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1. Motivations

The ruin probability of an insurance company is the probability that its surplus
process falls below 0 at some time.

Recently, the influence of tax payment on the ruin probability has become an
interesting problem in actuarial science. (See references.)

Their common assumptions:

• S = (St)t≥0 is a stochastic process, with S0 = x > 0, representing the
underlying surplus process in a world without economic factors (tax, rein-
surance, investment, dividend, etc.).

• Taxes are paid at a fixed rate γ ∈ [0, 1) whenever the surplus process is at a
running maximum (called loss-carry-forward taxation).



Motivations
Model Description
Preliminaries
The Case of . . .

The Case of . . .

The Case of . . .

Conclusion
Open Problems

Home Page

Title Page

JJ II

J I

Page 4 of 25

Go Back

Full Screen

Close

Quit

Loss-carry-forward taxation:
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Some known results:

• Assuming that S is a compound Poisson process with positive drift and that
taxes are paid at a fixed rate γ ∈ [0, 1) whenever S is at a running maximum,
Albrecher and Hipp (2007; Bl. DGVFM) and Albrecher et al. (2009; Insur-
ance Math. Econom.) proved the following strikingly simple relationship
between ψγ(x) and ψ0(x), the ruin probabilities with and without tax:

ψγ(x) = 1− (1− ψ0(x))
1/(1−γ) . (1)

• Albrecher et al. (2008; J. Appl. Probab.) further showed that the tax identity
(1) still holds for a spectrally negative Lévy surplus process under the loss-
carry-forward taxation.

• Albrecher et al. (2008; Insurance Math. Econom.) proved a similar tax
identity for a dual surplus process with general inter-innovation times and
exponential innovation sizes under the same type of taxation.
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What we do:

Shortcomings of loss-carry-forward taxation:

• In reality, taxes are usually paid periodically (e.g. monthly, semi-annually,
or annually).

• If S contains a diffusion part, then the moments of running maxima do not
form any continuous time interval.

We introduce periodic taxation as well as compensation to the risk model. Given
the company survives at time n,

• it pays tax at rate γ ∈ [0, 1) on its net income during the period (n − 1, n];
or,

• it gets compensation at rate δ ∈ [0, 1) on its net loss during the period
(n− 1, n].

We investigate the influence of such taxation and compensation rule on the
asymptotic behavior of the ruin probability.
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Periodic taxation:
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2. Model Description
We look at the loss process before tax and reinsurance,

Lt = x− St, t ≥ 0.

For each n = 1, 2, . . ., the maximal net loss and the net loss of the company
within the period (n− 1, n] are, respectively,

Yn = sup
n−1≤t≤n

(Lt − Ln−1) , Zn = Ln − Ln−1.

After introducing the periodic taxation at rate 0 ≤ γ < 1 and compensation at
rate 0 ≤ δ < 1, the loss of the company within the period (n− 1, n] becomes

Xn = Zn + γZ−
n − δZ+

n = (1− δ)Z+
n − (1− γ)Z−

n .

Then, the ruin probability in this situation is equal to

ψγ,δ(x) = Pr

(
sup
n≥1

(
n−1∑
k=1

Xk + Yn

)
> x

)
. (2)
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Assumptions on the loss process L:

• L is a Lévy process (that is, it starts from 0, is right continuous with left
limit, and has stationary and independent increments) with mean EL1 =
−µ < 0.

• Consequently, the random pairs (Xn, Yn), n = 1, 2, . . ., appearing in (2) are
i.i.d. copies of the random pair

(X, Y ) =D

(
(1− δ)L+

1 − (1− γ)L−1 , sup
0≤t≤1

Lt

)
.

• Choose γ ∈ [0, 1) and δ ∈ [0, 1) such that

EX = (1− δ)µ+ − (1− γ)µ− < 0. (3)

So the insurance company still has positive expected profits under such tax-
ation and compensation and that the ruin is not certain.
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3. Preliminaries
3.1. Lévy-Khintchine representation

For a Lévy process L = (Lt)t≥0, its characteristic function can be written in the
form

EeisLt = e−tΦ(s),

where the characteristic exponent Φ(·) has the Lévy-Khintchine representation

Φ (s) = ias+
1

2
σ2s2 +

∫ ∞

−∞

(
1− eisx + isx1(|x|≤1)

)
ρ (dx)

with a ∈ (−∞,∞), σ ≥ 0, and Lévy measure ρ on (−∞,∞) satisfying
ρ ({0}) = 0 and

∫∞
−∞
(
x2 ∧ 1

)
ρ (dx) < ∞. The triplet (a, σ, ρ) (called Lévy

triplet) uniquely determines the distribution of the Lévy process L.

Write ρ(x) = ρ ((x,∞)). When ρ(1) > 0, introduce Π(·) =
(ρ(1))−1 ρ(·)1(1,∞), which is a proper probability measure on (1,∞).
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3.2. Some popular classes of distributions

These classes of distributions have been extensively investigated and applied to
various fields by many researchers, such as Embrechts, Klüppelberg, Kyprianou,
etc..

Definition: A distribution F on (−∞,∞) is said to belong to the class L(α) for
some α ≥ 0 if F (x) > 0 for all x and

lim
x→∞

F (x+ y)

F (x)
= e−αy, y ∈ (−∞,∞) .

Example: F is a gamma distribution with density

f(x;α, β) =
αβ

Γ(β)
xβ−1e−αx, x, α, β > 0,

=⇒ F ∈ L(α).

A distribution F in L(α) with α > 0 is usually said to have an exponential-like
tail.
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Definition: A distribution F on [0,∞) is said to belong to the class S(α) for
some α ≥ 0 if F ∈ L(α) and

lim
x→∞

F 2∗(x)

F (x)
= 2c

exists and is finite.

Example: F is an inverse Gaussian distribution with density

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
−λ(x− µ)2

2µ2x

}
, x, µ, λ > 0,

=⇒ F ∈ S(α) with α = λ
2µ2 .

A distribution F in S(α) with α > 0 is said to have a convolution-equivalent
tail.
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S(0) = S is the well-known class of subexponential distributions. A useful
subclass of S is S∗. (Klüppelberg(1988; J. Appl. Probab.))

Definition: A distribution F on [0,∞) is said to belong to the class S∗ if F (x) >
0 for all x ≥ 0, µF =

∫∞
0 F (x)dx <∞, and

lim
x→∞

∫ x

0

F (x− y)

F (x)
F (y)dy = 2µF .

Property: If F ∈ S∗, then both F ∈ S and FI ∈ S , where

FI(x) =
1

µF

∫ x

0
F (y)dy, x ≥ 0,

denotes the integrated tail distribution of F .

Examples: Pareto (with finite expectation), heavy-tailed Weibull, lognormal dis-
tributions.
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Relations of these classes of distributions:
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4. The Case of Subexponential Tails

Theorem 1 If both Π and ΠI belong to the class S (which are satisfied when
Π ∈ S∗), then for every 0 ≤ γ < 1 and 0 ≤ δ < 1 for which relation (3) holds,
we have

ψγ,δ(x) ∼
1

(1− γ)µ− − (1− δ)µ+

∫ ∞

x

ρ(y)dy. (4)

Proof: The proof of Theorem 1 is a direct combination of two results from
Rosiński and Samorodnitsky (1993; Ann. Probab.) and Palmowski and Zwart
(2007; J. Appl. Probab.).
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Comparison:

The tax identity (1) under loss-carry-forward taxation implies that

ψγ(x) ∼
1

1− γ
ψ0(x).

While under our periodic taxation, substituting δ = 0 to (4) yields that

ψγ,0(x) ∼
1

1− γ µ−
µ−−µ+

ψ0,0(x).

Note that ψ0(x) and ψ0,0(x) are identical. The coefficients in the two relations
respectively capture the impact of the two taxation rules on the asymptotic be-
havior of the ruin probability. Now that µ−/(µ− − µ+) > 1, we conclude that

ψγ(x) < ψγ,0(x), for all large x,

i.e., periodic taxation produces more significant impact on the ruin probability
than loss-carry-forward taxation does.
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5. The Case of Convolution-equivalent Tails

Theorem 2 Assume EL2
1 <∞ and Π ∈ S(α) for some α > 0. If 0 ≤ γ < 1

and 0 < δ < 1 are such that

Eeα′((1−δ)L+
1 −(1−γ)L−

1 ) < 1 (5)

for some α′ > α, then,

ψγ,δ(x) ∼
Cα

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )
ρ(x),

where the constant Cα is defined as

Cα = lim
x→∞

Pr
(
sup0≤t≤1Lt > x

)
ρ(x)

∈ (0,∞).

Proof: The key part of the proof of Theorem 2 is a result from Hao et al.
(2009; J. Appl. Probab.).
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Lemma 2.1 (Braverman (1997; Stochastic Process. Appl.)) Let L be a Lévy
process with Lévy measure ρ such that Π ∈ S(α) for some α > 0. Then for all
t > 0,

lim
x→∞

Pr (Lt > x)

ρ(x)
= tEeαLt := h(t).

There is a unique probability distribution G on [0, 1] satisfying
∫ 1

0 t
−1G(dt) <

∞ with moments given by

µn(G) =
vn(n+ 1)!∫ 1

0 h(t)dt
, n = 1, 2, . . . ,

where
vn =

∫
0<t1≤···≤tn+1≤1

t1Eeα min1≤k≤n+1 Ltkdt1 · · · dtn+1.

Finally,

lim
x→∞

Pr
(
sup0≤t≤1Lt > x

)
ρ(x)

=

∫ 1

0
t−1G(dt)

∫ 1

0
h(t)dt := Cα. (6)
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Corollary 2.1 Assume

Lt =

Nt∑
k=1

ξk − pt, t ≥ 0,

where p > 0 represents the constant premium rate, N is a Poisson process
with intensity λ > 0, and ξ1, ξ2, . . . are i.i.d. copies of a random variable ξ
independent of N and with distribution F on (0,∞). Suppose that F has a
bounded density f ∈ Sd(α) for some α > 0 and that condition (5) holds. Then,

ψγ,δ(x) ∼
λCα

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )
F (x)

with the constant Cα given by

Cα =eλ(Eeαξ−1)−αp

+α

∫ 1

0

(
1

t

∫ t

0
Pr

(
Nt∑

k=1

ξk ≤ ps

)
ds

)
(1− t) eλ(1−t)(Eeαξ−1)−αp(1−t)dt.



Motivations
Model Description
Preliminaries
The Case of . . .

The Case of . . .

The Case of . . .

Conclusion
Open Problems

Home Page

Title Page

JJ II

J I

Page 20 of 25

Go Back

Full Screen

Close

Quit

6. The Case of Exponential-like Tails

Theorem 3 Assume EL2
1 < ∞, Π ∈ L(α) for some α > 0, and Π(x) =

o
(
Π2∗(x)

)
. If 0 ≤ γ < 1 and 0 < δ < 1 are such that condition (5) holds, then,

ψγ,δ(x) ∼
1

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )
Pr(L1 > x).

Proof: The proof of Theorem 3 is a combination of two results from Hao et
al. (2009; J. Appl. Probab.) and Albin and Sundén (2009; Stochastic Process.
Appl.).



Motivations
Model Description
Preliminaries
The Case of . . .

The Case of . . .

The Case of . . .

Conclusion
Open Problems

Home Page

Title Page

JJ II

J I

Page 21 of 25

Go Back

Full Screen

Close

Quit

Two special and important cases of Theorem 3:

(i) A gamma process U = (Ut)t≥0 starts from 0, with stationary and in-
dependent increments, and U1 having the gamma(α,β) distribution with
density

f (x) =
αβ

Γ(β)
xβ−1e−αx, α, β, x > 0.

Its Lévy triplet is given by a = β (e−α − 1) /α, σ = 0, and ρ(dx) =

βx−1e−αxdx. It is easy to verify that Π(x) = o
(
Π2∗(x)

)
.

Corollary 3.1 Assume

Lt = Ut − pt, t ≥ 0,

where p > 0 and U is a gamma process as introduced above with param-
eters α, β > 0. If 0 ≤ γ < 1 and 0 < δ < 1 are such that condition (5)
holds, then,

ψγ,δ(x) ∼ αβ−1 (x + p)β−1 e−α(x+p)(
1− Eeα((1−δ)L

+
1 −(1−γ)L−1 )

)
Γ(β)

.
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(ii) Consider a compound Poisson process with negative drift.

Corollary 3.2 Assume

Lt =

Nt∑
k=1

ξk − pt, t ≥ 0,

where p > 0 represents the constant premium rate, N is a Poisson process
with intensity λ > 0, and ξ1, ξ2, . . . are i.i.d. copies of a random variable ξ
independent of N and follows exponential distribution with mean 1/α. If 0 ≤
γ < 1 and 0 < δ < 1 are such that condition (5) holds, then,

ψγ,δ(x) ∼
2
√
λ/π

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )

∫ π/2

0
Φ
(√

2λ cos θ −
√

2α(x+ p)
)

dθ,

where Φ(·) is the standard normal distribution.
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7. Conclusion

We are the first who have considered the periodic taxation in ruin theory. Our
study covers the three cases:

1. the Lévy measure ρ has a subexponential tail;

2. the Lévy measure ρ has a convolution-equivalent tail;

3. the Lévy measure ρ has an exponential-like tail.

For each case, we have derived an asymptotic formula which captures the ex-
act impact of the tax and compensation on the asymptotic behavior of the ruin
probability. We have devoted ourselves to deriving explicit formulas.
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8. Open Problems

• In Theorems 2 and 3, in order to use the result from Hao et al. (2009; J.
Appl. Probab.) we have to assume that δ > 0. Are the two theorems still
true when δ = 0 ?

• So far we always assume a constant tax rate γ. Can our results be gen-
eralized to the case with surplus-dependent tax rate γ(St), or, even more
generally, surplus-dependent and time-inhomogeneous tax rate γ(St, t)?

• The existence of Cα in Theorem 2 was proved by Braverman and Samorod-
nitsky (1995; Stochastic Process. Appl.). Is there any more explicit expres-
sion for Cα than that given in (6)?
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