
Evaluation of Credit Value Adjustment in
K-forward

Xuemiao Hao∗, Chunli Liang†, Linghua Wei‡

April 27, 2017

Abstract

We model and quantify counterparty credit risk for K-forward, a newly proposed
longevity-linked security. We focus on the evaluation of credit value adjustment
(CVA) from the longevity risk hedger’s perspective. The modeling involves two
folds. First, we use a vector autoregressive integrated moving-average process to
model the time series of mortality indexes that is obtained by applying the original
Cairns–Blake–Dowd model. Then, the risk-neutral default probability of the hedge
provider is obtained by calibrating a reduced-form default model on the market price
of bonds issued by the hedge provider. We calculate and compare CVA in K-forwards
for different combinations of hedger provider, reference year and recovery rate.
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1 Introduction

Mortality in many countries has been steadily improving for decades thanks to medical
improvement and stable social environment. This trend makes longevity risk the main
problem that pension funds face nowadays. A new market, the life market, has come
into form over the last decade, in which mortality- and longevity-linked securities are
traded (Blake et al., 2013). These new products are welcomed by financial market since
they could add more diversity to traditional capital market. For instance, longevity risk
can be transferred to broader capital market through various securities, such as longevity
bond (Blake et al., 2006; Hunt and Blake, 2015), longevity swap (Cairns et al., 2014), and
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q-forward (Coughlan et al., 2007). For all these securities, the payoff is designed to be
linked to the mortality rates of some reference populations at some reference years in the
future.

More recently, Chan et al. (2014) and Tan et al. (2014) proposed a simple longevity-
linked security called K-forward to hedge longevity risk. A K-forward is a zero-coupon
swap that exchanges on the maturity date some fixed amount for a floating amount that
is proportional to a mortality index in the Cairns–Blake–Dowd (CBD) mortality model
for a certain population. Figure 1 shows the payoffs on the maturity date of a typical
K-forward. The longevity-risk hedger plays the role as the fixed rate receiver and the
hedge provider as the fixed rate payer in this contract. If the mortality index turns out
to be lower than expected and thus there is a longevity loss, the hedger will get a posi-
tive payment from the hedge provider to cover the loss. Compared with other longevity
hedging instruments, a big advantage of K-forwards is that their final payoffs only de-
pend on some time-varying mortality index and there is no need to specify a specific
hedging age. This feature makes a K-forward longevity hedge easier to implement and
thus more conductive to the development of liquidity.

Figure 1 is here.

Like other longevity-linked securities, K-forward is supposed to be traded over the
counter. Thus, it is necessary to measure its counterparty risk. However, very few pa-
pers in the literature have studied counterparty risk in longevity-linked securities until
recently Biffis et al. (2016) investigated the cost of bilateral default risk and collateral rules
in longevity swaps. In particular, they assumed that the credit risk of the hedge supplier
is equal to the average credit quality of the LIBOR panel and thus its default intensity
follows the LIBOR-Treasury spread. In this paper, we propose a framework to evaluate
credit value adjustment (CVA) in K-forwards. One advantage of our work is that we are
able to estimate the risk-neutral default intensity for an arbitrary hedge supplier given
that we can collect enough market information, like corporate bonds, reflecting its credit
risk. For simplicity, we consider a K-forward contract without collateral requirements.
Also, since the mortality index data is available once a year, we assume that the evalua-
tion of the K-forward can be done only at the end of each year after the mortality index
data for that year is available. The CVA at time 0 can be approximated as follows:

CVA ≈ (1− R)
T

∑
t=1

DF(t) · EE(t) · (F(t)− F(t− 1)), (1.1)

where 1− R is the loss given default (LGD), which is the percentage of the exposure to be
lost at default of the counterparty, DF(t) is the risk-free discount factor for time t, EE(t) is
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the expected risk exposure for the institution at time t, and F(t) is the counterparty’s risk-
neutral default probability by time t. See Gregory (2015; Appendix 14) for the detailed
derivation of formula (1.1).

We want to point out some important underlying assumptions for the plausibility of
using formula (1.1) to evaluate the counterparty risk in K-forward. First, the recovery
rate is assumed to be exogenously given and fixed. Second, we consider the possible
default of the hedge provider only and ignore the possibility that the hedger may also
default. This assumption may seem unrealistic at first glance. But if we think of the
hedger as a pension fund, whose default is mainly due to unexpected improved mortal-
ity rate, we would agree that when the hedger’s default risk is high the risk exposure
to the hedge provider is likely to be zero. Last, we assume that there is no wrong-way
or right-way risk, i.e., the credit risk exposure is independent with the hedge provider’s
default time. This assumption is reasonable since banks usually do not have exposures
to the demographics of a population. Based on these assumptions, we can simply accu-
mulate over time the product of the LGD, the risk exposure and the default probability
to evaluate the counterparty risk as in formula (1.1).

Another important issue we want to address regarding formula (1.1) is that we calcu-
late the expected risk exposure under the real-world measure. Usually, since evaluation
of CVA is a pricing application, the expected risk exposure should be calculated under
the risk-neutral measure instead of the real-world measure. However, there is essen-
tially no publicly available pricing information on longevity-linked securities with the
only exception for the longevity bond by the European Investment Bank (EIB) in 2004.
While the EIB longevity bond had an issue price of 35 basis points below LIBOR, it was
ultimately unsuccessfully issued. The lack of real pricing information makes it impos-
sible to derive reliable risk-neutral mortality indexes. It is also the reason why Biffis et
al. (2016) assumed that the death time has the same intensity process under both risk-
neutral and real-world measures. We further want to point out that, as Cox and Pedersen
(2000) explained for catastrophe risks, if a future cash flow depends only on mortality re-
lated variables, which are assumed independent of financial risk variables, then the cash
flow’s expectation under the risk-neutral measure coincides with that under the real-
world measure. Hence, in this paper we derive the CBD mortality indexes under the
real-world measure and use them to calculate the expected risk exposure at each time
t, which is consistent with market practice where counterparties would agree on a real-
world mortality model.

The remaining of the paper is organized as follows. In Section 2, we derive the CBD
mortality index data for a reference population and fit it by using a vector time-series
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model. The time-series model is used to predict future mortality indexes for the pop-
ulation. In Section 3, we estimate the risk-neutral default probability by calibrating a
reduced-form default model on market price of bonds. Then, combining results in Sec-
tions 2 and 3, we calculate the CVA in K-forwards for two potential hedge providers in
Section 4. Some concluding remarks are given in Section 5.

2 Model for mortality indexes

The multiperiod-ahead forecasting performance of a stochastic mortality model is es-
sential to its application in longevity risk management. From the work of Cairns et al.
(2011) and Dowd et al. (2010), we know that the original CBD mortality model (Cairns
et al., 2006) is a relatively simple one among a few that can provide acceptable both ex
ante and ex post forecasts, in particular, for senior ages. Recall that the reparameterized
version of the original CBD two-factor mortality model assumes that

ln
(

qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x), (2.1)

where qx,t is the probability that an individual aged x at time t will die by t + 1, x is
the average of the ages used in the dataset, and κ

(i)
t , i = 1, 2, called CBD mortality in-

dexes, are time-varying parameters representing period effects. Assuming deaths follow
a binomial distribution one can estimate κ

(1)
t and κ

(2)
t using historical mortality rates.

Note that κ
(1)
t represents the level of the logit-transformed mortality curve and a reduc-

tion in κ
(1)
t means an overall mortality improvement. κ

(2)
t represents the slope of the

logit-transformed mortality curve and a positive κ
(2)
t means that mortality at older ages

improves more slowly than at younger ages.
Chan et al. (2014) pointed out a unique feature, the so-called new-data-invariant prop-

erty, of the CBD mortality indexes. In other words, after new mortality data is available
and the CBD model (2.1) is updated accordingly, historical values of κ

(i)
t , i = 1, 2, will not

change. This is a very important property based on which Chan et al. (2014) proposed
the concept of K-forward. A K-forward could be considered as a zero coupon swap that
exchanges a fixed amount with a floating amount proportional to κ

(1)
T or κ

(2)
T for a refer-

ence population in a future reference year T. Denote by κ̃
(i)
T the forward mortality index,

which is determined at time 0, and by Y the notional amount. The payoff for the fixed
rate receiver on the maturity date can be expressed as

Y ·
(

κ̃
(i)
T − κ

(i)
T

)
, i ∈ {1, 2}. (2.2)
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2.1 Mortality data

The mortality data used in this paper is that for US males aged from 30 to 100. The
reason why we choose the age range 30–100 has two folds. First, we want to exclude the
accident hump at younger ages for which the CBD model does not handle well. Second,
the average age is 65, the normal age at which people retire in US. So if κ

(2)
T is lower

than κ̃
(2)
T then it would result in extra longevity risk from all retiree groups. Human

Mortality Database (2016) has mortality data for US males from 1933 to 2014. Although
a structural change should have occurred during this period, see Li et al. (2011), we still
use all available mortality data for a baseline case in this paper. The historical values of
κ
(1)
t and κ

(2)
t are shown in Figure 2.

Figure 2 is here.

2.2 Vector time-series model

In the original CBD model the time variation of κt = (κ
(1)
t , κ

(2)
t )T is modeled by a bivari-

ate random walk (Carins et al., 2006). However, a random walk cannot explain either
serial or cross correlation in the series of ∆κt = κt − κt−1, though such correlations are
significantly observed for almost all populations available. Chan et al. (2014) proposed
to apply a vector autoregressive moving-average (VARMA) model on ∆κt and found the
best fitting VARMA model for England and Wales male population from 1950 to 2009.
Following Chan et al. (2014), we find in this section the best VARMA model describing
the CBD mortality indexes for US male population from 1933 to 2014.

Let us denote ∆dκt = ∆d−1κt − ∆d−1κt−1, d ≥ 1, with ∆0κt = κt. We say that the
vector series ∆dκt follows a VARMA(p, q) process if

∆dκt = Φ0 +
p

∑
i=1

Φi∆dκt−i −
q

∑
j=1

Θjεt−j + εt, (2.3)

where Φ0 is a constant vector, Φi’s and Θj’s are coefficient matrices for i, j ≥ 1, Φp 6= 0,
Θq 6= 0, and εt is a sequence of independent and identically distributed random vectors
with mean zero and positive-definite covariance matrix Σ. It is known that for a VMA(q)
process its cross-correlation matrices with lag > q are all zero and for a VAR(p) process
its partial autoregressive matrices with lag > p are all zero. In addition, assuming that
the lag-l partial autoregressive matrix is zero, the likelihood ratio statistic M(l) is asymp-
totically chi-squared distributed with four degrees of freedom. See Tiao and Box (1981)
and Tsay (2014) for more details on properties of VARMA models.

For model identification, we employ the sample cross-correlation matrices (SCCM)
and the likelihood ratio statistic M(l) for the sample partial autoregressive matrices to

5



help choose the appropriate orders p and q. Table 1 shows SCCM and the likelihood
ratio statistic M(l) for the series κt. Since all SCCM of κt up to lag 8 are significantly
not zero, we turn to the first-order difference ∆κt. Table 2 shows SCCM and M(l) for
∆κt. Now only the lag-1 and lag-3 SCCM matrices are significantly not zero. We settle
with the first-order difference. Since the critical value for M(l) is χ2

4,0.95 = 9.45, we see
that M(l) is significantly not zero at lags 1, 3 and 5 only. Based on these observations,
we focus on VARMA(p, q) models with p ≤ 5 and q ≤ 3. Table 3 shows the Akaike
Information Criterion (AIC) for different fitted VARMA models on ∆κt. VARMA(5, 0)
gives the lowest AIC which indicates that (5, 0) could be the best fitted model. The
estimated coefficients and their corresponding standard errors of a VARMA(5, 0) model
fitted on ∆κt are given in Table 4.

Tables 1–4 are here.

We then do diagnostic checking for the fitted VARMA(5, 0) model. Table 5 shows
the SCCM and M(l) of the residuals after fitting a VARMA(5, 0) model on ∆κt. SCCM
matrices are insignificant from zero at all lags and M(l) are all less than the critical value
χ2

4,0.95 = 9.45. We further check the normality assumption on errors since we are going
to assume normality in simulation later. Table 6 shows the p-value and conclusion of
normality tests on the residuals after fitting a VARMA(5, 0) model on ∆κt. The residuals
pass all the following three multivariate normality tests at 5% significance level: Roys-
ton’s test, Henze–Zirkler’s test, and Mardia’s test.

Tables 5–6 are here.

In the end we want to point out that our choice of the VARMA(5, 0) model for ∆κt

is consistent with the one chosen by Chan et al. (2014), who studied the CBD mortality
indexes for England and Wales male population from 1950 to 2009.

2.3 Backtesting

The ex post forecasting performance of the fitted mortality model is important since reli-
able evaluation of CVA in K-forward would heavily depend on acceptable predictions of
future mortality indexes that do not differ significantly from realized outcomes. Dowd
et al. (2010) proposed a backtesting framework and applied it on a variety of stochastic
mortality models. In particular, they investigated the out-of-sample predicting perfor-
mance of the CBD mortality model by assuming that κt follows a bivariate random walk
with drift. In the remaining of this section, we will perform similar backtesting under
the assumption that ∆κt follows a VARMA process.
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According to Tsay (2014, Chapter 3), if a VARMA process (2.3) holds with d = 1, then
∆κt has a moving-average representation

∆κt = µ +
∞

∑
i=0

Ψiεt−i,

where µ = (I−Φ1)
−1 Φ0, Ψ0 = I, Ψ1 = Φ1 −Θ1, Ψi = Φ1Ψi−1, i = 2, 3, . . ., and I is the

2× 2 identity matrix. So we are able to derive

κt = κ0 +
t

∑
i=1

∆κi = κ0 + tµ +
t

∑
i=1

t−i

∑
j=0

Ψjεi +
∞

∑
i=0

i+t

∑
j=i+1

Ψjε−i.

Suppose that we are at time 0 and try to predict t steps ahead. Denote κ(t) = E(κt|F0)

with F0 being the available information at time 0. Then,

κt − κ(t) =
t

∑
i=1

t−i

∑
j=0

Ψjεi

and

cov (κt − κ(t)) =
t

∑
i=1

(
t−i

∑
j=0

Ψj

)
· Σ ·

(
t−i

∑
j=0

ΨT
j

)
.

Figure 3 shows the 95% prediction interval and median prediction line of κ
(1)
t and

κ
(2)
t from 2000 to 2014 based on the mortality index data up to 1999. If the fitted model

is proper, we would expect no more than 5% real mortality index turn out to fall outside
of the confidence interval. It is clear that all real outcomes κ

(1)
t from 2000 to 2014 fall

within the interval. As for κ
(2)
t , only one out of fifteen real outcomes exceeds the interval

boundary. Given that we have a relatively short forecast horizon (15 years), the ex post
forecasting performance on both κ

(1)
t and κ

(2)
t is acceptable.

Figure 3 is here.

We also perform another backtest based on a formal statistical hypothesis test. Again
we use the CBD mortality index data from 1933 to 1999. After fitting a VARMA(5,0)
model on ∆κt, we can forecast by simulation the cumulative distribution function for
κ
(1)
t and κ

(2)
t in future years. The null hypothesis is that the realized mortality indexes

are consistent with their predicted distribution functions. Then by locating the realized
κ
(i)
t , i = 1, 2, on its predicted distribution function curve, we can obtain its p-value, which

is associated with the left-sided test of the null hypothesis. Note that here we focus on
left-sided tests since if the model cannot generate adequate outcomes smaller than the
realized κ

(i)
t , i = 1, 2, then it is not reliable to hedge longevity risk. The results are shown
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in Figure 4. It can be clearly seen that the model does a good job in predicting κ
(1)
t . Its

p-values at all 15 horizon years are all greater than 10%. The p-value for κ
(2)
t drops below

5% significance level only for the last two years in the forecast horizon. Given that κ
(1)
t

carries the main part of the longevity risk, as can be seen from the variations of κ
(i)
t ,

i = 1, 2, in Figure 2, the model has an acceptable performance in this backtest as well.

Figure 4 is here.

3 Risk-neutral default probability

In this section we employ a parametric reduced-form model to describe the default be-
haviour of a hedge provider. Given a set of non-callable bonds issued by the hedge
provider, we try to match their “dirty prices” implied from the reduced-form model with
their market prices. In this way we are able to determine the optimal set of parameters
that gives us the best estimate for the hedge provider’s risk-neutral default probability
within a finite time horizon.

We assume that at time 0 the forward default intensity of the hedge provider is a
deterministic positive function of time t, which has the form

h(t; β) = β0 + β1e−t/β3 + β2e−t/β3t/β3, t ≥ 0, (3.1)

with β = (β0, β1, β2, β3)
T ∈ R4. If β satisfies that h(t; β) > 0 for all t ≥ 0, then it is

straightforward to derive the cumulative hazard rate function and the survival probabil-
ity as

H(t; β) =
1
t

∫ t

0
h(s; β)ds = β0 + (β1 + β2)(1− e−t/β3)β3/t− β2e−t/β3 (3.2)

and
S(t; β) = exp (−tH(t; β)) , t ≥ 0. (3.3)

The function h(t; β) in (3.1) was first proposed by Nelson and Siegel (1987) to model
a bond’s yield curve. Duan et al. (2012) also found it useful in smoothing parameters
when modeling forward default intensity. A great advantage of this parsimonious model
is that all of the parameters have their own economic meanings. Indeed, β0 is the long-
term converging value of the default intensity, β1 and β2 represent the short-term and
medium-term effects for the default intensity, respectively, and β3 > 0 acts as the time-
scalar parameter. In our application, since the default intensity is always positive, we
require S(t; β) in (3.3) to be a decreasing survival function, which means that, given β,
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S(0; β) = 1, limt→∞ S(t; β) = 0, and S′(t; β) < 0 for all t ≥ 0. Thus, besides β3 > 0 we
need the following additional constraints on β:

(C1) β0 > 0;
(C2) β0 + β1 > 0;
(C3) β2 > βl with βl uniquely satisfying βl < β1 and β0 + βl exp (β1/βl − 1) = 0.

See Appendix A for the proof of the fact that constraints C1–C3 together is equivalent to
that S(t; β) is a decreasing survival function.

3.1 Model calibration

For a potential hedge provider, we estimate its risk-neutral forward default intensity
by calibrating model (3.1) according to its available bond prices. Specifically, suppose
we have detailed information, including market price, coupon rate, principal, maturity,
etc., of K non-callable bonds issued by the hedge provider. The bond information is
collected on the same day, which is considered as time 0. By combining discounted
future coupon/principal payments with survival probability from (3.3), we are able to
calculate the so-called “dirty price” for each bond as

n

∑
j=1

DF(sj) · c∆j · S(sj) + V ·DF(sn) · S(sn) + V · R ·
∫ sn

0
DF(s)F(ds). (3.4)

In the above formula, sj, j = 1, . . . , n, are the coupon payment moments with sn the
maturity, c is the coupon rate, ∆j is the fraction of years between sj−1 and sj, V is the
par value, R is the recovery rate, DF(·) is the risk-free discount factor, S(·) = S(·; β) for
simplicity, and F(·) = 1− S(·). Note that in order to derive formula (3.4) we assume that
the recovery is a fraction of the par value. Next we perform a calibration process on β,
under constraints C1–C3, such that the mean absolute error is minimized as

β∗ = arg min
β

1
K

K

∑
k=1

∣∣dirty pricek −market pricek

∣∣ . (3.5)

By doing so, we find for the hedge provider the optimal set of parameters β∗ that best
matches each bond’s market price with its dirty price. Then we are able to use h(t; β∗) as
the proxy for the hedge provider’s risk-neutral forward default intensity.

We perform the model calibration process for two potential hedge providers: JP Mor-
gan (JPM) and Royal Bank of Scotland (RBS), who have participated in transactions
of longevity-linked securities in the last decade. See, for example, Table 1 of Biffis et
al. (2016). The bond information of JPM and RBS, all retrieved on June 16, 2016 from
Bloomberg database, is summarized in Tables 7–8, respectively.
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Tables 7–8 are here.

Since all bonds are in US dollars, we use US Treasury zero yields on the same day to
calculate the risk-free discount factor. Note that almost all of the bonds are senior unse-
cured except that two of RBS are subordinated. According to Table 24.2 of Hull (2014),
the average recovery rate, as a percentage of par value, of senior unsecured corporate
bonds in the period 1982–2012 is about 37%. Hence, we assume the fixed recovery rate
R = 37% in the dirty price formula (3.4). We also want to point out that the optimization
in (3.5) is nonlinear with multiple constraints, which is not trivial. We implement it in R
3.3.1 (R Core Team, 2016) using the NLopt package (Johnson, 2008).

The comparison of bonds’ market prices and their dirty prices after model calibration
is demonstrated in Figures 5–6. It is clear that the overall matching performance is very
good with a mean absolute error of 0.496 dollars for JPM’s ten bonds and of 0.923 dollars
for RBS’s seven bonds. Among all seventeen bonds, sixteen bonds have a percentage
discrepancy less than 1.5% between dirty price and market price while there is only one
exception at 4.5%.

Figures 5–6 are here.

We also look at the estimated risk-neutral credit spread term structure of the two banks.
Here the credit spread at time t is simply defined as (1 − R)H(t; β). The left plot in
Figure 7 displays JPM’s credit spread term structure estimated by assuming β = β∗JPM =

(0.0125, 0.0050, 0.0181, 2.8895)T. The credit spread curve is hump shaped, increasing up
to around 5 years and then keeping decreasing beyond that point. This is a generic
B-rating credit spread curve according to Lando and Mortensen (2005). Similarly, the
right plot in Figure 7 displays RBS’s credit spread term structure estimated by assuming
β = β∗RBS = (0.0210, 0.0170, 0.0676, 4.9448)T. Again, the credit spread curve is hump
shaped with the peak at around the 5-year point. But compared with that of JPM, the
credit spread curve of RBS clearly shifts to a much higher level.

Figure 7 is here.

So we find something interesting here. According to Moody’s, JPM’s senior unsecured
bonds are rated at A3 in the category of medium grade and RBS’s senior unsecured bonds
are rated at Ba1 in the category of non-investment grade speculative. However, their risk-
neutral credit spread curves, estimated based on their public-traded bonds, both behave
like a B-rating one, which belongs to the highly speculative category. This indicates that
the financial market is very risk averse when pricing credit risk.
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4 CVA of K-forward

In this section we calculate CVA of K-forwards for a pension fund. We assume that
the pension fund and a hedge provider have an agreement of K-forwards written on
US male population as described in Section 2. The two potential hedge providers we
consider in this paper are JPM and RBS. We use the CVA evaluation formula (1.1), in
which the risk exposures are calculated by applying the vector time-series model on
the CBD mortality indexes κt as in Section 2 and the risk-neutral default probability is
estimated by calibrating the reduced-form model on the hedge provider’s bond prices
as in Section 3. Next we state the assumptions and steps of our calculation before we
present the numerical results in Section 4.1.

We assume time 0 as on June 16, 2016, on which date we collected bonds’ information
for the two potential hedge providers. The K-forwards are used to hedge longevity risk
for up to 25 years beyond 2016. Denote by κ0 the mortality indexes of year 2016, by κ1 the
mortality indexes of year 2017, and so on. In practice, there is usually a time lag between
the end of a reference year and the availability of the mortality index data for that year.
For simplicity, we suppose in this paper that κt for each year starting 2016 are available
on December 31 of the same year. At the end of each year t we can obtain an updated
estimate of κT by applying the fitted VARMA model to the realization of κt up to year
t. We then plug the updated estimates of κT in formula (2.2) to get the risk exposures of
the K-forwards at year t. The CVA is an accumulation up to year T of the discounted risk
exposure combined with the default probability and the loss given default. The detailed
simulation procedure is as follows:

Step 1: Simulate a sample path of κt, t = 0, 1, . . . , T, based on the historical mortality
indexes κt and the fitted VARMA(5, 0) model on ∆κt.

Step 2: At the end of each year t = 0, 1, . . . , T, update the estimate of κT based on the
simulations up to year t from Step 1. Compare it with the original value estimated
at time 0 to determine the risk exposure at that point.

Step 3: For each risk exposure at the end of year t in Step 2, multiply it with the marginal
risk-neutral default probability in year t, the risk-free discount factor corresponding
to the end of year t, and the loss given default.

Step 4: A realization of CVA is obtained by adding together all the products for years
t = 0, 1, . . . , T, in Step 3.

Step 5: Repeat Steps 1–4 for 1,000,000 times. The average CVA is our final estimate.

11



4.1 Numerical results

The numerical results of CVA measured in basis points (bpts) for K1-forward and K2-
forward are summarized in Table 9.

Table 9 is here.

Our first observation is that for US male population the CVA of K1-forward is always
much larger than that of K2-forward. For instance, the CVA of K1-forward at T = 25
years is 52.4 bpts for JPM, more than half of the corresponding credit spread (95.4 bpts),
while the CVA of K2-forward for the same reference year is only 1.6 bpts, which is almost
negligible. The big discrepancy in CVA values is actually due to the fact that κ

(1)
t mea-

sures the level of the whole logit-transformed mortality curve while κ
(2)
t represents the

slope of the logit-transformed mortality curve. In Figure 2 we can easily see that for US
male population the fluctuation in κ

(1)
t contains the main part of the longevity risk and

bears a larger uncertainty along with time. It would be interesting to know if this rela-
tionship between K1-forward and K2-forward holds for other populations as well given
that some populations, like Canadian male as found by Chan et al. (2014), may have
relatively less uncertainty associated with κ

(1)
t but more uncertainty associated with κ

(2)
t .

Second, the CVA of K-forward is greatly influenced by the hedge provider’s credit
rating. As we introduced in Section 3, the long-term credit rating of JPM is A3, which
belongs to the category of medium grade, while that of RBS is Ba1, which is in the cate-
gory of non-investment grade speculative. As a result, the credit spreads of RBS at years
15, 20 and 25 are all as about two and a half times as that of JPM. Similarly, for both K1-
forward and K2-forward, CVA of RBS is almost as double as that of JPM. The different
levels of scaling confirm that CVA, unlike credit spread which is the risk premium for a
specific time point, depends essentially on the whole credit curve of the hedge provider.
This also makes it very important to accurately estimate the whole credit curve, not only
credit spreads at some time points, in order to obtain a reliable estimate of CVA.

Last we want to talk about the impact of recovery rate. We fix the recovery rate at 37%
in the above calculation only because it is the historically average recovery rate of senior
unsecured corporate bonds. But in reality the recovery rate is not known at issuance
and its realized value could be any number between 0 and 1. We calculate the CVAs
again by assuming that financial market believes the hedge provider might default with
a recovery rate of 25% and 50%, respectively. The results are summarized in Tables 10–11.
It can be clearly seen that the randomness of recovery rate has a big impact on CVA for
a hedge provider with non-investment grade, like RBS. For instance, when the assumed
recovery rate drops from 50% to 37%, corresponding to a 26% increase of LGD, the CVA
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of K1-forward at year 25 for RBS increases by 33.8%!

Tables 10–11 are here.

5 Concluding remarks

In this paper, we propose a baseline framework to calculate CVA in K-forward. The
risk exposure part is obtained by applying a VARMA model on mortality indexes. The
risk-neutral default probability is derived from a reduced-form model that is calibrated
according to market bond prices. This framework works for arbitrary combination of
hedge provider, reference year and recovery rate.

One way to extend our work is to take into account recovery risk. One possible solu-
tion is to use a structural model with downward jumps to describe the default behaviour
of the hedge provider. It is natural to relate the recovery rate to the random default sever-
ity. Another advantage of using a structural model is that we are able to compare results
under two different default models and figure out if there is severe model risk in the
evaluation of CVA.

Another issue that we need to consider in future research is debt value adjustment
(DVA) from the hedger’s perspective. In other words, we need to consider the possibil-
ity that the hedger defaults before the hedge provider does, which may causes potential
losses for the hedge provider. Since hedge providers of K-forward are usually banks,
who are required by regulation to report CVA of OTC derivatives in their financial state-
ments, it is important to consider CVA and DVA in K-forward together.

References

[1] Biffis, E.; Blake., D.; Pitotti, L.; Sun, A. (2016). The cost of counterparty risk and
collateralization in longevity swaps. Journal of Risk and Insurance 83, no. 2, 387–419.

[2] Blake, D.; Cairns, A.; Coughlan, G.; Dowd, K.; MacMinn, R. (2013). The new life
market. Journal of Risk and Insurance 80, no. 3, 501–558.

[3] Blake, D.; Cairns, A.; Dowd, K. (2006). Living with mortality: Longevity bonds and
other mortality-linked securities. British Actuarial Journal 12, no. 1, 153–197.

[4] Cairns, A.; Blake., D.; Dowd, K. (2006). A two-factor model for stochastic mortality
with parameter uncertainty: theory and calibration. Journal of Risk and Insurance 73,
no. 4, 687–718.

[5] Cairns, A.; Blake., D.; Dowd, K.; Coughlan, G.; Epstein, D.; Khalaf-Allah, M. (2011).
Mortality density forecasts: an analysis of six stochastic mortality models. Insurance:
Mathematics and Economics 48, no. 3, 355–367.

13



[6] Cairns, A.; Dowd, K.; Blake, D.; Coughlan, G. (2014). Longevity hedge effectiveness:
A decomposition. Quantitative Finance 14, no. 2, 217–235.

[7] Chan, W.; Li, J.; Li, J. (2014). The CBD mortality indexes: modeling and applications.
North American Actuarial Journal 18, no. 1, 38–58.

[8] Coughlan, G; Epstein, D.; Sinha, A.; Honig, P. (2007). q-forwards: Derivatives for
transferring longevity and mortality risks. JPMorgan Pension Advisory Group, Lon-
don.

[9] Cox, S.H.; Pedersen, H.W. (2000). Catastrophe risk bonds. North American Actuarial
Journal 4, no. 4, 56–82.

[10] Dowd, K.; Cairns, A.; Blake, D.; Coughlan, G.; Epstein, D.; Khalaf-Allah, M. (2010).
Backtesting stochastic mortality models: an ex post evaluation of multiperiod-ahead
density forecasts. North American Actuarial Journal 14, no. 3, 281–298.

[11] Duan, J.-C.; Sun, J.; Wang, T. (2012). Multiperiod corporate default prediction – a
forward intensity approach. Journal of Econometrics 170, no. 1, 191–209.

[12] Gregory, J. (2015). The XVA Challenge: Counterparty Credit Risk, Funding, Collateral and
Capital. John Wiley & Sons.

[13] Hull, J. (2014). Options, Futures, and Other Derivatives, 9th edition. Pearson Educa-
tion.

[14] Human Mortality Database. (2016). University of California, Berkeley, USA,
and Max Planck Institute for Demographic Research, Germany. Available at
www.mortality.org.

[15] Hunt, A.; Blake, D. (2015). Modelling longevity bonds: Analysing the Swiss Re Ko-
rtis Bond. Insurance: Mathematics and Economics 63, 12–29.

[16] Johnson, S.G. (2008). The NLopt nonlinear-optimization package. URL http://ab-
initio.mit.edu/nlopt/.

[17] Lando, D.; Mortensen, A. (2005). Revisiting the slope of the credit spread curve.
Journal of Investment Management 3, no. 4, 1–27.

[18] Li, J.; Chan, W.; Cheung, S. (2011). Structural changes in the Lee-Carter mortality
indexes. North American Actuarial Journal 15, no. 1, 13–31.

[19] Nelson, C.R.; Siegel, A.F. (1987). Parsimonious modeling of yield curves. Journal of
Business 60, no. 4, 473–489.

[20] R Core Team (2016). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org.

[21] Tan, C.; Li, J.; Li, J.; Balasooriya, U. (2014). Parametric mortality indexes: From index
construction to hedging strategies. Insurance: Mathematics and Economics 59, 285–299.

14



[22] Tiao, G.; Box, G. (1981). Modeling multiple time series with applications. Journal of
the American Statistical Association 76, no. 376, 802–816.

[23] Tsay, R. (2014). Multivariate Time Series Analysis: With R and Financial Applications.
John Wiley & Sons.

Appendix A

Here we give the proof of the fact that the combination of constraints C1–C3 on β, as
given in Section 3, is equivalent to that S(t; β) is a decreasing survival function.

Actually by (3.2), for t > 0,

tH(t, β) = tβ0 + (β1 + β2)(1− e−t/β3)β3 − tβ2e−t/β3 .

It is obvious that limt→0+ tH(t, β) = 0 and thus we always have S(0; β) = 1. Since
β3 > 0, by (3.3), we have

lim
t→∞

S(t; β) = 0 ⇐⇒ lim
t→∞

tH(t; β) = ∞

⇐⇒ lim
t→∞

tβ0 + (β1 + β2)β3 = ∞

⇐⇒ β0 > 0,

which is constraint C1.
Then, with β0 > 0 and β3 > 0, we prove that S′(t; β) < 0 for all t ≥ 0 is equivalent

with constraints C2 and C3. It is obvious that

S′(t; β) < 0, ∀t ≥ 0 ⇐⇒ h(t; β) > 0, ∀t ≥ 0. (A.1)

Since h(0; β) = β0 + β1 and limt→∞ h(t; β) = β0, from (A.1) we immediately have β0 +

β1 > 0, which is constraint C2. Given β0 > 0, β0 + β1 > 0 and β3 > 0, we next derive the
constraint on β2. Note that h(t; β) is a smooth function on [0, ∞) with

h′(t; β) = (β2 − β1 − tβ2/β3) · exp (−t/β3) /β3.

It is straightforward to see that when β2 ≥ min (0, β1), h(t; β) takes its infimum of β0 +

β1 (t = 0) or of β0 (t = ∞), both greater than zero. While, when β2 < min (0, β1),
h′(t; β) has a unique root t∗ = β3 (1− β1/β2) ∈ (0, ∞) and h(t; β) takes its infimum of
h(t∗; β) = β0 + β2 exp (β1/β2 − 1). Denote by βl the unique value satisfying βl < β1

and β0 + βl exp (β1/βl − 1) = 0. Then h(t∗; β) > 0 requires β2 > β∗. So we have
h(t; β) > 0, ∀t ≥ 0, implies β2 > βl, which is constraint C3. It is also easy to check that,
with β0 > 0 and β3 > 0, constraints C2 and C3 together implies the condition in (A.1).
The proof is completed.
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Figure 1: The transaction between two parties of a K-forward
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Figure 2: Historical values of κ
(1)
t (left panel) and κ

(2)
t (right panel) for US male popula-

tion aged from 30 to 100, 1933–2014
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Figure 3: The 95% prediction interval and median line of κ
(1)
t (left panel) and κ

(2)
t (right

panel) in 2000–2014 based on the mortality index data up to 1999. The dashed lines rep-
resent lower and upper bounds of the confidence interval, the blue continuous line rep-
resents the forecasted median, and the black continuous line represents the real outcome
of the mortality index.
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Figure 4: The various-horizon p-values of realized κ
(1)
t (left panel) and κ

(2)
t (right panel)

in 2000–2014 based on the mortality index data up to 1999. The red dotted line represents
the 5% significance level.
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Figure 5: Calibration results for JPM. The blue bars represent bonds’ market prices and
the red bars represent bonds’ dirty prices with β∗JPM = (0.0125, 0.0050, 0.0181, 2.8895)T.
The mean absolute error is 0.496.
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Figure 6: Calibration results for RBS. The blue bars represent bonds’ market prices and
the red bars represent bonds’ dirty prices with β∗RBS = (0.0210, 0.0170, 0.0676, 4.9448)T.
The mean absolute error is 0.923.
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Figure 7: Estimated credit spread term structure of JPM (left panel) and RBS (right panel)
on June 16, 2016
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Table 1: Sample cross-correlation matrices and likelihood ratio statistics of κt

lag l
1 2 3 4 5 6 7 8

SCCM[
+ −
− +

] [
+ −
− +

] [
+ −
− +

] [
+ −
− +

] [
+ −
− +

] [
+ −
− +

] [
+ −
− +

] [
+ −
− +

]
M(l) 490.39 22.05 5.62 16.27 2.68 11.53 5.18 -0.45

Table 2: Sample cross-correlation matrices and likelihood ratio statistics of ∆κt

lag l
1 2 3 4 5 6 7 8

SCCM[
· ·
− ·

] [
· ·
· ·

] [
· ·
+ ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

]
M(l) 19.89 1.96 18.57 6.48 14.13 5.14 -0.13 -0.78

Table 3: AIC of fitted VARMA(p, q) models on ∆κt

(p, q) (5,0) (4,0) (3,0) (2,0) (1,0) (0,1) (0,2) (0,3)

AIC -22.827 -22.719 -22.707 -22.517 -22.600 -22.581 -22.559 -22.792
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Table 4: Coefficients and their standard errors of a VARMA(5, 0) model fitted on ∆κt

Φ0 Φ1 Φ2
−0.0080
(0.0035)

−0.000050
(0.000113)



−0.0889 −6.1141
(0.1086) (3.5450)

−0.0175 0.0273
(0.0034) (0.1127)




0.0010 0.6678
(0.1222) (3.5310)

−0.0098 0.1542
(0.0039) (0.1118)


Φ3 Φ4 Φ5

0.1451 0.2323
(0.1142) (3.4340)

0.0086 0.1308
(0.0036) (0.1090)




0.1672 1.9997
(0.1177) (3.3920)

0.0066 −0.0632
(0.0037) (0.1076)




0.0817 1.0612
(0.1167) (3.0140)

−0.0006 0.0345
(0.0037) (0.0956)


Σ(

0.00027272 0.00000199
0.00000199 0.00000027

)

Table 5: Sample cross-correlation matrices and likelihood ratio statistics of the residuals
after fitting a VARMA(5, 0) model on ∆κt

lag l
1 2 3 4 5 6 7 8

SCCM[
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

] [
· ·
· ·

]
M(l) -1.09 1.08 -1.25 2.64 7.04 2.44 4.74 5.27

Table 6: Normality tests on the residuals after fitting a VARMA(5, 0) model on ∆κt

Test p-value Conclusion
Shapiro–Wilk for ∆κ(1) 0.409 pass
Shapiro–Wilk for ∆κ(2) 0.149 pass

Royston’s 0.251 pass
Henze–Zirkler’s 0.391 pass

Mardia’s N.A. pass
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Table 7: Ten bonds of JP Morgan on June 16, 2016

Maturity Par Coupon Frequency Last price Currency Type
0.668 100.000 1.350 semiannually 100.166 USD Senior secured
1.584 100.000 6.000 semiannually 107.050 USD Senior secured
3.351 100.000 2.200 semiannually 101.290 USD Senior secured
4.101 100.000 4.400 semiannually 109.164 USD Senior secured
5.167 100.000 4.350 semiannually 109.158 USD Senior secured
6.614 100.000 3.200 semiannually 103.199 USD Senior secured
7.912 100.000 3.625 semiannually 105.290 USD Senior secured

21.926 100.000 6.400 semiannually 135.326 USD Senior secured
24.348 100.000 5.500 semiannually 124.220 USD Senior secured
25.575 100.000 5.400 semiannually 122.221 USD Senior secured

Table 8: Seven bonds of Royal Bank of Scotland on June 16, 2016

Maturity Par Coupon Frequency Last price Currency Type
1.249 100.000 2.650 monthly 99.000 USD Senior secured
1.499 100.000 2.250 monthly 99.513 USD Senior secured
1.668 100.000 2.150 monthly 97.938 USD Senior secured
3.668 100.000 2.750 monthly 95.313 USD Senior secured
6.501 100.000 3.650 monthly 97.563 USD Senior secured
6.986 100.000 6.100 semiannually 103.000 USD Subordinated
7.926 100.000 5.125 semiannually 98.076 USD Subordinated

Table 9: CVA (in bpts) of K-forwards when R = 0.37 with standard errors in parenthesis

T = 15 T = 20 T = 25

K1 K2 sprd K1 K2 sprd K1 K2 sprd

JPM 34.2 1.1 105.9 43.9 1.4 99.5 52.4 1.6 95.4
(.10) (.004) (.13) (.005) (.15) (.006)

RBS 73.4 2.3 278.7 87.7 2.7 254.0 97.8 3.0 234.0
(.23) (.008) (.26) (.009) (.28) (.010)
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Table 10: CVA (in bpts) of K-forwards when R = 0.25 with standard errors in parenthesis

T = 15 T = 20 T = 25

K1 K2 sprd K1 K2 sprd K1 K2 sprd

JPM 35.8 1.1 109.8 47.5 1.5 106.0 58.0 1.8 103.8
(.11) (.004) (.14) (.005) (.16) (.006)

RBS 80.6 2.5 293.3 95.4 2.9 262.5 104.2 3.2 233.0
(.25) (.009) (.28) (.010) (.30) (.011)

Table 11: CVA (in bpts) of K-forwards when R = 0.50 with standard errors in parenthesis

T = 15 T = 20 T = 25

K1 K2 sprd K1 K2 sprd K1 K2 sprd

JPM 29.7 0.9 95.2 37.4 1.2 87.8 44.1 1.4 83.2
(.09) (.003) (.11) (.004) (.12) (.005)

RBS 60.4 1.9 242.2 68.4 2.1 206.6 73.1 2.2 179.0
(.19) (.007) (.20) (.007) (.21) (.008)
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