Carr et al. (2002; JB),
risk-neutral processes for equity prices should be processes of
infinite activity and finite variation.

A firm’s asset value is exposed to shocks (represented by negative
jumps), which is the main concern in risk management practice.

This structural default model was proposed by Madan and
Schoutens (2008; JCR).
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Random recovery rate

The CDS has a maturity of T.

The reference entity defaults at time τ.

If τ ≤ T, the protection seller is required to pay the protection
buyer 1− Rτ for every insured currency unit, where Rτ is the
recovery rate when default occurs at τ.

Rτ is not fixed. Denote Xt = ln(V0/L) + Zt. We assume
Rτ = R(−Xτ), where R(·) ∈ [0, 1] is a positive and non-increasing
function defined on [0, ∞).
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CDS par spread

Let c be the continuously paid CDS spread. The value of the CDS is

E
[
e−rτ(1− R(−Xτ))1{τ≤T}

]︸ ︷︷ ︸
PV of loss leg

−E
[c

r

(
1− e−r(τ∧T)

)]
︸ ︷︷ ︸

PV of premium leg

.

Then the par spread c is

c =
rE
[
e−rτ(1− R(−Xτ))1{τ≤T}

]
E
[
1− e−r(τ∧T)

] .
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Generalized expected discounted penalty function

Consider the process

Xt = x + Zt, with x ≥ 0.

Definition 1

The generalized expected discounted penalty function (EDPF) of X is

φ(x; r) := E
[

e−rτw(−Xτ, Xτ−, Xτ−)1{τ<∞}
∣∣X0 = x

]
,

and the generalized finite-time EDPF of X is

φt(x; r) := E
[

e−rτw(−Xτ, Xτ−, Xτ−)1{τ<t}
∣∣X0 = x

]
,

with r ≥ 0 and w a bounded measurable function on R3
+ = [0, ∞)3.

Biffis and Morales (2010; IME) and Kuznetsov and Morales (2014; SAJ)
have introduced the generalized EDPF into actuarial literature.
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Double Laplace transform of φt(x; r)

The double Laplace transform of φt(x; r) is defined as

g(λ, z) =
∫ ∞

x=0

∫ ∞

t=0
e−λt−zxφt(x; r)dtdx, λ, z > 0.

Proposition 1

For r ≥ 0 and w(−Xτ, Xτ−, Xτ−) = w(−Xτ), g(λ, z) has the following
formula

g(λ, z)

=
1

λ(r + λ− ψ(z))

∫ ∞

v=0

∫ ∞

u=0
w(v)Π(−u− dv)

(
e−zu − e−ψ[−1](r+λ)u

)
du

where ψ[−1](q) = sup {s ≥ 0 : ψ(s) = q}, q ≥ 0.
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Double inverse Fourier transform

g(λ, z) is analytic on the complex plane where Re(λ), Re(z) > 0.

Let λ1, λ2, z1, z2 be real numbers with λ1, z1 > 0.

g(λ1 − iλ2, z1 − iz2)

=
∫ ∞

x=0

∫ ∞

t=0
exp{−λ1t + iλ2t− z1x + iz2x}φt(x; r)dtdx

=
∫ ∞

x=0

∫ ∞

t=0
exp{iλ2t + iz2x} exp{−λ1t− z1x}φt(x; r)dtdx.

⇒ g(λ1 − iλ2, z1 − iz2) is the double Fourier transform of
exp{−λ1t− z1x}φt(x; r).
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By the inverse Fourier transform,

φt(x; r) = − 1
4π2

∫
Γ1

∫
Γ2

exp{λt + zx}g(λ, z)dλdz, (1)

Γ1 = {λ1 + iλ2|λ2 = −∞ · · ·+ ∞}, Γ2 = {z1 + iz2|z2 = −∞ · · ·+ ∞}.

Γ1
h(λ)=ψ(λ/µ)−r−−−−−−−−−→ Γ0

φt(x; r) ?
= − 1

4π2

∫
Γ0

∫
Γ2

exp{λt + zx}g(λ, z)dλdz

= − 1
4π2

∫
Γ1

∫
Γ2

h′(λ) exp{h(λ)t + zx}g(h(λ), z)dλdz. (2)

The idea is from Rogers (2000; JAP).
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Proposition 2

Assume that ψ(·), the Laplace exponent of process Z, satisfies the
following three conditions: for s ∈ C with Re(s) > 0,

C1: (ψ(s)− µs)/s→ 0 as |s| → ∞,

C2: |ψ[−1](s)| → ∞ as |s| → ∞, and

C3: Re(ψ[−1](s)) > 0.

Then, altering contour Γ1 to contour Γ0 = ψ(Γ1/µ)− r does not change
the value of the Fourier integration in (1).

Xuemiao Hao (University of Manitoba) Pricing CDS with a random recovery rate July 15, 2014 13 / 21



Now the problem is how to evaluate the r.h.s. of (2).

Approximate by the following double sum

SN =
h1h2

4π2

Nl1

∑
n=−Nl1

Nl2

∑
m=−Nl2

h′(a1 + inh1)g(h(a1 + inh1), a2 + imh2)

× exp {th(a1 + inh1) + x(a2 + imh2)}

with a1 = A1
2tl1

, a2 = A2
2xl2

, h1 = π
tl1

, h2 = π
xl2

.
Use Euler sum to improve approximation accuracy:

K

∑
k=0

2−K
(

K
k

)
SN+k.

Choudhury et al. (1994; AnAP) and Rogers (2000; JAP) suggested
to choose appropriate values of A1, A2, l1, l2, N and K to control
the aliasing error, the round off error, and the truncation error.
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Numerical experiments

r = 0.03

L/V0 = 0.5

R(x) = 0.5 exp{−x}, for x ≥ 0

A1 = A2 = 16.8

l1 = l2 = 2

N = 12

K = 15
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According to Lando and Mortenson (2005; JIM) there are different
styles of term structures of CDS spreads:

Investment grade: the spreads are small and the curve is upward
sloping. Go to Figure 1

Speculative grade: the spreads are larger and the curve is humped
in shape. Go to Figure 2

Extremely speculative grade: the spreads are very large and the
curve shows a downward sloping. Go to Figure 3
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Figure 1: CDS spreads curve assuming that the logarithm of the asset value follows a
shifted CMY process with C = 1, M = 7, and Y = 0 Return
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Figure 2: CDS spreads curve assuming that the logarithm of the asset value follows a
shifted CMY process with C = 1, M = 3, and Y = 0 Return
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Figure 3: CDS spreads curve assuming that the logarithm of the asset value follows a
shifted CMY process with C = 0.5, M = 1.9, and Y = 0 Return
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Actuarial Journal, no.1, 1-31.

Lando, D.; Mortensen, A. (2005). Revisiting the slope of the credit spread curve.
Journal of Investment Management 3, no. 4, 1-27.

Madan, D.; Schoutens, W. (2008). Break on through to the single side. Journal of
Credit Risk 4, no. 3, 3-20.

Rogers, L.C.G. (2000). Evaluating first-passage probabilities for spectrally
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Thank you!
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