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Abstract

Recently, Albrecher and his coauthors have published a series of papers on the
ruin probability of the Lévy insurance model under the so-called loss-carry-forward
taxation, meaning that taxes are paid at a certain �xed rate immediately when the
surplus of the company is at a running maximum. In this paper we assume periodic
taxation under which the company pays tax at a �xed rate on its net income during
each period. We devote ourselves to deriving explicit asymptotic relations for the ruin
probability in the most general Lévy insurance model in which the Lévy measure has
a subexponential tail, a convolution-equivalent tail, or an exponential-like tail.
Keywords: Asymptotics; convolution-equivalent tail; Lévy process; periodic taxa-

tion; ruin probability; subexponentiality.

1 Introduction

The ruin probability of an insurance company is the probability that its surplus process

falls below 0 at some time. Recently, the in�uence of tax payment on the ruin probability

has become an interesting problem in actuarial science. Let S = (St)t�0 be a stochastic

process, with S0 = x > 0, representing the underlying surplus process in a world without

economic factors (tax, reinsurance, or investment, etc.) of an insurance company. Assuming

that S is a compound Poisson process with positive drift and that taxes are paid at a �xed

rate  2 [0; 1) whenever S is at a running maximum (called the loss-carry-forward taxation),
�Corresponding author. E-mail: hao@cc.umanitoba.ca; phone: 1-204-474-8710; fax: 1-204-474-7545.
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Albrecher and Hipp (2007) and Albrecher et al. (2009) proved the following strikingly simple

relationship between  (x) and  0(x), the ruin probabilities with and without tax:

 (x) = 1� (1�  0(x))
1=(1�) : (1.1)

Albrecher et al. (2008b) further showed that the tax identity (1.1) still holds for a spectrally

negative Lévy surplus process under the loss-carry-forward taxation. Also, Albrecher et al.

(2008a) proved a similar tax identity for a dual surplus process with general inter-innovation

times and exponential innovation sizes under the same type of taxation.

All these papers cited above assume the loss-carry-forward taxation. In reality, however,

taxes are usually paid periodically (e.g. monthly, semi-annually, or annually). Furthermore,

if the surplus process contains a di¤usion part, then the moments of running maxima do

not form any continuous time interval. In this case, the loss-carry-forward type taxation is

rather unrealistic, as was also commented by Albrecher and Hipp (2007).

In this paper, we introduce periodic taxation as well as reinsurance to the risk model.

Precisely, we assume that at each discrete moment n = 1; 2; : : :, the company, given that it

survives, pays tax at rate  2 [0; 1) on its net income during the period (n� 1; n] and it gets
paid by reinsurance at rate � 2 [0; 1) on its net loss during the period (n � 1; n]. We are
interested in the in�uence of such taxation rule and reinsurance policy on the asymptotic

behavior of the ruin probability.

An example of such a reinsurance is the so-called quota-share reinsurance in which the

reinsurer assumes an agreed percentage of an insurer being reinsured and shares all premiums

and losses accordingly with the insurer. In this paper we shall assume that the loss process

before tax and reinsurance is a Lévy process, which, after paying reinsurance premiums at

a constant rate, is still a Lévy process. Therefore, for simplicity, in our formulation we

shall ignore the reinsurance premiums or we understand the loss process as after paying the

reinsurance premiums.

Let us intuitively compare these two types of taxation. Under the loss-carry-forward

taxation, as long as the surplus does not hit its historical peak, the insurance company can

legally evade any tax payment possibly for a long time, even if it makes pro�ts every single

period during that time. While under the periodic taxation, the insurance company has

to pay tax whenever it survives and its net income is positive in that period. Hence, the

latter imposes a more strict taxation rule and produces more signi�cant impact on the ruin

probability than the former does. This will be demonstrated in Section 3.

It is convenient for us to look at the loss process before tax and reinsurance,

Lt = x� St; t � 0:
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For each n = 1; 2; : : :, the maximal net loss and the net loss of the company within the

period (n� 1; n] are, respectively,

Yn = sup
n�1�t�n

(Lt � Ln�1) ; Zn = Ln � Ln�1:

After introducing the periodic taxation at rate 0 �  < 1 and reinsurance at rate 0 � � < 1,

the loss of the company within the period (n� 1; n] becomes

Xn = Zn + Z�n � �Z+n = (1� �)Z+n � (1� )Z�n ;

where z+ = z _ 0 and z� = � (z ^ 0) for a real number z. Then, it is easy to see that the
ruin probability in this situation is equal to

 ;�(x) = Pr

 
sup
n�1

 
n�1X
k=1

Xk + Yn

!
> x

!
; (1.2)

where, as usual, a summation over an empty set of indices produces a value 0. Notice that

we have used  (x) (with only one subscript ) for the ruin probability under the loss-carry-

forward taxation and used  ;�(x) (with two subscripts  and �) for the ruin probability

under the periodic taxation and reinsurance. We shall let the notation speak for itself.

In this paper, we shall assume that the loss process L is a Lévy process (that is, it starts

with 0, is right continuous with left limit, and has stationary and independent increments)

with mean EL1 = �� < 0 (so that ignoring possible ruin it converges to �1 almost surely).

Consequently, the random pairs (Xn; Yn), n = 1; 2; : : :, appearing in (1.2) are independent

and identically distributed (i.i.d.) copies of the random pair

(X; Y )
D
=

�
(1� �)L+1 � (1� )L�1 ; sup

0�t�1
Lt

�
: (1.3)

Write �+ = EL
+
1 and �� = EL

�
1 , which are assumed to be �nite. Throughout this paper,

we always choose  2 [0; 1) and � 2 [0; 1) such that

EX = (1� �)�+ � (1� )�� < 0; (1.4)

so that the insurance company still has positive expected pro�ts under such taxation and

reinsurance and that the ruin is not certain.

The rest of this paper consists of four sections. After listing some preliminaries on Lévy

processes and several important distribution classes in Section 2, we present our main results

in Sections 3-5 for the cases that the Lévy measure of the loss process L has a subexponential

tail, a convolution-equivalent tail, and an exponential-like tail, respectively.
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2 Preliminaries

For a Lévy process L = (Lt)t�0, its characteristic function can be written in the form

EeisLt = e�t�(s);

where the characteristic exponent �(�) has the Lévy-Khintchine representation

� (s) = ias+
1

2
�2s2 +

Z 1

�1

�
1� eisx + isx1(jxj�1)

�
� (dx)

with a 2 (�1;1), � � 0, and Lévy measure � on (�1;1) satisfying � (f0g) = 0 andR1
�1 (x

2 ^ 1) � (dx) <1. The triplet (a; �2; �) (called Lévy triplet) uniquely determines the
distribution of the Lévy process L.

Throughout this paper, for a Lévy measure � and a distribution F on (�1;1), write
�(x) = � ((x;1)) and F (x) = 1 � F (x) for x � 0. When �(1) > 0, introduce �(�) =
(�(1))�1 �(�)1(1;1), which is a proper probability measure on (1;1). Hereafter, all limit
relationships are according to x!1 unless otherwise stated, and for two positive functions

a(�) and b(�), write a(x) � b(x) if a(x)=b(x)! 1.

A distribution F on [0;1) is said to belong to the class L(�) for some � � 0 if F (x) > 0
for all x � 0 and the relation

lim
x!1

F (x+ y)

F (x)
= e��y (2.1)

holds for all y 2 (�1;1). Furthermore, a distribution F on [0;1) is said to belong to the
class S(�) for some � � 0 if F 2 L(�) and the limit

lim
x!1

F 2�(x)

F (x)
= 2c (2.2)

exists and is �nite, where F 2� denotes the 2-fold distribution convolution of F , i.e., F 2�(x) =R x
0� F (x� y)F (dy) for all x � 0. For later use, we write F 1� = F and F n� = F (n�1)� � F for
n = 2; 3; : : :. It is known that the constant c in (2.2) is equal to

R1
0� e

�xF (dx); see Rogozin

(2000) and references therein. In the literature, a distribution F in L(�) with � > 0 is

usually said to have an exponential-like tail, and F in S(�) with � > 0 is said to have a

convolution-equivalent tail.

We shall assume that the Lévy measure � of the Lévy process L in our model has a tail

� asymptotically equivalent to a convolution-equivalent tail. This is a natural assumption

when studying the tail probability of Lévy processes. In risk theory, this assumption has

recently been used by e.g. Klüppelberg et al. (2004) and Doney and Kyprianou (2006).

Note that S(0) = S is the well-known subexponential class. A useful subclass of S is S�.
By de�nition, a distribution F on [0;1) is said to belong to the class S� if F (x) > 0 for all
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x � 0, �F =
R1
0
F (x)dx <1, and

lim
x!1

Z x

0

F (x� y)

F (x)
F (y)dy = 2�F :

This class was introduced by Klüppelberg (1988), who pointed out that if F 2 S�, then both
F 2 S and FI 2 S, where FI denotes the integrated tail distribution of F , de�ned as

FI(x) =
1

�F

Z x

0

F (y)dy; x � 0:

According to Chover et al. (1973) and Klüppelberg (1989), a measurable function f :

[0;1) ! [0;1), not necessarily a probability density function on [0;1), is said to belong
to the class Ld(�) for some � � 0 if f(x) > 0 for all large x and the relation

lim
x!1

f(x+ y)

f(x)
= e��y (2.3)

holds for all y 2 (�1;1). Furthermore, a measurable function f : [0;1) ! [0;1) is said
to belong to the class Sd(�) for some � � 0 if f 2 Ld(�) and the limit

lim
x!1

f 2?(x)

f(x)
= 2c (2.4)

exists and is �nite, where f 2? denotes the 2-fold density convolution of f , i.e., f 2?(x) =R x
0
f(x � y)f(y)dy for all x � 0. For later use, we write f 1? = f and fn? = f (n�1)? ? f

for n = 2; 3; : : :. It is known that the constant c in (2.4) is equal to
R1
0
e�xf(x)dx. For a

distribution F with a density f 2 Ld(�) for some � > 0, it is easy to see that f(x)=F (x)! �.

Furthermore, for this case F 2 S(�) if and only if f 2 Sd(�). The convergence in both (2.1)
and (2.3) is automatically uniform on compact y-intervals. See Klüppelberg (1989) for these

assertions.

Lemma 2.1 (Embrechts and Goldie (1982)) If F 2 S(�) for some � � 0, then for every

n = 1; 2; : : :,

lim
x!1

F n�(x)

F (x)
= n

�Z 1

0�
e�yF (dy)

�n�1
:

Furthermore, for every " > 0 there exists some K" > 0 such that for all n = 1; 2; : : : and

x > 0,

F n�(x) � K"

�
"+

Z 1

0�
e�yF (dy)

�n
F (x):

Lemma 2.2 (Chover et al. (1973); Klüppelberg (1989)) If f 2 Sd(�) for some � � 0, then
for every n = 1; 2; : : :,

lim
x!1

fn?(x)

f(x)
= n

�Z 1

0

e�yf(y)dy

�n�1
:
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Furthermore, if f is bounded, then for every " > 0 there exists some K" > 0 such that for

all n = 1; 2; : : : and x > 0,

fn?(x) � K"

�
"+

Z 1

0

e�yf(y)dy

�n
f(x):

3 The Case of Subexponential Tails

In our �rst main result below we look at the case that the Lévy measure � has a subexpo-

nential tail.

Theorem 3.1 Consider the Lévy insurance model introduced in Section 1. If both � and

�I belong to the class S (which is satis�ed when � 2 S�), then for every 0 �  < 1 and

0 � � < 1 for which relation (1.4) holds, we have

 ;�(x) �
1

(1� )�� � (1� �)�+

Z 1

x

�(y)dy: (3.1)

Klüppelberg et al. (2004) systematically studied the asymptotic behavior of the ruin

probability in the Lévy insurance model without tax or reinsurance. Restricting to the case

that L is spectrally positive with Lévy measure � such that � 2 S�, we see that Theorem
6.2(i) of Klüppelberg et al. (2004) corresponds to our Theorem 3.1 with  = � = 0.

Clearly, the tax identity (1.1) under the loss-carry-forward taxation implies that

 (x) �
1

1� 
 0(x); (3.2)

see also Albrecher and Hipp (2007). While under our periodic taxation, plugging � = 0 into

(3.1) yields that

 ;0(x) �
1

1� 
��

����+

 0;0(x): (3.3)

Note that  0(x) in (3.2) and  0;0(x) in (3.3) are identical. The coe¢ cients in relations

(3.2) and (3.3) respectively capture the impact of the two taxation rules on the asymptotic

behavior of the ruin probability. Now that ��=(��� �+) > 1 in (3.3), comparing (3.2) with
(3.3) we conclude that, at least for the current heavy-tailed case, periodic taxation produces

more signi�cant impact on the ruin probability than the loss-carry-forward taxation does.

As explained in Section 1, this is natural since with loss-carry-forward taxation one does not

need to pay tax until a large loss is fully recuperated, whereas with periodic taxation every

time unit counts anew.

To prove Theorem 3.1, we need the following two lemmas:
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Lemma 3.1 Let L be a Lévy process with Lévy measure � such that � 2 S. Then

Pr

�
sup
0�t�1

Lt > x

�
� �(x): (3.4)

Lemma 3.2 Let random pairs (Xn; Yn), n = 1; 2; : : :, be i.i.d. copies of a random pair

(X; Y ). Denote M = X _ Y . If �1 < EX < 0, E jM j < 1, and
R1
x
Pr (M > y) dy is

asymptotically equivalent to a subexponential tail, then

Pr

 
sup
n�1

 
n�1X
k=1

Xk + Yn

!
> x

!
� 1

jEXj

Z 1

x

Pr (M > y) dy:

Lemma 3.1 is an implication of Theorem 3.1 of Rosiński and Samorodnitsky (1993) (see

the example of Lévy motion on their page 1006). Lemma 3.2 is exactly Theorem 1 of

Palmowski and Zwart (2007).

Proof of Theorem 3.1. Recall (1.2) in which the random pairs (Xn; Yn), n = 1; 2; : : :,

are i.i.d. copies of the random pair (X; Y ) given in (1.3). Use the notation M = X _ Y in

Lemma 3.2. Since � 2 S, from Lemma 3.1 we have

Pr (Y > x) � �(x): (3.5)

It is clear that Y � L+1 � X+. Hence by (3.5) and �I 2 S,Z 1

x

Pr (M > y) dy =

Z 1

x

Pr (Y > y) dy �
Z 1

x

�(y)dy;

a subexponential tail. Then by Lemma 3.2, we obtain (3.1).

4 The Case of Convolution-equivalent Tails

Next, we consider the case that the Lévy measure � has a light tail such that � 2 S(�) for
some � > 0.

Theorem 4.1 Consider the Lévy insurance model introduced in Section 1. Assume EL21 <

1 and � 2 S(�) for some � > 0. If 0 �  < 1 and 0 < � < 1 are such that

Ee�
0((1��)L+1 �(1�)L

�
1 ) < 1 (4.1)

for some �0 > �, then

 ;�(x) �
C�

1� Ee�((1��)L
+
1 �(1�)L

�
1 )
�(x); (4.2)

where the constant C� is de�ned as

C� = lim
x!1

Pr (Y > x)

�(x)
= lim

x!1

Pr
�
sup0�t�1 Lt > x

�
�(x)

2 (0;1): (4.3)
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The existence of the limit C� in (4.3) was proved by Braverman and Samorodnitsky

(1995). Condition (4.1) is feasible in view of (1.4) and Ee�L
+
1 <1.

Lemma 3.1 of Tang (2007) says that, for � > 0, � 2 L(�) if and only if �(x) �
�
R1
x
�(y)dy. Therefore, relation (4.2) may be rewritten as

 ;�(x) �
�C�

1� Ee�((1��)L
+
1 �(1�)L

�
1 )

Z 1

x

�(y)dy: (4.4)

With the understanding that C0 = 1 by relation (3.4) and that the fraction on the right-

hand side of relation (4.4) converges to
�
(1� )�� � (1� �)�+

��1
as � ! 0, relation (3.1)

in Theorem 3.1 indicates that relation (4.4) still holds when � = 0.

To prove Theorem 4.1 we need the following lemma, which corresponds to the light-tailed

case of Theorem 1.1(i) of Hao et al. (2009):

Lemma 4.1 Let random pairs (Xn; Yn), n = 1; 2; : : :, be i.i.d. copies of a random pair

(X; Y ). If EX < 0, EX2 < 1, the distribution of Y belongs to L(�) for some � > 0, and

Ee�
0X < 1 for some �0 > �, then

Pr

 
sup
n�1

 
n�1X
k=1

Xk + Yn

!
> x

!
� 1

1� Ee�X
Pr (Y > x) :

Proof of Theorem 4.1. Use the notation in (1.3). By relation (4.3) and closure of the

class S(�) under tail equivalence, the distribution of Y also belongs to the class S(�). The
moment conditions on X required in Lemma 4.1 are clearly satis�ed. Then, using Lemma

4.1 we obtain (4.2).

To apply Theorem 4.1, an immediate problem is how to determine the constant C� in

(4.3). This has been a very di¢ cult problem for a Lévy process L whose Lévy measure �

has a convolution-equivalent tail. For related discussions see Albin and Sundén (2009) and

references therein. The following lemma gives an expression for C�:

Lemma 4.2 Let L be a Lévy process with Lévy measure � such that � 2 S(�) for some
� > 0. Then for all t > 0,

lim
x!1

Pr (Lt > x)

�(x)
= tEe�Lt = h(t).

There is a unique probability distribution G on [0; 1] satisfying
R 1
0
t�1G(dt) < 1 with mo-

ments given by

�n(G) =
vn(n+ 1)!R 1
0
h(t)dt

; n = 1; 2; : : : ;
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where

vn =

Z
0<t1�����tn+1�1

t1Ee
�min1�k�n+1 Ltkdt1 � � � dtn+1: (4.5)

Finally,

lim
x!1

Pr
�
sup0�t�1 Lt > x

�
�(x)

=

Z 1

0

t�1G(dt)

Z 1

0

h(t)dt = C�: (4.6)

Lemma 4.2 is a combination of Proposition 1.3 and Theorem 2.1 of Braverman (1997).

Here we need to point out that the constants vn de�ned by Braverman (1997) are not correct.

This is due to a calculation error in his Lemma 3.1. Indeed, under his assumptions and in

his notation, instead of his relation (3.1) we should have

Pr (�k > x; 1 � k � n) � F1(x)Ee
�(min1�k�n �k�X1);

where �k =
Pk

i=1Xi; 1 � k � n. Therefore, to qualify his Theorem 2.1, the constants vn
should be given by our (4.5) above. However, we remark that the expression for C� given in

(4.6) is far from being explicit and can not be evaluated unless L is a subordinator.

To pursue a more explicit expression for C�, we then restrict the Lévy process L to a

compound Poisson process with negative drift:

Lt =
NtX
k=1

�k � pt; t � 0; (4.7)

where p > 0 represents the constant premium rate, N is a Poisson process with intensity

� > 0, and �1; �2; : : : are i.i.d. copies of a random variable � independent of N and with

distribution F on (0;1).

Corollary 4.1 Consider the Lévy insurance model introduced in Section 1 in which the loss

process L is given by (4.7). Suppose that F has a bounded density f 2 Sd(�) for some � > 0
and that condition (4.1) holds. Then

 ;�(x) �
�C�

1� Ee�((1��)L
+
1 �(1�)L

�
1 )
F (x)

with the constant C� given by

C�=e
�(Ee���1)��p+ �

Z 1

0

Z t

0

Pr

 
NtX
k=1

�k � ps

!
ds
1� t

t
e�(1�t)(Ee

���1)��p(1�t)dt: (4.8)

For example, if F is an inverse Gaussian distribution with density

f(x) =
� a

2�x3

�1=2
exp

�
�a(x� b)2

2b2x

�
; a; b; x > 0;
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which is a typical example of f 2 Sd(�) with � = a= (2b2), then we can appropriately choose

the constants p, , and � such that condition (4.1) is satis�ed.

While the expression for C� de�ned in (4.8) is still not completely explicit, with the only

unknown part
R t
0
Pr
�PNt

k=1 �k � ps
�
ds for 0 < t � 1, it is simple enough for simulations,

especially when � follows an inverse Gaussian distribution.

To prove Corollary 4.1, we need a result below. Let F (�; t) be the distribution of aggregate
claims,

F (x; t) = Pr

 
NtX
k=1

�k � x

!
;

and let f(�; t) be its density. Write Yt = sup0�s�t Ls. Then Y1 = Y . The lemma below is a

combination of Theorems 2.1 and 2.2 of Asmussen (2000):

Lemma 4.3 For the compound Poisson model (4.7), we have

Pr (Yt � 0) =
1

t

Z t

0

F (ps; t) ds; t > 0;

and

1� Pr (YT > x) = F (x+ pT; T )�
Z T

0

Pr (YT�t � 0) f (x+ pt; t) dt; T > 0:

Proof of Corollary 4.1. By Theorem 4.1, it su¢ ces to verify (4.8). By Lemma 4.3, we

have

Pr (Y > x) = F (x+ p; 1) +

Z 1

0

Pr (Y1�t � 0) f (x+ pt; t) dt = I1(x) + I2(x): (4.9)

Since f 2 Sd(�) for � > 0 implies F 2 S(�), we apply the dominated convergence theorem
justi�ed by Lemma 2.1 to obtain

I1(x) =
1X
n=1

Pr

 
nX
k=1

�k > x+ p

!
Pr (N1 = n)

�
1X
n=1

n
�
Ee��

�n�1
F (x+ p)

�n

n!
e��

� �e�(Ee
���1)��pF (x): (4.10)

Similarly, by Lemma 2.2, for each �xed t 2 (0; 1],

f (x+ pt; t) � �te�t(Ee
���1)��ptf(x): (4.11)

In order to plug (4.11) into I2(x) in (4.9), we need to apply the dominated convergence

theorem again. We notice that, by Lemma 2.2, there exists some K > 0 such that for all
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x � 0 for which f(x) > 0 and for all t 2 (0; 1],

Pr (Y1�t � 0) f (x+ pt; t)

f (x)
�

1X
n=1

(�t)n

n!
e��t � f

n? (x+ pt)

f (x+ pt)
� f (x+ pt)

f (x)

�
1X
n=1

(�t)n

n!
e��t �K

�
Ee�� + 1

�n
� Ke�Ee

��

;

where in the second step we used the local uniformity of the convergence in (2.3). Then,

applying the dominated convergence theorem and using Lemma 4.3 again,

I2(x) � f(x)

Z 1

0

�
1

1� t

Z 1�t

0

F (ps; 1� t) ds

�
�te�t(Ee

���1)��ptdt: (4.12)

Plugging (4.10) and (4.12) into (4.9) and using (4.3) and the facts �(�) = �F (�), f(x)=F (x)!
�, we obtain (4.8).

5 The Case of Exponential-like Tails

Finally, we consider the case that the Lévy measure � has a light tail such that � 2
L(�)nS(�) for some � > 0.

Theorem 5.1 Consider the Lévy insurance model introduced in Section 1. Assume EL21 <

1, � 2 L(�) for some � > 0, and �(x) = o
�
�2�(x)

�
. If 0 �  < 1 and 0 < � < 1 are such

that condition (4.1) holds, then

 ;�(x) �
1

1� Ee�((1��)L
+
1 �(1�)L

�
1 )
Pr(L1 > x): (5.1)

We need the following result, which is a combination of Theorem 3.3 and Corollary 6.2

of Albin and Sundén (2009):

Lemma 5.1 Let L be a Lévy process with Lévy measure � such that � 2 L(�) for some � > 0
and �(x) = o

�
�2�(x)

�
. Then for all t > 0, the distribution of Lt belongs to L(�)nS(�) and

Pr

�
sup
0�s�t

Ls > x

�
� Pr (Lt > x) .

Note that the conditions on the Lévy measure � in Lemma 5.1 are for instance ful�lled if �

is asymptotically equivalent to the tail of an exponential distribution, a gamma distribution,

or, more generally, an Erlang distribution.
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Proof of Theorem 5.1. Use the notation in (1.3). By Lemma 5.1 we know that the

distribution of L1 belongs to L(�)nS(�) and

Pr (Y > x) � Pr (L1 > x) :

Hence, the distribution of Y belongs to L(�)nS(�) as well. Finally, using Lemma 4.1 again
we obtain relation (5.1).

The asymptotic relation (5.1) is in terms of the tail of L1 instead of the tail of the Lévy

measure �. In case the tail of L1 is unknown, relation (5.1) is not completely explicit. We

are going to show two special, but important, cases of Theorem 5.1 in which a completely

explicit asymptotic relation for the ruin probability is given.

First, we consider a gamma process U = (Ut)t�0, which starts with 0, has stationary and

independent increments, with U1 having a gamma(�; �) distribution with density

g(x) =
��

�(�)
x��1e��x; �; �; x > 0:

Its Lévy triplet is given by a = � (e�� � 1) =�, � = 0, and �(dx) = �x�1e��xdx; see

Section 1.2.4 of Kyprianou (2006) for details. For this case, it is easy to verify that �(x) =

o
�
�2�(x)

�
. By Theorem 5.1, we immediately have the following:

Corollary 5.1 Consider the Lévy insurance model introduced in Section 1. Assume

Lt = Ut � pt; t � 0;

where p > 0 and U is a gamma process as introduced above with parameters �; � > 0. If

0 �  < 1 and 0 < � < 1 are such that condition (4.1) holds, then

 ;�(x) �
���1 (x+ p)��1 e��(x+p)�

1� Ee�((1��)L
+
1 �(1�)L

�
1 )
�
�(�)

:

Next, we again consider the compound Poisson process with negative drift. The following

is another corollary of Theorem 5.1:

Corollary 5.2 Consider the Lévy insurance model introduced in Section 1 in which the loss

process L is given by (4.7). Suppose F is an exponential distribution with mean 1=�. If

0 �  < 1 and 0 < � < 1 are such that condition (4.1) holds, then

 ;�(x) �
1

1� Ee�((1��)L
+
1 �(1�)L

�
1 )

p
�

�
p
�x
e��(x+p)��

Z �=2

0

e2
p
��
p
x+p cos �d�: (5.2)

To prove Corollary 5.2 we need an elementary result below:
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Lemma 5.2 Let l(�) be a bounded function on [�1; 1], left continuous at 1 with l(1) 6= 0,

and let c > 0 be a constant. ThenZ �

0

ecx cos �l(cos �)d� � l(1)

Z �=2

0

ecx cos �d�: (5.3)

Proof. Choose some small 0 < " � �=2 such that jl(x)j � 0:5 jl(1)j > 0 for all x 2 [cos "; 1].
We split the integral on the left-hand side of (5.3) into two parts as

R "
0
+
R �
"
. It is easy to

see that the second part is asymptotically negligible, asR �
"
ecx cos �l(cos �)d�R "

0
ecx cos �l(cos �)d�

= O(1)
ecx cos "R "=2

0
ecx cos �d�

! 0:

Hence, Z �

0

ecx cos �l(cos �)d� �
Z "

0

ecx cos �l(cos �)d�: (5.4)

Note that, since l is left continuous at 1, if " > 0 in (5.4) is chosen to be su¢ ciently close to 0,

then l(cos �) is su¢ ciently close to l(1). Moreover,
R "
0
ecx cos �d� �

R �=2
0

ecx cos �d�. Therefore,

by (5.4) and the arbitrariness of " > 0, we obtain (5.3).

Under the conditions of Corollary 5.2, the Lévy triplet of L is given by a = p �
�
R 1
0
�xe��xdx, � = 0, and �(dx) = ��e��xdx; see Section 1.2.2 of Kyprianou (2006) for

details.

Proof of Corollary 5.2. Clearly, EL21 <1, � 2 L(�), and �(x) = o
�
�2�(x)

�
. Therefore

by Theorem 5.1, we only need to focus on derivation of the tail probability Pr (L1 > x). Since

the n-fold convolution of an exponential distribution with mean 1=� is a gamma distribution

with parameters (�; n), we have

Pr (L1 > x) =

Z 1

x+p

1X
n=1

�n

(n� 1)!y
n�1e��y � �

n

n!
e��dy

=
p
��e��

Z 1

x+p

1X
n=0

�p
��y

�2n+1
n!(n+ 1)!

y�1=2e��ydy: (5.5)

The last series in the above is of the structure of the modi�ed Bessel function of order 1;

that is,
1X
n=0

�p
��y

�2n+1
n!(n+ 1)!

=
1

�

Z �

0

e2
p
��y cos � cos �d�. (5.6)

Using Lemma 5.2, as y !1,Z �

0

e2
p
��y cos � cos �d� �

Z �=2

0

e2
p
��y cos �d�:
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Plugging this into (5.6) then plugging (5.6) into (5.5), we obtain

Pr (L1 > x) �
p
��

�
e��

Z 1

x+p

 Z �=2

0

e2
p
��y cos �d�

!
y�1=2e��ydy

=
2
p
��

�
e��

Z �=2

0

Z 1

p
x+p

e��u
2+2u

p
�� cos �dud�: (5.7)

We are going to simplify this expression. It is easy to see that, for each real number c,

lim
z!1

2�z

Z 1

0

e��(u
2+2zu)+cudu = 1: (5.8)

It follows that the relationZ 1

z

e��u
2+2u

p
�� cos �du � 1

2�z
e��z

2+2z
p
�� cos �; z !1; (5.9)

holds uniformly for all � 2 (�1;1); that is,

lim
z!1

sup
�1<�<1

�����2�z
R1
z
e��u

2+2u
p
�� cos �du

e��z2+2z
p
�� cos �

� 1
����� = 0:

Actually, this can easily be veri�ed by applying relation (5.8) to the upper and lower bounds

shown below:

2�z

Z 1

0

e��(u
2+2zu)�2u

p
��du �

2�z
R1
z
e��u

2+2u
p
�� cos �du

e��z2+2z
p
�� cos �

� 2�z
Z 1

0

e��(u
2+2zu)+2u

p
��du:

Plugging (5.9) into (5.7), we obtain

Pr (L1 > x) �
p
�

�
p
�x
e��(x+p)��

Z �=2

0

e2
p
x+p

p
�� cos �d�:

Finally, plugging this into (5.1) yields (5.2).
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