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1. Introduction
The surplus process of an insurance company is modeled by

Yt = x− Pt +

∫ t

0
Ys−dRs. (1)

• x > 0 is the initial surplus level;

• P is the process representing the loss process in a world without economic
factors;

• R is an independent process that describes return on investments.

In this study, we assume that both P and R are Lévy processes and call Y a
bivariate Lévy driven risk process.
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A Lévy process begins from 0, with càdlàg sample paths and stationary and
independent increments.

• The classical Cramér-Lundberg model:

Yt = x+ ct− St

where c is the constant premium rate and S is a compound Poisson process
representing the total claim amount process.

• The Cramér-Lundberg risk process with investment in a Black-Scholes type
of market:

Yt = x+ ct− St +

∫ t

0
Ys−[(1− π)rds+ π(αds+ σdWs)]

where W is a standard Brownian motion and 0 < π < 1, r ≥ 0, α > 0, and
σ > 0.

See Paulsen (2008; Probab. Surv.), Klüppelberg and Kostadinova (2008; Insur-
ance Math. Econom.), and references therein for more examples.
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Let’s come back to our bivariate Lévy driven risk process (1). Its solution is
given by

Yt = eR̃t

(
x−

∫ t

0
e−R̃sdPs

)
:= eR̃t(x− Zt). (2)

Here, R̃:

• also a Lévy process;

• eR̃t is the Doléans-Dade exponential of R, i.e.,

deR̃t = eR̃t−dRt with R̃0 = 0.

See, for example, Paulsen (1998; Stoch. Process. Appl.) and Paulsen (2002;
Ann. Appl. Probab.).
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As usual, the finite-time ruin probability by T ≥ 0 is defined as

ψ(x, T ) = Pr

(
inf

0≤t≤T
Yt < 0

∣∣∣∣Y0 = x

)
,

and the infinite-time ruin probability as

ψ(x,∞) = lim
T→∞

ψ(x, T ) = Pr

(
inf

0≤t<∞
Yt < 0

∣∣∣∣Y0 = x

)
.

Paulsen (2002; Ann. Appl. Probab.; p.1256) conjectured an asymptotic formula
for ψ(x,∞) as x→∞ under some certain conditions.

We prove and extend Paulsen’s conjecture by showing that his formula holds to
ψ(x, T ) where 0 ≤ T ≤ ∞.
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2. Preliminaries
2.1. A Lévy process L

• Its characteristic exponent ΦL(·):

EeiuLt = e−tΦL(u).

• Its Lévy triplet (pL, σL, νL) determines ΦL(·).
– pL ∈ (−∞,∞)

– σL ≥ 0

– Lévy measure νL

• When νL(1) = νL ((1,∞)) > 0, denote ΠL(·) =
νL(·)1(1,∞)

νL(1) .

• Its Laplace exponent

ϕL(u) = −ΦL(iu) = log Ee−uL1.
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2.2. Distributions of extended regular variation

• F ∈ ERV(−α,−β), 0 ≤ α ≤ β <∞, if

(*) F (x) = 1− F (x) > 0, for all x, and
(*)

v−β ≤ lim inf
x→∞

F (vx)

F (x)
≤ lim sup

x→∞

F (vx)

F (x)
≤ v−α, all v ≥ 1. (3)

• F ∈ R−α if α = β in relations (3).

• The class ERV is a subset of S, the class of subexponential distributions.
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Relations of classes of distributions:
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3. Paulsen’s Conjecture
Paulsen (2002; Ann. Appl. Probab.; p.1256) studied the infinite-time ruin prob-
ability of the bivariate Lévy driven risk model and proposed the following con-
jecture:

Paulsen’s conjecture: Consider the surplus process given by (2). If

• ΠP ∈ R−α for some α > 0, and

• ϕR̃(α+ ε) < 0 for some ε > 0,

then

ψ(x,∞) ∼ νP (x)

|ϕR̃(α)|
. (4)

Remark : Since ϕR̃(α + ε) < 0 for some ε > 0, the insurance risk dominates
the investment risk. In this case, the ultimate ruin probability is controlled by
the probability of large insurance claims. The investment process enters only
into the constant ϕR̃(α).
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4. Our Results

Theorem 1: Assume

• ΠP ∈ ERV(−α,−β) for some 0 < α ≤ β <∞,

• νP ((−∞,−x)) = o(νP (x)), and

• ϕR̃(β + ε) < 0 for some ε > 0.

Let λ = νP (1) and X , distributed by ΠP , be independent of P and R̃. Then it
holds for every T ∈ (0,∞) that

ψ(x, T ) ∼ λ

∫ T

0
Pr

(
Xe−R̃t > x

)
dt. (5)

Furthermore, if

• E
(
e−(α−ε)R̃1 ∨ e−(β+ε)R̃1

)
< 1 for some ε > 0,

then relation (5) also holds with T = ∞.
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Remark : When α = β, the condition E
(
e−(α−ε)R̃1 ∨ e−(β+ε)R̃1

)
< 1 for some

ε > 0 is equivalent to ϕR̃(β + ε) < 0 for some ε > 0.

Corollary 1: Let α = β in Theorem 1. Then it holds for every T ∈ (0,∞] that

ψ(x, T ) ∼ 1− eϕR̃(α)T

|ϕR̃(α)|
νP (x). (6)

Hence, Paulsen’s conjecture is true, indeed, under an additional assumption that
νP ((−∞,−x)) = o(νP (x)). Corollary 1 is also consistent with Theorem 4.6a
of Klüppelberg and Kostadinova (2008; Insurance Math. Econom.).
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5. Future Problems

• We still don’t know whether the additional assumption νP ((−∞,−x)) =
o(νP (x)) is avoidable.

• It’s possible to show that relation (5) holds uniformly for all T ∈ (0,∞].

• As to the asymptotic relation (5), what is its second order formula?

• If more than one investment asset are available, we need to use multivariate
Lévy process instead of univariate Lévy process.
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