Evaluation of Credit Value Adjustment in K-forwards

Xuemiao (Samuel) Hao, Chunli Liang, Linghua Wei

University of Manitoba

July 25, 2016

The 20th IME Congress Georgia State University, USA CBD two-factor mortality model:

$$\ln\left(\frac{q_{x,t}}{1-q_{x,t}}\right) = \kappa_t^{(1)} + \kappa_t^{(2)}(x-\overline{x}) + \varepsilon_{x,t}$$

- $q_{x,t}$: the probability that an individual aged x at time t will die by t + 1
- \overline{x} : the average of the ages used in the dataset
- $\kappa_t^{(1)}$: the level of the logit-transformed mortality curve
- $\kappa_t^{(2)}$: the slope of the logit-transformed mortality curve
- $\varepsilon_{x,t}$: the error term

Cairns et al. (2006, JRI)

Figure: Estimates of $k_t^{(1)}$ for England and Wales males, aged from 40 to 90, 1950–2013.

Samuel Hao (University of Manitoba)

July 25, 2016 3 / 25

Figure: Estimates of $k_t^{(2)}$ for England and Wales males, aged from 40 to 90, 1950–2013.

Samuel Hao (University of Manitoba)

July 25, 2016 4 / 25

A *K*-forward is a zero-coupon swap, which exchanges a fixed forward mortality index with a realized reference mortality index at maturity.

The payoff to the fixed rate receiver can be written as

$$Y imes \left(ilde{\kappa}_T^{(i)}-\kappa_T^{(i)}
ight)$$
 , $i=1,2.$

- *T*: the reference year
- $\tilde{\kappa}_T^{(i)}$: the fixed forward mortality index, determined at time 0
- $\kappa_T^{(i)}$: the reference mortality index, unknown at time 0
- *Y*: the notional amount

Suggested by Chan *et al.* (2014, NAAJ), we model the process $k_t = (k_t^{(1)}, k_t^{(2)})^T$ by a VARIMA model

$$\Delta^{d} \boldsymbol{k}_{t} - \sum_{i=1}^{p} \Phi_{i} \Delta^{d} \boldsymbol{k}_{t-i} = \Phi_{0} + \boldsymbol{\epsilon}_{t} - \sum_{j=1}^{q} \Theta_{j} \boldsymbol{\epsilon}_{t-j}$$

with

•
$$\Delta^d \mathbf{k}_t = \Delta^{d-1} \mathbf{k}_t - \Delta^{d-1} \mathbf{k}_{t-1}$$

• $\boldsymbol{\epsilon}_t \stackrel{i.i.d.}{\sim} N_2(\mathbf{0}, \Sigma)$

It turns out that for the England and Wales males, aged 40–90, from 1950 to 2013, a VARIMA(p = 3, d = 1, q = 1) model fits well.

Table: SCCM and M(l) of SPAM for Δk_t

lag(l)											
1	2	3	4	5	6	7	8				
		Sample cr	oss-correlati	on matrices	(SCCM)						
[]	[]	[]	[]	[]	[]	$\begin{bmatrix} + & \cdot \\ \cdot & \cdot \end{bmatrix}$	[]				
	Test statistic	ts <i>M</i> (<i>l</i>) of sa with a	mple partia critical valu	l autocorrela e at $\chi^2_{4,0.95}$ =	ation matrice = 9.45	es (SPAM)					
17.525	3.990	10.279	6.938	8.947	8.229	5.617	6.663				

Table: AIC and BIC of fitted VARIMA(*p*, *d*, *q*) models

	(0,1,1)	(3,1,0)	ref. (3,1,0)	(3,1,1)	ref. (3,1,1)
AIC	-21.53	-21.58	-21.71	-21.96	-22.32
BIC	-21.33	-21.10	-21.51	-21.35	-22.01

 Table:
 Estimated coefficients for the refined VARIMA(3,1,1)

$\left(\begin{array}{c} \Phi_0\\ 0\\ .000145\end{array}\right)$	$\left(\begin{array}{cc} \Phi_1\\ .613 & -5.078\\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cc} \Phi_2 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$
$\left(\begin{array}{cc} \Phi_3\\ .349 & -4.010\\ 0 & 0\end{array}\right)$	$\begin{pmatrix} \Theta_1 \\ -1.115 & .212 \\031 &485 \end{pmatrix}$	$\left(\begin{array}{c} \Sigma \\ .00027315 & .00000371 \\ .00000371 & .00000061 \end{array}\right)$

	lag(l)										
1	2	3	4	5	6	7	8				
		Sample ci	ross-correlat	ion matrice	s (SCCM)						
[]	[: :]	[]]	[]	[]]	[]]	[]]	[]				
	Test statisti	cs $M(l)$ of sa with a	ample partia critical valu	al autocorrel ue at $\chi^2_{4,0.95}$	lation matrie = 9.45	ces (SPAM)					
2.089	0.533	0.417	2.299	1.363	5.292	8.217	3.741				

Table: Normality test results for residuals of the refined VARIMA(3,1,1)

Statistics <i>p</i> -value	uniNorm test for residuals in $k^{(1)}$ 0.9907 0.9301	uniNorm test for residuals in $k^{(2)}$ 0.9707 0.1586	Royston's test 2.7546 0.2527	Henze-Zirkler's test 0.8505 0.0687
Samuel Hao (Uni	versity of Manitoba)	CVA of K-forward	 I □ ▶ 	· ● ◆ 클 > ◆ 클 > · 클 · ⑦ July 25, 2016 9

From the perspective of the fixed rate receiver in a *K*-forward, CVA is its loss due to the potential default of the fixed rate payer.

$$CVA = (1 - Rec) \sum_{t=1}^{T} DF(t) \times EE(t) \times PD(t - 1, t)$$

- 1 Rec: the loss given default
- DF(*t*): the risk-free discount factor for time *t*
- EE(t): the expected risk exposure for the institution at t
- PD(t 1, t): the default probability between dates t 1 and t

Reduced-form model

Suppose there exists a deterministic default intensity h(t), $t \ge 0$. Using Nelson-Siegel yield rate function, we assume

$$h(t) = \beta_0 + \beta_1 e^{-t/\beta_3} + \beta_2 e^{-t/\beta_3} t/\beta_3, \quad t \ge 0.$$

$$H(t) = \frac{1}{t} \int_0^t h(s) ds = \beta_0 + (\beta_1 + \beta_2)(1 - e^{-t/\beta_3})\beta_3/t - \beta_2 e^{-t/\beta_3}$$

∜

and

$$S(t) = \exp\left(-tH(t)\right), \quad t \ge 0.$$

- $\beta_0(>0)$ is the long-term component.
- $\beta_1(\geq -\beta_0)$ is the short-term component.
- $\beta_2 \ (\geq \beta^*$, determined by β_0 and β_1) is the medium-term component.
- $\beta_3(>0)$ is the time-scalar parameter.

For a non-callable bond, we assume the recovery is a fraction of par.

"dirty price" =
$$\sum_{i=1}^{n} DF(t_i) \cdot c\Delta_i \cdot S(t_i) + V \cdot DF(t_n) \cdot S(t_n)$$

+ $V \cdot \text{Rec} \cdot \int_0^{t_n} DF(t)F(dt)$

- *t_i*: coupon payment time
- *c*: the coupon rate
- Δ_i : the fraction of year between t_{i-1} and t_i
- *V*: par value

Figure: US treasury zero yield curve on June 16, 2016.

July 25, 2016 13 / 25

Assuming a fixed Rec, we calibrate the default model parameters for a specific investor by minimizing the root mean square percentage error:

$$\arg\min_{\boldsymbol{\beta}=(\beta_0,\beta_1,\beta_2,\beta_3)^{\mathsf{T}}} \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left(\frac{\operatorname{dirty \, price}_j - \operatorname{market \, price}_j}{\operatorname{market \, price}_j}\right)^2}$$

	Moodv's	Rating
Investor	rating	grade
JP Morgan Chase	Baa1	Lower medium
RBS Group	Ba1	Non-investment

Table: Two potential investors of K-forwards

Table: Ten bonds of JP Morgan Chase on June 16, 2016

Maturity	Coupon	Frequency	Last price	Model price	Currency	
0.668	1.350	semiannually	100.166	100.166	USD	
1.584	6.000	semiannually	107.050	108.646	USD	
3.351	2.200	semiannually	101.290	100.188	USD	
4.101	4.400	semiannually	109.164	109.114	USD	
5.167	4.350	semiannually	109.158	109.531	USD	
6.614	3.200	semiannually	103.199	103.800	USD	
7.912	3.625	semiannually	105.290	105.290	USD	
21.926	6.400	semiannually	135.326	135.326	USD	
24.348	5.500	semiannually	124.220	123.242	USD	
25.575	5.400	semiannually	122.221	122.524	USD	

Figure: Calibration of Nelson-Siegel model on bonds of JP Morgan Chase. ($\beta_0 = 0.0120, \beta_1 = 0.0067, \beta_2 = 0.0185, \beta_3 = 3.4164$)

Figure: Credit spread term structure of JP Morgan Chase on June 16, 2016.

Table: Seven bonds of Royal Bank of Scotland Group on June 16, 2016

Maturity	Coupon	Frequency	Last price	Market price	Currency
1.249	2.650	monthly	99.000	99.189	USD
1.499	2.250	monthly	99.513	98.259	USD
1.668	2.150	monthly	97.938	97.938	USD
3.668	2.750	monthly	95.313	95.313	USD
6.501	3.650	monthly	97.563	93.379	USD
6.986	6.100	semiannually	103.000	103.743	USD
7.926	5.125	semiannually	98.076	98.076	USD

Figure: Calibration of Nelson-Siegel model on bonds of RBS Group. ($\beta_0 = .0516, \beta_1 = -.0288, \beta_2 = .0275, \beta_3 = .9014$)

Figure: Credit spread term structure of RBS on June 16, 2016.

July 25, 2016 21 / 25

Consider K-forwards for England and Wales males aged from 40 to 90.

$$Y imes \left(ilde{\kappa}_T^{(i)} - \kappa_T^{(i)}
ight)$$
, $i = 1, 2,$

with Y =\$1.

Table: CVA (bps) in *K*-forwards when Rec = 0.4.

	T = 15				T = 20				T = 25			
	<i>K</i> 1	K2	sprd	<i>K</i> 1	К2	sprd		<i>K</i> 1	K2	sprd		
JPMC	32	.68	104	50	.86	97		69	1.0	92		
RBS	76	1.6	309	115	2.0	309		155	2.2	309		

	T = 15				T = 20			T = 25			
	<i>K</i> 1	K2	sprd	<i>K</i> 1	K2	sprd		<i>K</i> 1	K2	sprd	
JPMC	35	.75	112	55	.95	105		76	1.1	101	
RBS	83	1.8	322	128	2.2	323		174	2.5	324	

Table: CVA (bps) in *K*-forwards when Rec = 0.3.

Table: CVA (bps) in K-forwards when Rec = 0.5.

		T = 15				T = 2	20	T = 25			
	<i>K</i> 1	К2	sprd		<i>K</i> 1	K2	sprd		<i>K</i> 1	K2	sprd
JPMC	28	.59	95		43	.73	88		59	.86	83
RBS	54	1.1	243		76	1.3	208		96	1.3	181

ロト・日本・日本・日本・日本・

- Cairns, A.; Blake, D.; Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. *Journal of Risk and Insurance* **73**, no. 4, 687–718.
- Chan, W.-S.; Li, J. S.-H.; Li, J. (2014). The CBD mortality indexes: modeling and applications. *North American Actuarial Journal* **18**, no. 1, 38–58.
- Lando, D.; Mortensen, A. (2005). Revisiting the slope of the credit curve. *Journal of Investment Management* 3, no. 4, 6–32.
- Nelson, C.; Siegel, A. (1987). Parsimonious modeling of yield curves. *Journal of Business* 60, no. 4, 473–489.

▶ < 토▶ < 토▶

