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Abstract

We evaluate the par spread for a single-name credit default swap with a random
recovery rate. It is carried out under the framework of a structural default model in
which the asset-value process is of infinite activity but finite variation. The recovery
rate is assumed to depend on the undershoot of the asset value below the default
threshold when default occurs. The key part is to evaluate a generalized expected dis-
counted penalty function, which is a special case of the so-called Gerber-Shiu function
in actuarial ruin theory. We first obtain its double Laplace transform in time and in
spatial variable, and then implement a numerical Fourier inversion integration. Nu-
merical experiments show that our algorithm gives accurate results within reasonable
time and different shapes of spread curve can be obtained.
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rate; structural model
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1 Introduction

Since its birth in the 1990s, credit default swap (CDS) has become the most widely used

credit risk derivative to hedge credit risk. Insurance companies may be exposed as both

protection buyers and protection sellers in the CDS market. On the one hand, insurance

companies, as well as pension funds, are usually big holders of corporate bonds and hence

may buy a CDS as a hedge against losses due to bond default. On the other hand, an

insurance company may enter into a CDS as a protection seller since the CDS pays a

stream of premiums that is a consistent source of investment income for the company. So

it is important for insurance companies to understand how a CDS is priced.
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Pricing a CDS is essentially quantifying the risks that are transferred from the protection

buyer to the protection seller. In this paper we ignore the counterparty credit risk, i.e., both

parties do not default. Then, by entering a CDS contract, the protection buyer completely

transfers both default risk and recovery risk of the reference entity to the protection seller.

The former comes from the uncertainty on when default occurs, while the latter is due to

the randomness of the recovery rate. Most default models in financial practice assume the

default time and the recovery rate to be independent or simply assume a fixed recovery

rate. However, the recovery rate is not fixed in reality. For example, a bond’s recovery rate

is not determined at issuance and it is natural to link the recovery rate to the status of the

bond issuer’s asset value at default because what bondholders recover upon default heavily

depends on the remaining value of the bond issuer. Therefore, a default model that can

handle the time and severity of default simultaneously is of great advantage for taking into

account such a dependence between the default time and the recovery rate. In this paper

we use a structural model with downward jumps, which was first proposed by Madan and

Schoutens (2008).

Following the seminal paper of Black and Cox (1976), most of today’s structural default

models define default time as the first-passage time of the asset-value process below a certain

threshold level. While the distribution of default time has been extensively investigated in

the literature, it is much more difficult to consider the joint distribution of default time

and the asset value at default due to its complexity. One idea is to include downward

jumps in the asset-value process, which allows for situations where the default threshold is

not just hit but crossed by a jump. This provides the possibility to connect the recovery

rate with the undershoot of the asset-value process below the default threshold. Applying

this idea, Zhou (2001) suggested modeling the logarithm of the asset-value process as the

superposition of a diffusion component and a jump component with normally distributed

jumps. Assuming the recovery rate as a function of the asset value at default, Zhou (2001)

provided a Monte Carlo algorithm for pricing defaultable bonds. Chen and Kou (2009) used

a double exponential jump-diffusion model to study credit spreads, optimal capital structure,

and implied volatility of equity options. Ruf and Scherer (2011), pointing out that Monte

Carlo algorithms are computationally expensive and may imply a systematic bias, calculated

the price of a defaultable bond in a geometric jump-diffusion structural model with two-

sided jumps by using an improved Brownian-bridge algorithm. Their method provides an

efficient and unbiased Monte Carlo simulation for the computation of bond prices. However,

all these above papers focused on Poissonian jumps only and did not address the important

issue of infinite activity. In this paper we consider asset-value processes that are of infinite
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activity but finite variation and evaluate the CDS par spreads. Our algorithm does not

involve Monte Carlo simulations and fairly accurate results can be obtained.

It is worthwhile to emphasize on the importance of processes of infinite activity and

finite variation in modeling asset values. According to Carr et al. (2002), who empirically

investigated the fine structure of asset returns, there is evidence from market prices of eq-

uity that both physical and risk-neutral processes for equity prices seem to be pure-jump

processes of infinite activity and finite variation. Some of their findings are summarized

here: (1) index returns tend to be pure-jump processes of infinite activity and finite varia-

tion, both physically and risk-neutrally. A diffusion component appears to be statistically

insignificant, while it may be present in individual equity returns. (2) Jump components

consistently account for significant skewness levels from equity prices. (3) The shape of the

mean corrected density for asset returns appears to be a long spike near zero conjoined with

two convex curves describing large returns. It apparently departs from that of a normal

distribution, which is always concave within one standard deviation of the mean. In con-

trast, the densities of processes with infinite activity and finite variation are consistent with

equity prices.

Since the asset-value process is of infinite activity, it is very difficult, if not impossible,

to capture a default event continuously via Monte Carlo simulations. Instead, we evaluate

CDS spreads by calculating a generalized expected discounted penalty function (EDPF)

within a finite-time horizon. The original concept of EDPF was introduced by the classical

paper of Gerber and Shiu (1998). EDPF is also called Gerber-Shiu function, which is a

functional of the ruin time, the surplus prior to ruin, and the deficit at ruin. Later on,

Biffis and Morales (2010) generalized the EDPF to include the surplus at the last minimum

before ruin. Kuznetsov and Morales (2014) further introduced the generalized finite-time

EDPF and showed that it is computationally tractable for the evaluation of risk measures

such as Value at Risk when the risk process is from the beta and theta families of Lévy

processes. The generalized finite-time EDPF fits our needs because it shares the same form

as the present value of the loss leg of a CDS contract. It enables us to apply the quintuple

law at first passage to obtain an explicit expression for the double Laplace transform of the

loss leg, in time and in the spatial variable.

The method we use to invert the double Laplace transform is due to Dubner and Abate

(1968) and Hosono (1981), developed by Abate and Whitt (1992, 1995), and extended to

the multidimensional setting by Choudhury et al. (1994). As Rogers (2000) commented,

“the idea of the method is basically a Fourier inversion integral, performed by integrating up

a suitably-chosen contour a + iR, where the integral is approximated by a trapezoidal-rule
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sum, with equally-spaced points.” The choices of the spacing of the points and the parameter

a allow good control over the approximation errors. Euler sum is used as an acceleration

technique. Rogers (2000) applied this method on calculating first-passage probabilities for

general spectrally one-sided Lévy processes. Madan and Schoutens (2008) proposed a Lévy

default model and used the algorithm from Rogers (2000) to calculate CDS spreads under

the assumption of a constant recovery rate. In this paper, we assume the recovery rate to

be random in the default model by Madan and Schoutens (2008) and revise the algorithm

of Rogers (2000) so that CDS spreads can also be calculated.

This paper is organized as follows. We describe the structural model and the general

formula for CDS spreads in Section 2. Then we derive the double Laplace transform for

the loss leg of a CDS contract as a generalized EDPF in Section 3. We show how to invert

the double Laplace transform through a Fourier inversion integral in Section 4. Finally, we

conclude in Section 5 with some numerical experiments concerning runtime and accuracy

of our algorithm and showing different shapes of CDS spread curve.

2 Model description and CDS spread

2.1 Asset-value model

We model the asset-value process of the reference entity of a CDS by a stochastic process

V = {Vt, t ≥ 0} on a filtered probability space (Ω,F , (Ft)t≥0,Q), where

Vt = V0 e
Zt , t ≥ 0.

Throughout this paper we work under the pricing measure Q. The process Z = {Zt, t ≥ 0}
takes the form of a positive drift minus a pure-jump subordinator. Specifically,

Zt = µt− St, t ≥ 0, (2.1)

with the Laplace exponent

ψ(s) := lnE(esZ1) = µs+

∫ 0

−∞
(esx − 1) Π(dx),

where µ > 0 and the Lévy measure Π(·) defined on (−∞, 0) satisfies

Π((−∞, 0)) =∞ and

∫ 0

−1

|x|Π(dx) <∞. (2.2)

So the process Z has paths of infinite activity and bounded variation.
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The reference entity defaults when Vt falls below the default trigger point L, which is

known at time 0 to be some value less than V0. Denote by τ the default time, i.e.,

τ = inf {t : Vt ≤ L} = inf {t : ln(V0/L) + Zt ≤ 0} .

For convenience, we denote

Xt := ln(V0/L) + Zt, t ≥ 0.

Then τ is actually the ruin time of process X = {Xt, t ≥ 0}. We use Xτ , the deficit at ruin

of X, to specify the default severity.

One important feature of our modeling is that the reference entity has a random recovery

rate which depends on the default severity. Precisely, as long as τ ≤ T the protection seller

is required to pay the protection buyer 1− R(−Xτ ) for every unit notional amount at the

moment of default, where R(·) ∈ [0, 1] is a non-negative and non-increasing function defined

on [0,∞).

Example 2.1 One example of Z in (2.1) is the family of so-called shifted CMY processes,

in which process S = {St, t ≥ 0} is from the family of CMY processes. The CMY process S

with parameters C,M and Y is the Lévy process that starts at zero and has stationary and

independent CMY-distributed increments. More precisely, St follows the CMY(Ct,M, Y )

distribution. Recall that the characteristic function of the CMY distribution with parame-

ters C,M > 0 and 0 ≤ Y < 1 is given by

ϕCMY (u;C,M, Y ) = exp
{
CΓ(−Y )

(
(M − iu)Y −MY

)}
.

Thus, the Lévy measure and the Laplace exponent of Z are, respectively,

Π(dx) = CeMx(−x)−1−Y dx, x < 0,

and

ψ(s) = µs+ CΓ(−Y )
(
(M + s)Y −MY

)
. (2.3)

Note that a shifted CMY process with Y = 0 reduces to a shifted gamma process with

ψ(s) = µs − C ln(1 + s/M), and a shifted CMY process with Y = 0.5 reduces to a shifted

inverse Gaussian process with ψ(s) = µs − 2
√
πC(
√
s+M −

√
M). For a shifted CMY

process, it is clear that its Lévy measure satisfies the conditions in (2.2), and hence it

has paths of infinite activity and finite variation. See Carr et al. (2002) and Madan and

Schoutens (2008) for more properties of the CMY processes.
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2.2 CDS spread

Assume a constant risk-free continuously compounded interest rate r ≥ 0. Since E(Vt) =

V0e
rt for t ≥ 0 under Q, we immediately have

r = ψ(1).

Without loss of generality we assume that the CDS has a unit notional amount. If c is the

constant yearly continuous par spread, then the value of the CDS can be expressed as

E
[
e−rτ (1−R(−Xτ ))1{τ≤T}

]
− E

[c
r

(
1− e−r(τ∧T )

)]
,

where the first and second expectations respectively correspond to the present values of the

so-called loss leg and premium leg of the CDS contract. Pricing the CDS is to find the par

spread c which makes the present value of the loss leg equal to that of the premium leg:

c =
rE
[
e−rτ (1−R(−Xτ ))1{τ≤T}

]
E [1− e−r(τ∧T )]

. (2.4)

Note that although in reality premiums are paid at discrete times we, in this paper, follow

the convention in the literature and focus on the mathematically friendly continuous par

spread.

Let δ(t) denote the probability that no ruin occurs by time t, i.e.,

δ(t) := Q(τ > t).

It is easy to see that the premium leg is completely determined by δ(t), t ∈ [0, T ]. But

theoretically we need to know the joint distribution of τ and −Xτ to calculate the loss leg.

This joint distribution is embedded in the so-called quintuple law at first passage for the

dual process Z̃t = −Zt, t ≥ 0. However, as shown in the proof of Proposition 3.1, the

quintuple law in general does not necessarily provide explicit formulae for special examples

of Lévy processes due to the indirect involvement of the quantities κ and κ̂, which themselves

are embedded into the Wiener-Hopf factorization. One exception is for spectrally positive

processes, for which one may make reasonable progress into making the Laplace transform

of the law more explicit. See, for example, Section 7.3 of Kyprianou (2014) for details about

the quintuple law at first passage. We show in Section 3 details on how to use the quintuple

law to obtain an explicit formula for the double Laplace transform of the generalized EDPF

in our model.
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Remark 2.1 When the recovery rate R is a constant in (0, 1), the expression of c in (2.4)

can be simplified as

c =
(1−R)

(
−
∫ T

0
e−rtdδ(t)

)
∫ T

0
e−rtδ(t)dt

= (1−R)

(
1− e−rT δ(T )∫ T

0
e−rtδ(t)dt

− r

)
.

So all we need to know is δ(t), t ∈ (0, T ]. See Madan and Schoutens (2008), Schoutens and

Cariboni (2009, Section 3.1.1) and Hao et al. (2013) for more details on how to calculate

δ(t) and c in this special case.

3 Generalized Expected Discounted Penalty Function

In this section we consider the generalized EDPF for a more general process

Xt := x+ Zt, t ≥ 0, (3.1)

where X0 = x ≥ 0 and Z is defined as in (2.1). Let τ still denote the ruin time of X. It

turns out that the generalized EDPF is the key quantity in calculating the CDS spread c.

The original concept of EDPF was introduced into actuarial ruin theory by Gerber and

Shiu (1998). They studied ruin in the classical compound Poisson risk process by analyzing

the joint law of τ , −Xτ , and Xτ− in one single object, the EDPF. Since the process Z we

consider here is more general than a compound Poisson process and, more importantly, we

want to apply its quintuple law at first passage, we define two generalized EDPFs for the

process X as follows.

Definition 3.1 For the process X in (3.1), the generalized EDPF φ is

φ(x; r) := E
[
e−rτw(−Xτ , Xτ−, Xτ−)1{τ<∞}

∣∣X0 = x
]
,

and the generalized finite-time EDPF φt is

φt(x; r) := E
[
e−rτw(−Xτ , Xτ−, Xτ−)1{τ<t}

∣∣X0 = x
]
,

with r ≥ 0 and w a bounded measurable function on R3
+ = [0,∞)3.

Actually the generalized EDPFs φ(x; r) and φt(x; r) have been recently introduced and

studied in the actuarial literature. See, for example, Biffis and Morales (2010) and Kuznetsov

and Morales (2014).

It is obvious that the present value of the loss leg is exactly φT (x; r) with x = ln(V0/L)

and w(−Xτ , Xτ−, Xτ−) reduces to w(−Xτ ) = 1 − R(−Xτ ). To calculate this φT (x; r) we

first derive an explicit expression for its double Laplace transform in Proposition 3.1. Then

we show how to invert the double Laplace transform in Section 4.
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Proposition 3.1 Let X be the process in (3.1). For r ≥ 0, the double Laplace transform

of φt(x; r) defined as

g(λ, z) =

∫ ∞
x=0

∫ ∞
t=0

e−λt−zxφt(x; r)dtdx, λ, z > 0,

has the following formula

g(λ, z) =
1

λ(r + λ− ψ(z))

∫ ∞
v=0

∫ ∞
u=0

w(v)Π(−u− dv)
(
e−zu − e−ψ[−1](r+λ)u

)
du, (3.2)

where ψ[−1](q) is the right inverse of ψ, i.e., ψ[−1](q) = sup {s ≥ 0 : ψ(s) = q}, q ≥ 0.

Proof. It is easy to see that∫ ∞
t=0

e−λtφt(x; r)dt =

∫ ∞
t=0

e−λt
∫ t

s=0

e−rsE [w(−Xτ )|τ = s,X0 = x]Q(τ ∈ ds|X0 = x)dt

=
1

λ

∫ ∞
s=0

e−(λ+r)sE [w(−Xτ )|τ = s,X0 = x]Q(τ ∈ ds|X0 = x)

=
φ(x; r + λ)

λ
,

which implies

g(λ, z) =
1

λ

∫ ∞
x=0

e−zxφ(x; r + λ)dx. (3.3)

Thus finding the double Laplace transform of φt(x; r) in both t and x is equivalently to

finding the Laplace transform of φ(x; r + λ) in x.

Now we derive a formula for φ(x; r+λ). This part is essentially a special case of Lemma

2 of Kuznetsov et al. (2012). See also Proposition 4 of Kuznetsov and Morales (2014). We

apply the so-called Gerber-Shiu measure defined as

Px,r(dv, du, dy) = E
[
e−rτ1{−Xτ∈dv,Xτ−∈du,Xτ−∈dy}

]
for r ≥ 0, x > 0, v > 0, u > 0, and y ∈ (0, x∧u). Note that we denote the running maximum

and running minimum for a stochastic process X by X t = sup0≤s≤tXs and X t = inf0≤s≤tXs

respectively. We introduce the dual process Z̃t = −Zt, t ≥ 0. Then the process Z̃ is a pure-

jump subordinator plus a negative drift with Lévy measure Π̃(dx) = Π(−dx), x > 0. It is

obvious that τ = inf{t : Z̃t ≥ x}. Using the quintuple law at first passage for the process Z̃

we obtain that

E
[
e−rτ1{

Z̃τ−x∈dv,x−Z̃τ−∈du,x−Z̃τ−∈dy
}]

=

∫ ∞
s=0

e−rsU(ds, x− dy)

∫ ∞
t=0

e−rtÛ(dt, du− y)Π̃(u+ dv),
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where U and Û are the bivariate measures associated with the ascending and descending

ladder processes of Z̃ respectively. See Theorem 7.7 of Kyprianou (2014) and references

therein for the details on the quintuple law at first passage for general Lévy processes. By

the definitions of the bivariate measures we have∫ ∞
s=0

e−rsU(ds, x− dy) =
1

κ(r, 0)
Q
(
Z̃er ∈ x− dy

)
and ∫ ∞

t=0

e−rtÛ(dt, du− y) =
1

κ̂(r, 0)
Q
(
−Z̃er ∈ du− y

)
,

where eq represents an independent exponentially distributed random variable with rate

q > 0 and κ(r, 0) and κ̂(r, 0) are the Laplace exponents of the ascending and descending

ladder processes of Z̃ satisfying κ(r, 0)κ̂(r, 0) = r. Thus,

E
[
e−rτ1{

Z̃τ−x∈dv,x−Z̃τ−∈du,x−Z̃τ−∈dy
}]

=
1

r
Q
(
Z̃er ∈ x− dy

)
Q
(
−Z̃er ∈ du− y

)
Π̃(u+ dv),

which is obviously equivalent with

Px,r(dv, du, dy) =
1

r
Q
(
−Zer ∈ x− dy

)
Q
(
Zer ∈ du− y

)
Π(−u− dv).

So we have

φ(x; r + λ) =

∫ ∞
v=0

∫ ∞
u=0

∫ x∧u

y=0

w(v)Px,r+λ(dv, du, dy)

=

∫ ∞
v=0

∫ ∞
u=0

∫ x∧u

y=0

w(v)

r + λ
Q
(
−Zer+λ

∈ x− dy
)
Q
(
Zer+λ ∈ du− y

)
Π(−u− dv).

Then we plug the above expression into (3.3) and obtain

g(λ, z)

=

∫ ∞
v=0

∫ ∞
y=0

∫ ∞
u=y

∫ ∞
x=y

e−zxw(v)

λ(r + λ)
Q
(
−Zer+λ

∈ x− dy
)
Q
(
Zer+λ ∈ du− y

)
Π(−u− dv)dx.

(3.4)

The well-known Wiener-Hopf factorization for the spectrally negative process Z tells us that

Zeq is exponentially distributed with rate ψ[−1](q) and

E
(
etZeq

)
=

q

ψ[−1](q)

ψ[−1](q)− t
q − ψ(t)

.
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See, for example, Chapter 6 of Kyprianou (2014) for details about the Wiener-Hopf factor-

ization. Using these facts we are able to simplify the formula in (3.4). By first calculating

the integral with respect to x we get

g(λ, z)

=
ψ[−1](r + λ)− z

λψ[−1](r + λ)(r + λ− ψ(z))

∫ ∞
v=0

∫ ∞
y=0

∫ ∞
u=y

w(v)e−zyQ
(
Zer+λ ∈ du− y

)
Π(−u− dv)dy.

Then by calculating the integral with respect to y we immediately obtain formula (3.2).

4 Double Inverse Fourier Transform

The reason why a double inverse Fourier transform is relevant is because g(λ, z) obtained

in Proposition 3.1 is analytic in the region where both arguments have strictly positive real

parts. Madan and Schoutens (2008) made a very clear presentation on it. For the sake

of completeness, we show their presentation in this paragraph. Let λ1, λ2, z1, z2 be real

numbers with λ1, z1 > 0. Then by definition,

g(λ1 − iλ2, z1 − iz2) =

∫ ∞
x=0

∫ ∞
t=0

exp{−λ1t+ iλ2t− z1x+ iz2x}φt(x; r)dtdx.

So g(λ1 − iλ2, z1 − iz2) is the double Fourier transform of exp{−λ1t− z1x}φt(x; r). By the

inverse Fourier transform, we have

exp{−λ1t− z1x}φt(x; r) =
1

4π2

∫ ∞
λ2=−∞

∫ ∞
z2=−∞

exp{−iλ2t− iz2x}g(λ1− iλ2, z1− iz2)dz2dλ2,

or, equivalently,

φt(x; r) =
1

4π2

∫ ∞
λ2=−∞

∫ ∞
z2=−∞

exp{(λ1 − iλ2)t+ (z1 − iz2)x}g(λ1 − iλ2, z1 − iz2)dz2dλ2

= − 1

4π2

∫
Γ1

∫
Γ2

exp{λt+ zx}g(λ, z)dλdz, (4.1)

where the contour Γ1 = λ1 + iR and the contour Γ2 = z1 + iR.

The difficulty in implementing the Fourier integration (4.1) is calculating ψ[−1](r + λ)

with λ ∈ Γ1. Rogers (2000) suggested to alter contour Γ1 to another contour Γ0 such that

it is easy to solve for ψ[−1] on the new contour and, more importantly, the integral up Γ0

agrees with the integral up Γ1 in (4.1). According to formula (3.2) of g(λ, z), we can alter

the contour Γ1 to the contour

Γ0 = ψ(Γ1/µ)− r.
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Now for a point η = ψ(λ/µ) − r ∈ Γ0 with λ ∈ Γ1, it is obvious that ψ[−1](r + η) = λ/µ.

Then we show in the next proposition under what conditions this contour altering does not

change the value of the Fourier integration in (4.1).

Proposition 4.1 Consider the Fourier integration in (4.1), where g(λ, z) is from Proposi-

tion 3.1. Assume that ψ(·), the Laplace exponent of process Z, satisfies the following three

conditions: for s ∈ C with Re(s) > 0,

C1: (ψ(s)− µs)/s→ 0 as |s| → ∞,

C2: |ψ[−1](s)| → ∞ as |s| → ∞,

C3: Re(ψ[−1](s)) > 0.

Then, integrating on contour Γ0 instead of on contour Γ1 in (4.1) does not change the value

of the Fourier integration.

Proof. By Cauchy’s integral theorem, if we integrate up Γ1 from λ1 − iλ2 to λ1 + iλ2 then

cross over to Γ0 and integrate down from ψ((λ1 + iλ2)/µ) − r to ψ((λ1 − iλ2)/µ) − r and

then cross back to λ1 − iλ2, we get 0. So to show that the integral up Γ0 agrees with the

integral up Γ1 in (4.1), we only need to prove that the contribution of the two crossings is

negligible as λ2 →∞. Indeed, for each fixed z ∈ Γ2,

|g(λ, z) (λ− ψ(λ/µ) + r)| = |λg(λ, z)|
∣∣∣∣λ− ψ(λ/µ) + r

λ

∣∣∣∣ := I1(λ)I2(λ), λ = λ1 + iλ2 ∈ Γ1.

Obviously, I2(λ) → 0 as λ2 → ±∞ by condition C1. By formula (3.2) and denoting

ξ = ψ[−1](r + λ) we have

I1(λ) ≤
∣∣∫∞
v=0

∫∞
u=0

Π(−u− dv)
(
e−zu − e−ξu

)
du
∣∣

|r + λ− ψ(z)|

=

∣∣∫∞
s=0

Π(−ds)
∫ s
u=0

(
e−zu − e−ξu

)
du
∣∣

|r + λ− ψ(z)|

=

∣∣∫∞
s=0

Π(−ds)
(
(1− e−zs) /z −

(
1− e−ξs

)
/ξ
)∣∣

|r + λ− ψ(z)|

≤
∣∣∫∞
s=0

Π(−ds) (1− e−zs) /z
∣∣+
∣∣∫∞
s=0

Π(−ds)
(
1− e−ξs

)
/ξ
∣∣

|r + λ− ψ(z)|
, (4.2)

where ∣∣∣∣∫ ∞
s=0

Π(−ds)
(
1− e−ξs

)
/ξ

∣∣∣∣ =

∣∣∣∣∣
(∫ 1/|ξ|

s=0

+

∫ ∞
1/|ξ|

)
Π(−ds)

(
1− e−ξs

)
/ξ

∣∣∣∣∣
:= |J1(ξ) + J2(ξ)|. (4.3)
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By condition C2 and the bounded variation condition in (2.2),

|J1(ξ)| =

∣∣∣∣∣
∫ 1/|ξ|

s=0

1− e−ξs

ξs
sΠ(−ds)

∣∣∣∣∣ ≤ a

∫ 1/|ξ|

s=0

sΠ(−ds)→ 0, as λ2 → ±∞, (4.4)

for some constant a > 0. Note that here we use the fact (1− ex)/x = 1−x/2! +x2/3!−· · · ,
x ∈ C. Similarly, by conditions C2-C3 and the bounded variation condition in (2.2),

lim sup
λ2→±∞

|J2(ξ)| ≤ lim sup
λ2→±∞

√
22 + 12Π((−∞,−1/|ξ|))

|ξ|

≤
√

5

(
Π((−∞,−1]) +

∫ 0

−1

|x|Π(dx)

)
<∞. (4.5)

Combining (4.2)-(4.5) we obtain that I1(λ) → 0 as λ2 → ±∞. So the contribution of the

crossing from λ1 + iλ2 to ψ((λ1 + iλ2)/µ) − r is negligible as λ2 → ±∞. In conclusion, if

conditions C1-C3 are satisfied, the integral up Γ0 agrees with the integral up Γ1 in (4.1).

Assuming that conditions C1-C3 hold, by defining

h(λ) = ψ(λ/µ)− r : Γ1 → Γ0

we have

φt(x; r) = − 1

4π2

∫
Γ0

∫
Γ2

exp{λt+ zx}g(λ, z)dλdz

= − 1

4π2

∫
Γ1

∫
Γ2

exp{h(λ)t+ zx}g(h(λ), z)dh(λ)dz

= − 1

4π2

∫
Γ1

∫
Γ2

h′(λ) exp{h(λ)t+ zx}g(h(λ), z)dλdz, (4.6)

where

g(h(λ), z) =

∫∞
v=0

∫∞
u=0

w(v)Π(−u− dv)
(
e−zu − e−ψ[−1](r+h(λ))u

)
du

h(λ)(r + h(λ)− ψ(z))

=

∫∞
v=0

∫∞
u=0

w(v)Π(−u− dv)
(
e−zu − e−λu/µ

)
du

(ψ(λ/µ)− r)(ψ(λ/µ)− ψ(z))
.

The right-hand side of (4.6) can be approximated by the double sum

SN =
h1h2

4π2

Nl1∑
n=−Nl1

Nl2∑
m=−Nl2

h′(a1 + inh1)g(h(a1 + inh1), a2 + imh2)

× exp {th(a1 + inh1) + x(a2 + imh2)} , (4.7)
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and following Choudhury et al. (1994) we use

a1 =
A1

2tl1
, a2 =

A2

2xl2
, h1 =

π

tl1
, h2 =

π

xl2
,

where A1, A2 are two large positive real numbers and l1, l2 are two positive integers. Choud-

hury et al. (1994) further suggested using the following Euler sum to improve approximation

accuracy:
K∑
k=0

2−K
(
K

k

)
SN+k (4.8)

with N and K two positive integers. As we show in Section 5.1, we are able to properly

choose A1, A2, l1, l2, N and K to control the approximation errors in (4.7).

5 Numerical Experiments

In all numerical experiments in this section, we assume the process Z in (2.1) to be a shifted

CMY process with C,M > 0 and 0 ≤ Y < 1. Before we proceed to apply the double inverse

Fourier transform method described in Section 4 we need to check if ψ(·) satisfies conditions

C1-C3. Actually, condition C1 is fulfilled by the fact Y < 1. Condition C2 can be easily

proved by contradiction. As to condition C3, we observe that ψ[−1](·) is analytic on the half

complex plane with positive real part. Since the process Z is a spectrally negative Lévy

process, it is known that ψ[−1](s1) > 0 at all real s1 > 0. If condition C3 does not hold,

then there must exist some s1 > 0 and s2 ∈ R such that ψ[−1](s1 + is2) is on the axis of

imaginaries. By plugging this solution into (2.3) and comparing the real parts on both sides,

it turns out that there must exist some θ ∈ (−π/2, π/2) such that

cos(Y θ)

(cos θ)Y
= 1 +

s1

CΓ(−Y )MY
< 1. (5.1)

However, the left-hand side of (5.1), as a function of θ, is decreasing on (−π/2, 0] and

increasing on [0, π). So it takes its local minimum 1 at θ = 0, which contradicts the

inequality in (5.1).

All numerical experiments in this section are implemented in R and share the following

assumptions: the interest rate r is fixed at 0.03; the ratio of the default trigger point L

over the asset value at time t = 0, L/V0, is assumed to be 0.5.; and, the recovery rate

is dependent upon the undershoot of the process X below 0 at ruin through the function

R(x) = 0.5 exp{−x}, x ≥ 0. We worked on a MacBook Pro computer equipped with a 2.4

GHz Intel Core i5 processor and a 4 GB 1333 MHz DDR3 memory.
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5.1 Accuracy test

There are three sources of error in the approximation (4.7): the aliasing error, the roundoff

error, and the truncation error. According to Choudhury et al. (1994, Section 2), we set the

parameters in (4.7)-(4.8) as follows to control these errors. The aliasing error, also known as

the discretization error, arises since we use a trapezoidal-rule form of numerical integration

as in (4.7) to approximate φt(x; r). Since φt(x; r) ∈ (0, 1) by its definition, the aliasing error

is bounded from above by approximately e−A1 + e−A2 . So we can limit the aliasing error to

about 10−7 by choosing A1 = A2 = 16.8.

The roundoff error is due to multiplying large numbers by small ones. Specifically, it

refers to the error due to a large value of the quantity exp{A1/(2l1) + A2/(2l2)}/(4l1l2tx),

which can be taken out of the sums in (4.7). Since we have used A1 and A2 to control

the aliasing error, we use l1 and l2 to control the roundoff error. Obviously increasing l1

and l2 will decrease exp{A1/(2l1) +A2/(2l2)}/(4l1l2tx) and thus reduce the roundoff error.

However, from the sums in (4.7), choosing larger l1 and l2 costs more computation time

which is proportional to the product of l1 and l2. Choudhury et al. (1994) suggests that for

two-dimensional inversion usually l1 = l2 = 2 is adequate. Therefore we choose these values

in our experiments.

As to the truncation error, unless computing the inverse transform near discontinuities,

one can usually reduce the truncation error to 10−13 or lower by using the Euler sum with

about 50 terms. When computing first-passage probabilities, Rogers (2000) used N = 12

and K = 15 and limited the truncation error to 10−4. Our numerical experiments show

that using N = 12 and K = 15 gives accurate enough results within reasonable runtime for

our purpose as well.

We show 5-year CDS spreads and corresponding runtimes for different combinations of

N and K in Table 1. We assume C = 1, M = 5, and Y = 0. We observe from the table

that by decreasing N from 20 to 12 and K from 25 to 15 the runtime to calculate the CDS

spread is shortened from more than 28 minutes to less than 8 minutes. However, we still

can achieve an accuracy of 10−1 basis points (bps) at N = 12 and K = 15, which is accurate

enough for credit spreads.

Table 1 is here.

In Table 2, 10-year CDS spreads and corresponding runtimes for N = 12 to 20 and

K = 15 to 25 are shown. We change the values of C, M , and Y to 0.5, 4, and 0.25

respectively. We want to see if using N = 12 and K = 15 can still provide accurate CDS
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spreads under a different shifted CMY process and for a longer time horizon. It shows

clearly that an accuracy of 10−1 bps can also be achieved.

Table 2 is here.

5.2 Term structure of CDS spreads

In a structural default model, the lower the credit quality of the firm, the closer it is to

the default threshold, and hence the firm will face a higher probability of default over short

maturities. For longer maturities, if no default occurs, the firm has a higher probability

of credit improvement, and therefore the term structure of credit spreads is more likely to

be humped or downward sloping. For high-quality firms, the reverse argument holds, and

consequently, the term structure of credit spreads is more likely to be upward sloping. These

typical shapes of the term structure of credit spreads are confirmed by the empirical work

of Sarig and Warga (1989) and Fons (1994). Similar shapes are observed from the curve of

CDS spreads. See, for example, Lando and Mortensen (2005) and Trück et al. (2004).

Our model is able to capture different styles of term structure of CDS spreads. In Figures

1-3 we show three examples of term structure demonstrating upward sloping, humped, and

downward sloping, respectively. In Figure 1, the spreads are small and the curve is upward

sloping, which is typical for an investment-grade reference entity. The spreads in Figure

2 are larger than those in Figure 1 and the curve is humped in shape. This style is more

consistent with the term structure of a speculative-grade reference entity. Last, in Figure

3, the spreads are very large and the curve shows clearly a downward sloping. These are

exactly the features of the CDS term structure of a reference entity with an extremely

speculative grade.

Figures 1-3 are here.
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Table 1: CDS spreads c (in bps) and runtime (in minutes) for T = 5 with C = 1, M = 5,
and Y = 0

N = 12 13 14 15 16 17 18 19 20

K = 15 124.67 124.67 124.67 124.67 124.67 124.67 124.67 124.66 124.66
(07:49) (08:29) (09:18) (10:00) (10:51) (11:40) (12:45) (13:50) (14:36)

16 124.67 124.67 124.67 124.67 124.67 124.67 124.66 124.66 124.66
(08:34) (09:13) (09:59) (10:51) (11:41) (12:35) (13:38) (14:40) (15:43)

17 124.67 124.67 124.67 124.67 124.67 124.67 124.66 124.66 124.66
(09:15) (09:59) (10:49) (11:45) (12:39) (13:37) (14:38) (15:56) (16:55)

18 124.67 124.67 124.67 124.67 124.67 124.66 124.66 124.66 124.66
(10:02) (10:50) (11:41) (12:37) (13:37) (14:36) (15:47) (17:20) (18:07)

19 124.67 124.67 124.67 124.67 124.67 124.66 124.66 124.66 124.66
(10:51) (11:43) (12:36) (13:37) (14:42) (15:44) (16:57) (18:10) (19:24)

20 124.67 124.67 124.67 124.67 124.66 124.66 124.66 124.66 124.66
(11:50) (12:37) (13:35) (14:38) (15:50) (16:54) (18:13) (19:37) (20:46)

21 124.67 124.67 124.67 124.67 124.66 124.66 124.66 124.66 124.66
(12:40) (13:37) (14:37) (15:45) (17:06) (18:08) (19:25) (20:50) (22:11)

22 124.67 124.67 124.67 124.66 124.66 124.66 124.66 124.66 124.67
(13:40) (14:38) (15:45) (16:55) (18:13) (19:30) (20:45) (22:12) (23:41)

23 124.67 124.67 124.67 124.66 124.66 124.66 124.66 124.66 124.67
(14:43) (15:48) (16:55) (18:09) (19:27) (21:01) (22:21) (23:40) (25:08)

24 124.67 124.67 124.66 124.66 124.66 124.66 124.66 124.67 124.68
(15:52) (16:58) (18:08) (19:28) (20:46) (22:11) (23:55) (25:09) (26:42)

25 124.67 124.67 124.66 124.66 124.66 124.66 124.67 124.67 124.68
(17:09) (18:10) (37:36) (20:53) (22:12) (23:41) (25:14) (26:42) (28:25)
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Table 2: CDS spreads c (in bps) and runtime (in minutes) for T = 10 with C = 0.5, M = 4,
and Y = 0.25

N = 12 13 14 15 16 17 18 19 20

K = 15 126.17 126.17 126.17 126.17 126.17 126.17 126.16 126.16 126.16
(07:42) (07:43) (08:56) (09:17) (10:09) (11:11) (16:48) (18:07) (27:55)

16 126.17 126.17 126.17 126.17 126.17 126.16 126.16 126.16 126.16
(07:54) (12:04) (09:13) (10:05) (11:00) (12:05) (18:06) (19:46) (21:06)

17 126.17 126.17 126.17 126.17 126.17 126.16 126.16 126.16 126.16
(08:33) (09:08) (10:03) (10:55) (11:53) (13:03) (19:31) (21:55) (22:17)

18 126.17 126.17 126.17 126.17 126.16 126.16 126.16 126.16 126.16
(09:05) (09:55) (10:50) (11:50) (12:49) (14:02) (20:59) (22:38) (23:55)

19 126.17 126.17 126.17 126.17 126.16 126.16 126.16 126.16 126.16
(09:51) (10:43) (11:42) (12:45) (13:46) (15:04) (22:54) (24:40) (25:25)

20 126.17 126.17 126.17 126.16 126.16 126.16 126.16 126.16 126.16
(10:38) (11:36) (12:37) (13:44) (14:49) (16:59) (24:04) (26:20) (27:25)

21 126.17 126.17 126.17 126.16 126.16 126.16 126.16 126.16 126.16
(11:31) (12:31) (13:35) (14:45) (15:54) (23:27) (25:15) (28:36) (29:20)

22 126.17 126.17 126.16 126.16 126.16 126.16 126.16 126.16 126.16
(12:27) (13:27) (14:35) (15:47) (17:06) (25:43) (26:59) (30:03) (31:14)

23 126.17 126.17 126.16 126.16 126.16 126.16 126.16 126.16 126.17
(13:17) (14:35) (15:37) (16:56) (18:22) (27:31) (29:02) (30:52) (33:17)

24 126.17 126.16 126.16 126.16 126.16 126.16 126.16 126.16 126.17
(14:20) (16:32) (16:43) (18:08) (19:42) (29:22) (30:26) (32:03) (35:29)

25 126.17 126.16 126.16 126.16 126.16 126.16 126.16 126.17 126.17
(15:22) (19:23) (17:54) (19:22) (21:01) (31:23) (32:50) (35:26) (37:27)
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Figure 1: Term structure of CDS spreads assuming that the logarithm of the asset value
follows a shifted CMY process with C = 1, M = 7, and Y = 0
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Figure 2: Term structure of CDS spreads assuming that the logarithm of the asset value
follows a shifted CMY process with C = 1, M = 3, and Y = 0
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Figure 3: Term structure of CDS spreads assuming that the logarithm of the asset value
follows a shifted CMY process with C = 0.5, M = 1.9, and Y = 0
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