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Lévy Risk Model
The Case of . . .

Home Page

Title Page

JJ II

J I

Page 1 of 12

Go Back

Full Screen

Close

Quit

� The 3rd Annual Graduate Student Conference in Probability
May 1–3, 2009

Asymptotic Tail Probability of the Maximum Exceedance over a
Renewal Threshold and Its Application in Insurance Mathematics

XUEMIAO HAO

(Based on a joint work with Drs. Qihe Tang and Li Wei )

Department of Statistics and Actuarial Science
The University of Iowa



Motivation and . . .

Some Classes of . . .

Main Result
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1. Motivation and Objective

Many problems in applied fields, including corporate finance, insurance risk,
and production systems, can be reduced to the study of the distribution of the
maximum exceedance of a sequence of random variables over a renewal thresh-
old. In our paper, we are motivated to investigate the tail probability of such a
maximum exceedance.

Precisely, we investigate the tail probability of

M = sup
n≥1

(
Yn −

n−1∑
i=1

Xi

)
(1)

under the following assumptions:

• {(Xn, Yn) , n = 1, 2, . . .} is a sequence of independent and identically dis-
tributed (i.i.d.) random pairs with generic random pair (X, Y );

• EX = µ > 0, Y follows a distribution F on (−∞,∞), and 0 < νF =∫∞
0 F (y)dy <∞.
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2. Some Classes of Distributions

Some classes of distributions have been extensively investigated and applied to
various fields by many researchers, such as Embrechts, Klüppelberg, Kyprianou,
etc..

Definition: A distribution F on (−∞,∞) is said to belong to the class L(α) for
some α ≥ 0 if F (x) > 0 for all x and

lim
x→∞

F (x+ y)

F (x)
= e−αy, y ∈ (−∞,∞) .

Example: A gamma distribution F with density

f(x;α, β) =
αβ

Γ(β)
xβ−1e−αx, x, α, β > 0.

=⇒ F ∈ L(α).

L(0) reduces to the well-known class L of long-tailed distributions. A distribu-
tion F in L(α) with α > 0 is usually said to have an exponential-like tail.
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Definition: A distribution F on [0,∞) is said to belong to the class S(α) for
some α ≥ 0 if F ∈ L(α) and

lim
x→∞

F 2∗(x)

F (x)
= 2c

exists and is finite.

Example: An inverse Gaussian distribution F with density

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
−λ(x− µ)2

2µ2x

}
, x, µ, λ > 0,

=⇒ F ∈ S(α) with α = λ
2µ2 .

S(0) = S is the well-known class of subexponential distributions. A distribu-
tion F in S(α) with α > 0 is said to have a convolution-equivalent tail.
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Relations of these classes of distributions:
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3. Main Result

We make a convention that

α

1− Ee−αX

∣∣∣∣
α=0

=
1

µ
.

Recalling the equilibrium distribution of F , Fe(x) = 1
νF

∫ x

0 F (y)dy, x ≥ 0, we
give the following theorem:

Theorem 1 Consider the i.i.d. sequence {(Xn, Yn) , n = 1, 2, . . .} and the
maximum M defined in (1), where EX = µ > 0 and Y is distributed by F .
Then, the relation

lim
x→∞

P (M > x)∫∞
x F (y)dy

=
α

1− Ee−αX
(2)

holds under one of the following groups of conditions:

(i) Fe ∈ L(α) for some α ≥ 0, EX2 <∞, and Ee−βX < 1 for some β > α;

(ii) Fe ∈ S(α) for some α ≥ 0, P(−X > x) = o(F (x)), and Ee−αX < 1
provided α > 0.
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4. Lévy Risk Model
The underlying surplus process of an insurance company is denoted by

S = (St)t≥0

with S0 = x > 0 representing the initial capital. Assuming the loss process

L = (Lt)t≥0 with Lt = x− St

be a Lévy process going to −∞ almost surely, we have the so-called Lévy risk
model, which has attracted a lot of interest in insurance mathematics.

A Lévy process starts from 0, is right continuous with left limit, and has sta-
tionary and independent increments. Its characteristic exponent Ψ(·) has the
Lévy-Khintchine representation

Ψ (s) = ias+
1

2
σ2s2 +

∫ ∞

−∞

(
1− eisx + isx1(|x|≤1)

)
ρ (dx)

The triplet
(
a, σ2, ρ

)
(called Lévy triplet) completely determines the distribution

of the Lévy process.
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We introduce periodic taxation as well as loss compensation to the risk model.
Given the company survives at time n,

• it pays tax at rate γ ∈ [0, 1) on its net income during the period (n − 1, n];
or,

• it gets compensation at rate δ ∈ [0, 1) on its net loss during the period
(n− 1, n].

Then, for each n = 1, 2, . . ., the maximal net loss and the net loss of the com-
pany within the period (n− 1, n] are, respectively,

Yn = sup
n−1≤t≤n

(Lt − Ln−1) , Zn = Ln − Ln−1.

The actual loss of the company within the period (n− 1, n] becomes

Xn = Zn + γZ−
n − δZ+

n = (1− δ)Z+
n − (1− γ)Z−

n .

Hence, the ruin probability in this situation is equal to

ψγ,δ(x) = P

(
sup
n≥1

(
n−1∑
k=1

Xk + Yn

)
> x

)
. (3)
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5. The Case of Exponential-like Tails

Theorem 2 Consider the ruin probability ψγ,δ(x) in (3). Assume EL2
1 < ∞,

the Lévy measure ρ has an exponential-like tail for some α > 0. If 0 ≤ γ < 1
and 0 < δ < 1 are such that

Eeα′((1−δ)L+
1 −(1−γ)L−

1 ) < 1 (4)

for some α′ > α, then,

ψγ,δ(x) ∼
1

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )
P(L1 > x).
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Two special and important cases of Theorem 2:

(i) A gamma process U = (Ut)t≥0 starts from 0, with stationary and in-
dependent increments, and U1 having the gamma(α,β) distribution with
density

f (x) =
αβ

Γ(β)
xβ−1e−αx, α, β, x > 0.

Its Lévy triplet is given by a = β (e−α − 1) /α, σ = 0, and ρ(dx) =

βx−1e−αxdx.

Corollary 2.1 Assume

Lt = Ut − pt, t ≥ 0,

where p > 0 and U is a gamma process as introduced above with param-
eters α, β > 0. If 0 ≤ γ < 1 and 0 < δ < 1 are such that condition (4)
holds, then,

ψγ,δ(x) ∼ αβ−1 (x + p)β−1 e−α(x+p)(
1− Eeα((1−δ)L

+
1 −(1−γ)L−1 )

)
Γ(β)

.
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(ii) Consider a compound Poisson process with negative drift.

Corollary 2.2 Assume

Lt =

Nt∑
k=1

ξk − pt, t ≥ 0,

where p > 0 represents the constant premium rate, N is a Poisson process
with intensity λ > 0, and ξ1, ξ2, . . . are i.i.d. copies of a random variable ξ
independent of N and follows exponential distribution with mean 1/α. If 0 ≤
γ < 1 and 0 < δ < 1 are such that condition (4) holds, then,

ψγ,δ(x) ∼
2
√
λ/π

1− Eeα((1−δ)L+
1 −(1−γ)L−

1 )

∫ π/2

0
Φ
(√

2λ cos θ −
√

2α(x+ p)
)

dθ,

where Φ(·) is the standard normal distribution.

∼ The End ∼
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