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Abstract: The increasing number of applications of fractal theory in the environmental sciences reflects the recognized 
Importance of spatial and temporal scale to the study of ecological systems and processes. In this paper, we summarize 
the various algorithms that have been developed for estimating the fractal dimenSIon of such natural phenomena as 
landscapes, soils, plant root systems, paths of foraging animals, and so forth. We also discuss the potential utility and 
limitations of a fractal approach, and outline how fractals have been used in ecology. 

Introduction 

In recent years, biologists have come to recognize 
that spatio-temporal scaling must be considered 
when studying ecosystem patterns and processes 
(Wiens 1989; juhasz-Nagy 1992). The importance 
of scaling in biology was succinctly stated by 
juhasz-Nagy (1993): 

"... the most important biological processes 
(like evolution, succession etc.) are clearly 
spatio-temporal processes, where both space 
and time should be taken into account, even 
if the methodology involved is frequently 
troublesome." 

The basic tenet of our contribution is that con­
cepts derived from fractal theory are fundamental 
to the understanding of scale-related phenomena 
in ecolo!,'Y and the environmental sciences. 

The term 'fractal' (from the latinfractus, meaning 
broken) was introduced by Mandelbrot (1975) to 
define spatial or temporal phenomena that are 
continuous by not differentiable; that is, every at­
tempt to split a fractal into smaller pieces results 
in the resolution of still more structure. This con­
trasts with the more familiar differentiable con­
tinuous series, such as polynomials and other 
Euclidean constructs. Mathematical fractals are 
said to display 'self-similar' properties, since the 
same basic structure is repeated at all spatial 
scales. A detailed outline of mathematical fractal 

geometry is beyond the scope of this paper, but 
exceJlent summaries of basic concepts can be 
found in numerous texts (e.g. Mandelbrot 1982; 
Frontier 1987; Schroeder 1991). 

Fractal theory has been used by eCOlogists in a 
number of ways: to estimate the fractal dimension 
of natural Objects, such as landscapes and 
habitats, plant root systems, and the path trajec­
tories of beetles; to develop models and test 
theories of landscape complexity as it relates to 
the spread of disturbance, abundance relation­
ships in organisms, the movement of organisms 
and so forth (e.g. Milne 1992); and to study the 
'chaos' of ecological systems (e.g. Schaffer and 
Kot 1986; Sugihara et al. 1990). It is beyond the 
scope of this paper to discuss applications of 
chaos theory to ecology (see Frontier 1987: 355 
for an introduction to the topic). 

In this contribution we collect and summarize 
currently-available algorithms for estimating the 
fractal dimension of natural Objects. We also dis­
cuss some problems with these estimation 
procedures, and outline current and potential ap­
plications of fractal theory to ecology and the en­
vironmental sciences. 

Fractals and the fractal dimension 

A formal or 'strict' definition of a mathematical 
fractal is a series for which the Hausdorff dimen­



sion (a continuous function) exceeds the topologi­
cal dimension (a discrete function). Topological 
dimension refers to the familiar Euclidean spaces, 
i.e. a line is one-dimensional, a plane two-dimen­
sional, and a cube three-dimensional. The dimen­
sion 0 of a fractal trace or path, however, is a 
continuous function with range I :5 0 :5 2. A 
completely differentiable series has a fractal 
dimension 0 = 1 (the same as the topological 
dimension), while a Brownian path (which oc­
cupies the entire two-dimensional topological 
space) has a fractal dimension 0 = 2. Fraetal 
dimensions between these extremes quantify the 
degree tll which the trace 'fills' the plane. In the 
same way, fractal surfaces have dimensions 2 :5 0 
:5 ~, with 0 = 2 for an absolutely 'smooth' surface 
and 0 = ~ for an infinitely crumpled one. 

To illustrate how the fractal dimension can be es­
timated, consider the problem of determining the 
length of a 'coastline' r. For a given spatial scale 
~, we can estimate the length L(~) as a set of N 
straight-line segments each of length ~. Small 
'peninsulas' and other features not recognized at 
coarser scales will become apparent at finer 
scales, so that the measured length increases as ~ 

decreases (Mandelbrot 1967). We can express this 
relationship using the simple power law: 

L(~) =	 K~l[) ( 1< 0 < 2) 

wherc the exponent 0 (the fractal dimension) is a 
fractional number quantifying the degree of 
'complexity' of the coastline. A fundamental fea­
ture of a fractal is this dependence of the meas­
ured 'length' on measurement scale. The power 
law for the fractal dimension Ll(f) can also be ex­
pressed as a limiting function: 

Ll(r) =	 lim I +Iog Lf~) 
0-0 Ilog d 

In practice, 0 is estimated by taking the log of 
both sides of the above power law equation: 

log L(~) = log K + (1-0) log ~ or 
log (N~) = log K + (1-0) log ~ 

and plotting log (N~) versus log (~). The Y-inter­
cept of the plot is log K, and the slope of the line 
provides an estimate of 0 (to be pedantic, 0 = 1 ­
slope). Note that for a Euclidean object, the 
measured length is independent of the measuring 
scale used (L(~) = K,O = 1). 

True or mathematical fractals are said to exhibit 
exact self-similarity at all spatial scales, since suc­
cessive magnifications reveal the same structure. 
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This implies that fractals exhibit partial correla­
tion over all scales (Burrough 1981). An example 
of a mathematical fractal is the so-called Koch 
'curve' or 'snowflake' (Sugihara and May 1990; 
Schroeder 1991: 8). For this fractal, a reduction in 
the measuring scale by one-third (~n+1/~n = 1/3) 
always increases the measured length of the object 
by four-thirds (Ln+1ILn) = 4/3. Substituting into 
the power law relationship we obtain: 

(Ln+ 1t'Ln) = (~n+J!~n)1-0 

(4/3) = (1/3)1-0 

4 = 30 

o = log 4/Iog 3 = 1.26. 

For natural Objects, the elegant self-similar 
property of mathematical fractals does not apply, 
just as we do not expect to find true Euclidean ob­
jects (circles, squares). However, many natural 
Objects (e.g. coastlines, ecological habitats and 
landscapes) do display some degree of 'statistical' 
self-similarity, at least over certain spatial scales 
(statistical self-similarity implies a scale-related 
repetition of overall complexity, but not of the 
pattern itself). However, it is not necessary that an 
Object display statistical self-similar properties 
when applying fractal models (notwithstanding 
comments of Simberloff et al. 1987). Normant 
and Tricot (1993) emphasize this pOint: 

"... a geographical line is seen as a fairly non­
homogeneous curve, that is, with both 
straight lines (almost recifiable) and chaotic 
parts, whose local dimension is not the same 
everywhere. Such curves are not self-similar, 
not even statistically... it is necessary to 
stress the fact that fractal does not imply 
self- similar, and thus coastlines are not self­
similar, but fractal ... we assert that self­
similarity is a restrictive point of view". 

Could the same not be said of ecological habitats 
and landscapes? We feel that ecologists are drawn 
to fractal theory as a unifying concept relating 
pattern, process and scale, and as a methodology 
for characterizing the recognized complexity of 
natural systems. 

The relevance of fractal theory to ecological 
problems is of course scale-dependent. For a 
forester interested in estimating stand board-feet, 
a Euclidean representation of tree trunks (as 
cylinders or elongate cones) is quite adequate. 
However, for an ecologist interested in modelling 
habitat availability on tree trunks (say, for 
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epiphytes or invertebrates), a fractal approach is 
more appropriate. The geometrically complex 
surface of a tree trunk can be a source of 
simplicity when fractal theory is applied. A 
diameter (DBH) tape ignores the surface rough­
ness of the bark, giving but a crude estimate of the 
circumference of a tree. For an insect of length 10 
mm, the 'distance' that it must travel to circum­
navigate the tree trunk is much greater than the 
measured DBH value. For an insect of length I 
mm, this distance is greater still. This has conse­
quences on the way that tree trunk 'habitats' are 
perceived by organisms of different sizes. If the 
bark has a [ractal dimension D = 1.5, an insect an 
order of magnitude smaller than another per­

0ceives a length increase o[ 101- = 10°·5 :::::: 3.16, 
or a habitat surface area increase of :::::: 3.162 :::::: 10. 
By contrast, for a smooth Euclidean surface, D = 
I and both insects perceive the same 'amount' of 
habitat. The higher the habitat fractal dimension, 
the greater the perceived rate of increase in length 
(surface) with decreasing measuring scale. 

Algorithms for measuring the fractal dimension 
of natural objects 

A number of reviews discussing the potential usc 
of fractal theory in ecology have been published 
(Loehle 1983; Frontier 1987; Milne 1988, 1991; 
Sugihara and May 1990; Williamson and Lawton 
1991). However, a number of new methods for es­
timating the fractal dimension have been devel­
oped since these reviews were published. While 
our summary is biased towards applications in 
landscape ecology, we have tried to include most 
if not all of the algorithms that have been used by 
environmental biologists. For the sake of brevity, 
mathematical derivations have purposefully been 
omitted from our descriptions. However, it should 
be recognized that many methods for estimating 
the fractal dimension D are empirically derived, 
based on the power law relationship. Mandelbrot 
(1982) and Voss (1988) should be consulted for 
general theory, as well as additional algorithms 
that may prove useful to biologists. 

1. Dividers Method 

This method is used to measure the fractal dimen­
sion of a simple plane curve (e.g. leaf edge, 
coastline, habitat or landscape edge). The 
procedure is analogous to that of moving a com­
pass of fixed opening «:5 along the curve (Fig. la). 
The estimated length of the coastline is the 
product of N (number of compass dividers re­
quired to 'cover' the object) and the scale factor «:5. 

The relationship between the measuring scale 0 
and the length L = N«:5 is: 

L = K0 1-D 

log (No) = log K + (I-D) log 0 

The fractal dimension is estimated by measuring 
the length of the object of interest at various scale 
values 0 (the log-log plot has slope I-D). Nor­
mant and Tricot (1991) note that this method is 
not well-founded theoretically, and that it is exact 
only for statistically self-similar curves. It should 
be noted that the value L = No (for a given 0) 
may vary depending on starting position along the 
curve. It is therefore recommended that the 
procedure be repeated at different starting posi­
tions to account for this variation (Sugihara and 
May 1990). It is also possible that D will differ 
over a range of 0 values (Le. the log-log plot will 
vary in slope). The point at which the fractal 
dimension changes may be indicative of the scale 
at which the generative processes determining D 
change (Kent and Wong 1982). 

In a geographical context, Longley and Batty 
(1989) refer to the above procedure as the 
'structured walk' method. They outline a number 
of variants of this basic procedure. Normant and 
Tricot (1991, 1993) have recently described an al­
ternative estimation algorithm, termed the 
'constant deviation variable step' (CDVS) 
method, that emphasizes the local behaviour of 
the curve (thus curve self-similarity is not as­
sumed). It involves dividing the curve into a series 
of subarcs (local convex hulls) of a given breadth 
e. By varying e, an estimate of fractal dimension is 
obtained using a simple modification of the above 
equation. 

2. Grid or box-counting method 

Like the dividers method, this procedure can be 
used to measure the fractal dimension of a simple 
plane curve (Longley and Batty 1989). However, 
in addition it can be applied to more 'complex' 
(e.g. overlapping) curves and other structures 
lacking self-similar properties (e.g. Peitgen et al. 
1992: 240). It has proved particularly useful in 
determining the fractal dimension of vegetation 
when describing habitat complexity (Morse et al. 
1985). In theory, the method involves obtaining a 
'o-eover' of the object, which is defined as the 
number of pixels of length 0 required to cover the 
Object (Voss 1988: 60). A practical alternative is 
to superimpose a regular grid of pixels of length 0 
on the Object, and to count the number of pixels 
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Figure 1. Some alternative approaches to estimating the fractal dimension of natural objects. (a) Dividers method - <5 = 
measunng length, S =starting position and F = finishing position. In this case, N = 25; (b) Grid method - grey pixels 
cover the image; (c) Grid method for pixel images - The finest gnd scale is the original pixel imagc (black pixels represent 
·presence'). Heavy grid scale (grey pixels represent 'presence') corresponds to 2 x 2 window size; (d) Area-perimeter 
relationships - pixel islands are shown. Grey islands touch on the edges and should he excluded from consideration; (e) 
Probability-density fu.nction - a representative :\ x:\ window is shown (centered on dot), for which the count is 4; (f) Fre­
quency distribution - original hypergeometric distnhution, and cumulative log-log plot, are shown; 



(i) 

(g) Spatial-temporal series - example data set on the left, examples of semivariogram and power spectrum on the nghl, 
(h) Point pallem - a representative clustered point pattern is shown; (i) Surface models - a representative surface is 
shown. 



(C) that arc 'occupied' by the object (Fig. Ib). 
This procedure is then repeated using different 
values of 0 (sec Milne 1991: 207). The defining 
relationship is: 

C = Ko l) 

log C = log K - D log 0 

For a plot of log C versus log 0, the fractal dimen­
sion D = - slope. Because slight re-orientations of 
the grid can produce different values of C for a 
given 0, different placements of grids should be 
used to obtain a distribution of D-values for the 
object. Tatsumi et al. (1989: 5(1) demonstrate an 
alternative method of implementing this 
procedure using an image processing system. 

Longley and Baity (1989) state that "it is recog­
nized that this method may be less suited to the 
task of hugging the more intricate details of the 
base eurve but. because of its low computer 
processing requirements, it is recommended as a 
method suitable for yielding a first approximation 
to the fractal dimension". Normant and Tricot 
( 14(1) arc more critical, stating that the box­
munting method is "often unusable and, in any 
case. yields very imprecise results". 

Morse et al. (1985) describe an algorithm, based 
on the box-counting method, for estimating the 
fractal dimension of ecological habitats (2 < D 
< 3). Consider the problem of estimating the 
fractal dimension of a spruce tree branch. In prin­
cipaL the box-counting method could be general­
i/.ed to the higher dimension by superimposing a 
threc-dlmensional grid on the branch and varying 
the sil.c of 'counting-cubes'. In fact, Milne (1988: 
7.') rcmmmends such a procedure for estimating 
the fractal dimension of a coded surface (e.g. sur­
face describing an ordination configuration; see 
Section 8 for alternative methOdS). The 'counting 
cube' procedure is difficult if not impossible to 
implement in the field, however, at least given 
present technical limitations (Zeide and Gresham 
1491: 1209). Morse et al. (1985) simplified the 
problem by photographing the habitat (in their 
case, plant branches) to obtain an image in two 
dimensions. They then used the box-counting 
method to determine the fractal dimension (l 
< D < 2) of the image. Following Mandelbrot 
(1<)83: 365), they then determined the respective 
upper (2D) and lower (D+ 1) heuristic limits of 
the habitat fractal dimension, under the assump­
tion that the photograph represents a randomly 
placed orthogonal plane through the habitat. This 
results in rather broad limits (e.g. for an observed 
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value D = 1.4, the expected limits arc 2.4 and 2.8). 
Despite this limitation, the procedure has since 
been used by others to estimate habitat fractal 
dimension (e.g. Shorroeks et al. 1991; Gun­
narsson 1993). 

The box-counting method has also been used to 
determine the fractal dimension of pixel images 
(Milne 1992: 44; Virkkala 1993). Consider a 
raster map (e.g. 160 x 160 pixels) in which 
forested areas are coded black, and non-forested 
areas white. To determine the fractal dimension 
of the forest-image (black pixels), divide the 
image into coarser scales of pixel resolution 
('windows') and count the number of windows oc­
cupied by a least one black pixel (Fig. lc). The 
log-log plot (resolution scale vs. number of win­
dows occupied) is used to determine the fractal 
dimension (D = -slope). 

3. Area-perimeter relationships 

These methods are normally used to estimate the 
fractal dimension from raster-based digitized 
maps. It is assumed that the image consists of a 
set of discrete pixel 'islands' or patches (that is, 
discrete objects with measurable areas and 
perimeters, Fig. Id). Depending on Objectives, 
two approaches are possible: (a) perimeter-based, 
to determine the extent that an island perimeter 
fills the plane; (b) area-based, to determine the 
extent that the island itself fills the plane. Both 
methods are normally applied to an 'archipelago' 
of islands, though they can also be used to deter­
mine the fractal dimension of individual 'islands'. 

(a) Perimeter dimension. This method measures 
the extent that the patch perimeters 'fill' the two­
dimensional plane. The perimeter-area relation­
ship for pixel islands is given by: 

A = Kp21D 

log A = log K + 2ID log p 

where the area A is simply the number of pixels 
making up a given 'island', and the perimeter P is 
a count of the number of pixel edges. For a log­
log plot of area-perimeter relationships of a set of 
islands, D = 2/slope (Burrough 1986:127) is the 
average fractal dimension of the landscape is­
lands. Using this method, perfectly square islands 
(perimeter: area ratio low) have a fractal dimen­
sion D = 1, while highly complex convoluted is­
lands (perimeter:area ratio high) have fractal 
dimensions approaChing 2. The method is useful 
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in determining the relative 'edginess' of a 
landscape. 

(h) Area dimension. Pixel islands are again ex­
amined, but we now ask: "what proportion of the 
two-dimensional space is occupied by the island?". 
Voss (1988: 61) suggests that the 'box' dimension 
of an island can be measured as 0 = log AIlogL, 
where L is the maximum of the row and column 
lengths of the pixel-island. Square islands (A = 
n2, L = n) completely fill the two-dimensional 
space and therefore have a fractal dimension 0 = 
log (n2)!log (n) = 2, while rectangular islands of 
length n and width 1 (A = n x 1, L = n) have a 
fractal dimension 0 = (log n)/(log n) = 1. Milne 
(1991: 225) suggests as an alternative the 'area' 
dimension 0 = log (A)!log (P/4). The relation­
ship between these area-perimeter measures of 
fractal dimension (and their relationship to the 
perimeter dimension) is poorly understood and 
deserving of study. 

If an archipelago of islands is to be characterized 
using this method, the length-area relationship is 
described as: 

A= LD 

log (A) = 0 log (L) 

Thus the fractal dimension 0 is simply the slope 
of the log-log plot. 

4. Probability-density function 

This method can be used to estimate the fractal 
dimension of a pixel image (digital map in raster 
form). However, unlike the area-perimeter 
methods, discrete habitat islands are not required 
(Fig. Ie). The probability-density function PL is 
obtained from square (L x L) sampling 'windows' 
successively placed on each pixel representing a 
given cover type (e.g. forest cover). Within each 
window, a count is made of the number of pixels 
(n) of the cover type of interest. The frequencies 
of counts are then expressed as probabilities: 

NA) 

~PL = 1 
n=1 

where N(L) ~ L2
. For a given value of L, the first 

moment of the probability distribution is given by: 

NA) 
M(L) =~ npL
 

n=1
 

These computations are repeated for various 
values of L (because each window is centred on a 

single pixel, L must be an odd number). Voss 
(1988: 66-67) shows that the following power law 
holds for fractal images: 

M(L) = kLD 

log M(L) = log K + 0 log L 

Thus the fractal dimension 0 can be estimated 
from the slope of the log-log plot of the first mo­
ment as a fUnction of L (see Milne 1992: 47). This 
method can also be applied using higher moments 
of the probability distribution: see Voss (1988) for 
a complete discussion. 

The behaviour of this method for different 
landscape patterns is poorly understood, though 
Milne (1992: 41-45) did perform a preliminary 
comparison of three artificial landscapes (each 
half-covered with 'filled' pixels). 

5. Frequency distributions 

(a) Distribution of areas (Korcak empirical rela­
tion). For an archipelago of 'self-similar' islands, 
the relationship between island size (area) and 
frequency is given by the cumulative hyper­
geometric size-frequency distribution (Hastings et 
a1. 1982; Kent and Wong 1982; Burrough 
1986:127): 

N = k a(-D(2) 

log N = log k + (-0/2) log a 

where N is the number of islands larger than area 
a. The slope of the log-log plot is -0/2 (Fig. If). 
This function implies that an archipelago of ir­
regularly-shaped islands (i.e. 0 large) should be 
dominated by many small islands. For a set of 100 
islands: 

Island Size D=2 D=1 

smallest 77 57 

intermediate 15 25 

large 8 18 

Note that only the distribution of island areas is 
required to determine the fractal dimension. Kent 
and Wong (1982) used this method to estimate 
the fractal dimension of lake boundaries (littoral 
zone) in the Precambrian Shield of Ontario, 
Canada. 
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Hastings et al. (1982), following Mandelbrot 
(1982), suggested that there is a relationship bet­
ween persistence (H = parameter of a Brownian 
diffusion model) and landscape fragmentation (D 
= fractal dimension of patches as determined 
from the hypergeometric distribution). While the 
exact relationship between D and H depends on 
the model chosen, Sugihara and May (1990) state 
that "increased persistence (more memory in the 
process) should correspond to smoother boundaries 
:.Illd patches with larger and more uniform areas; 
whereas rrouced persistence will correspond to 
more complex and highly fragmentro landscapes 
dominated by many small areas". Under certain 
limiting assumptions (Sugihara and May 1990: 83), 
the relationship between Hand Dis: 

H = 2-D 

This implies that landscapes with many small 
patches with complex boundaries (high D) are 
less persistent (low H). Sugihara and May (1990: 
X3) summarize the relationship as: 

H D Nature of Process 

> 0.5 <1.5 'persistent' 

=0.5 = 1.5 Brownian or random 

< 0.5 > 1.5 'anti-persistent' 

f1astings et al. (1982) used this method of examin­
ing persistence-patchiness relationships to com­
pare l)'press (early successional) and broadleaf 
evergreen (late successional) patches in 
Okefenokee Swamp. They found that cypress 
patches had a higher fractal dimension (D = 1.25, 
H = 0.75) than broadleaf evergreen patches (D . 
= 1.0, H = 1.0), implying that the earlier succes­
sional vegetation is less persistent ('stable' in their 
terminology). A later study (Meltzer and Hastings 
1992) points out a number of methodological 
problems associated with this approach. While 
the method may prove useful in remote sensing 
studies (Sugihara and May 1990), objective tests 
are required to determine whether persistence­
patchiness relationships developed under limiting 
theoretical assumptions are valid for ecological 
systems. Note also that Meltzer and Hastings' 
(1992) definitions of 'persistence' and 'stability' 
differ from the usual ecological meanings. 

(b) Distribution ofvolumes (Rosin's law). Turcotte 
(1986) derived a hypergeometric frequency dis-
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tribution relation for particle size in soils and 
other geological material: 

N = kRi-D 

log N = log k - D log Ri 

where N is the number of particles whose radius is 
greater than Ri, and D is the fractal dimen- sion. 
The fractal dimension is indicative of the nature 
of the soil (Tyler and Wheatcraft 1989): 

Fractal Nature of Soil 
Dimension 

D = 0 all particles are of equal diameter. 

D = 3 number of particles greater than a given 
radius Ri doubles with each corresponding 
decrease (by half) of particle mass. 

0< D < 3 greater proportion of larger particles than 
D = 3 (sand). 

D > 3 greater proportion of smaller particles than 
D = 3 (silt, clay). 

Tyler and Wheatcraft (1989) show that silt-clay 
soils have fractal dimensions in the range 3.0 - 3.5. 
They computed one-dimensional 'pore trace' D 
values for their soils using a method suggested by 
Mandelbrot et al. (1984). For a soil of fractal 
dimension D = 3.2, the fractal increment Dj = D 
- 3 = 0.2 measures the degree to which the soil 
'exceeds' the Euclidean three-dimensional space. 
The one-dimensional pore trace is simply 1 + Di 
= 1.2 (a trace of D = 2 would completely fill the 
space, as expected for a soil containing a high 
proportion of very small particles). 

This inverse power law has been used to examine 
frequency distributions of objects as disparate as 
taxonomic systems (Burlando 1990) and seed sizes 
(Hegde et al. 1991). Hegde et al. (1991) found for 
seeds that frequency is inversely proportional to 
the square root of seed size, and suggested that 
this reflects the fractal nature of ecological 
habitats. 

6. Spatial and temporal series 

These methods are suited to the analysis of a 
unidimensional sequence of equally-spaced tem­
poral or spatial values X (Fig. Ig), with the fractal 
dimension D. measuring the spatial (temporal) 
dependence of the sequence. An uncorrelated or 
spatially independent sequence of values 



61 Abstracta Botamca 17 ( 1993) 

(equivalent to 'white noise') will have a fractal 
dimension D = 2. Increasing spatial dependence 
results in a lowering of the fractal dimension; for 
complete dependence, D = I. 

(a) Semivariance. The semivariance Yh (Curran 
1988) describes the relationship between variance 
and lag distance (sampling interval) h for an ob­
served series. It is defined as: 

Nh 

Yh = 1I(2Nh) 2: (Xi - Xi+h)2 
i=l 

The semivariogram (a plot of Yh as a function of 
h) summarizes the relationship between semi­
variance and lag distance. At a certain lag distance 
L, semivariance reaches a maximum (the so-called 
'sill'; Fig. 19). This sill value is approximately 
equal to the variance of the entire data set. The 
distance L, termed the range, specifies the average 
distance over which the values of the sequence are 
spatially dependent (Phillips 1985). It can be 
shown (Burrough 1983) that the fractal dimension 
of the series is described by: 

2 Yh = h4-2D 

log Yh = (4-2D) log h 

The log-log semivariogram can therefore be used 
to determine the fractal dimension D = (4 ­
slope)/2 (Burrough 1986:127), where the slope is 
determined for the linear portion of the semi­
variogram (that is, over the lag range 1 to L). For 
white noise (i.e. successive values of the sequence 
are completely independent), the slope of the log­
log semivariogram is zero and the fractal dimension 
is, as expected, D = (4-0)/2 = 2. At the opposite ex­
treme, the log-log semivariogram for a simple 
linear trend (complete spatial dependence at all 
scales) has a slope of 2 (the maximum possible 
value), giving D = (4-2)/2 = 1. For a statistically 
self-similar series, D "" 1.5 (Palmer 1988: 94). 

In practice, a log-log semivariogram often does 
not have a constant (linear) slope even for values 
below the sill; there may be a single linear slope 
(fractal dimension) for one range of lag distances, 
and another slope for a second set of lag distan­
ces. The lag distance at which this change in slope 
occurs may indicate the scale at which different 
processes become operational. 

Palmer (1988) used the semivariance method to 
examine spatial dependence of vegetation along a 
transect of quadrats. Hauser (1991) modified this 

method to examine a two-dimensional grid of 
quadrats, defining: 

NRhCh 

YRhCh=1I(2NRhCh) 2: (XRiCi - XRi+Rh,Ci+Ch)2 
i=l 

where XRiCi is the value of the variable at point i, 
Rh is the row offset and Ch the column offset, and 
XRi+Rh,Ci+Ch is the value of the variable at a 
point separated from point i by Rh,Ch. 

(b) Spectral analysis. Spectral analysis can also be 
used to obtain the fractal dimension of a sequence 
(Burrough 1981). Details of the method are 
beyond the scope of this review; see Huang and 
Turcotte (1989:7492) for a lucid account of the 
method. Briefly, the spectral power pew) is 
defined for various frequency values w, and their 
relationship summarized as a log-log spectral 
power plot (Fig. Ig). The fractal dimension for 
this spectral plot is approximated by the relation: 

pew) =w - (5 - 2D) 

Thus the log-log spectral plot can be used to 
determine D = (5 + slope)/2 (Burrough 
1986:127). The spectral method has been used 
mainly in the earth sciences. 

(c) Katz method. Katz (1988) has taken a com­
pletely different approach to the analysis of 
waveforms. He defines a waveform as "a collection 
of (x,y) point pairs, where the values of x increase 
monotonically". He empirically derives a crude 
measure of waveform fractal dimension: 

log n 
D = log n + log (d/L) 

where n = the number of 'steps' in the sequence 
(i.e. number of x-values), d maximum 
Euclidean distance between any point pair in the 
sequence, and L = total linear (Euclidean) length 
of the waveform. It should be noted that inclusion 
of L makes this method sens~tive to the absolute 
amplitude of the waveform (that is, one or more 
'spikes' in the waveform will increase D). The 
method should therefore only be used to compare 
waveforms standardized to the same scale on the 
Y-axis. Because the method assumes that x in­
creases monotonically, D has a maximum value of 
1.5. A value of D = 1 occurs when d = L (i.e. for a 
straight line). 
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7. Point patterns 

Ogata and Katsura (1991) and King et al. (1989) 
have developed methods for determining the frac­
tal dimension of spatial point patterns (Fig. I h). 
Although these methods have not been extensive­
ly used, they may have some potential for the 
analysis of ecological pattern. They were 
developed to examine the degree of clustering: 
highly clustered points will have a fractal dimen­
sion approaching I (simulated fractal 'dust', 
Ogata and Katsura 1991 :469), whereas a statisti­
cally random pattern will have 0 == 1.5. For 
regular point patterns, other methods such as the 
Gibbs likelihood should be used. 

(a) Palm intensity. For a set of coordinates of 
points on the plane {Plo P2, ... , Pn}, compute all 
pairwise vector 'distances': 

Lli.j == !Pi - Pj I (i == I to n; j == I to n; i ,to j) 

A nonparametric estimation of the Palm intensity 
is found by counting the number of vectors within 
an annular region of area A (with radii of Ul and 
U2). Dividing this value by the area of A gives an 
estimate of the Palm intensity A(Ll) at Ll == u 
(where Ul :s: u < U2). The log-log plot of A(Ll) vs. 
u has a slope of H == 2 - 0 under certain limiting 
conditions. A parametric maximum likelihood es­
timation method for 0 is derived hy Ogata and 
Katsura (1991: 465-466). Frontier (1987: 350) 
describes a similar estimation procedure for 
clouds of points with self- similar properties. 

(b) Spectral intenSity. This method is related to the 
power spectrum procedure outlined in Section 6. 
The averaged 'marginal periodogram' with respect 
to wave number (w r) is estimated as: 

J 

0(wr ) == j~ 1 2: I (W r cos wb, W r sin wb) 
j= 1 

The linear portion of the log-log plot of 0(w r) vs. 
W r has slope == -D. However, Ogata and Katsura 
(1991: 467) recommend a parametric maximum 
likelihood estimation of the fractal dimension. 

(c) Grid or box-counting method. A point pattern 
within a rectangular area is assumed. The area is 
divided into n square grid units (pixels) of size 0, 
the number of points within each grid unit is 
counted, and the relative dispersion (RD) == 
(standard deviation)/(mean) of counts is deter­
mined. This is repeated for various values of o. 
The power law describing the relationship be­
tween number of pixels and relative dispersion is: 
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O lRO == K n ­

log RO == log K + (0-1) log n 

The log-log plot has slope == 0 - 1. King et al. 
(1989) demonstrate that random uncorrelated 
noise (i.e. statistically random spatial pattern) has 
a fractal dimension 0 == 1.5. A value of 0 == 1.0 
ret1ects "uniformity of the property over all length 
scales"; the slope is zero, meaning that there is no 
change in relative dispersion with changing scale 
(grid size). Simulation studies arc required to 
determine what sort of point pattern would have 
this characteristic. 

The spatial correlation between regions of 
defined size or separation distance is given by: 

r == 23-20 - I 

For 0 == 1.5 (random pattern), the correlation r 
= 0, while for 0 == 1.0 the correlation is maximal 
(r == 1.0). King et al. (1989) show that, at least for 
some simulated point patterns, the slope of the 
log-log plot may not he constant. 

8. Surface Models 

Polidori et a1. (1991) derive a straightforward al­
gorithm for direct estimation of the fractal dimen­
sion of topographic surfaces (Fig. I i). Their 
method is derived from the fractional Brownian 
motion model deseribed in Section 5 (see also 
Goodchild 1980; Sugihara and May 1990: 83). An 
estimate of the fractal dimension (2 < 0 < 3) is 
obtained from the relation: 

Jog Ie I == log k + H log d 

where Ie I is the mean elevation (height) dif­
ference between points that are horizontal 
Euclidean distance d apart. A measure of fractal 
dimension is given hy 0 == 3 - H. Polidori et al. 
(1991) interpret the Brownian parameter H as 
follows: 

H 0 lnterpretation 

> 0.5 < 2.5 height variations likely have the same sign. 

= 0.5 = 2.5 height variations are independent. 

< 0.5 > 2.5 height variations likely have opposite signs. 

As expected, the fractal dimension of 'rough' 
topographic surfaces (negative correlation of 
height variation) is high, while smooth surfaces 
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(positive correlation of height variation with dis­
tance) have a lo\', fractal dimension. 

ThL' semivarianee and spectral methods outlined 
in Section 6 are easily modified to determine the 
fractal dimension of landscape surfaces (Huang 
and Turcolle 19X9). For the semivariance: 

Nh Nil 

: 11 = (.fNhlL LI(X1J - Xlth,/+(Xij-Xi.j+h)2j 
1= II~ I 

1,'[()nJ the log-log semivariogram, D == 1 - slope/2 
(!3ian and Walsh 1991). 

"iudaLe Irdctal dimension can also be estimated 
mdirectly hy examining 'profiles' (one-dimen­
sional transects) extracted from the surface. Lam 
( 1\)()(): sec also Goodchild 19XO) used a cell­
counllIlg algorithm hased on the fractional 
Brownian motion model. At various step sizes, 
counts arc made along 'transects' extracted from 
(he surface The fractal dimension is estimated se­
parately for each transect from the log-log plot of 
Lell count vs. step size (D == 2 - slope, where 1< 
D < 2). The average of these values plus one pro­
\'tdes an estimate of the surface fractal dimension. 

A.nother method involves 'converting' the surfaee 
t)lot to a contour map, and using the 'dividers' 
,nethod (Section I) to determine the fractal di­
mension or the contours (the surface fractal di­
mension tS equal to the mean of these D-values 
plus one). Roy et a!. (19X7) compared some of 
these methods and found that they can give quite 
Jilkrent results (e.g. range in D of 2.01 - 2.11 for 
[he same image). Their study also determined that 
the fractal dimension of an image is often not a 
nmstanl, hut instead varies spatially. 

iJ. Tlt·o-.1111ace method 

/....cide and Pfeifcr (1991; also Zeide and Gresham 
1991) devcloped an empirical procedure for es­
timating the fractal dimension of tree crowns. 
They point out that it is currently not possible to 
estimate tree crown D using the 'cuhe-counting' 
method. As an alternative, they suggest relating 
two easily ohtained measures (total leaf area, and 
the surface area of a convex hull that envelops the 
,:rown) using a power law. If leaf area and crown 
,urfacc area are equal, it can he inferred that 
[,'aves are largely restricted to the surface of the 
I ree crown (as in shade-tolerant tree species grow­
ing in the understory). The tree crown therefore 
has a 'planar' form of fractal dimension D == 2. An 
increase in leaf area implies that more leaves 

6~ 

occur inside the crown, which increases the fractal 
dimension of the canopy. The defining relation is: 

A == k E D !2 

log A == log K + D/2 log E 

where A is the total leaf area and E is an estimate 
of the surface area of a convex hull that envelops 
the crown. As this is a measure of crown surface, 
the fractal dimension range is 2 < D < 3. Zcide 
and Gresham (1991) suggest that crown fractal 
dimension may vary with site quality and thinning 
intensity and therefore may he a useful indicator 
of site conditions. 

10. Information theory 

Milne (1988: 71-75) considered scaling problems in 
the computation of the familiar Shannon diversity: 

m 

H == - LPi In Pi 
i=1 

Scale relationships in the determination of H can 
be examined using the relation: 

H r == H o - a In r 

where r is the 'size' of the sampling unit (e.g. 
quadrat), H o is a constant (H as r approaches 0) 
and a is the lower bound of the Hausdorff dimen­
sion (Le. a scale-independent parameter). This 
method could be used to characterize changes in 
various measures of diversity with changing scale 
(d. Juhasz-Nagy 1991). 

Frontier (1987: 358-164) demonstrates that the 
familiar evenness measure J == HIHmax can be 
thought of as a measure of the fractal dimension 
of the distrihution of individuals among species. 

Ecological applications of fractal theory 

Fractal theory has been used by ecologists and en­
vironmental scientists in a number of ways. The fol­
lowing is a summary of some of these applications. 
In Table 1 we have listed, by methodological al­
gorithm, a selection of articles in which fractal 
dimensions of natural Objects have been estimated. 

I. Organism size and number of individuals 

Morse ct a!. (19X5) argued that since habitat has a 
fractal structure, there will he more 'useable' 
space for smaller animals than for larger ones. 
Working with invertebrates, they found that 
predictions of the number of individuals (hy size 
class) based on body mass and metabolic rate 
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Table 1. Summary of selected applications of fractal analysis in ecology and related disciplines. 

Melhod	 Application 

I)ivldcrs	 fractal dimension (D) of root systems. 
littoral zone complexity of Pre-cambrian shIeld lakes. Canada. 
tcmtory size in hald eagles, measured I) of Alaska shorelines. 
I) for leaf outlines of tree species. 
Aw,tralian coral reefs. variatIon in D with spatial scalc. 

Cilid (Box-('oulll)	 S1ze-ahundance relations in spider populations. 
aquatic invcrtehrate coloniz.atlon, artificial substrates 01 differing D. 
sizc-abundance relations in arthropods. hased on hahitat I) 
slze-ahundance relations in arthropods on lichcn thalli. 
fractal dimension of roots systems of crop plants. 
ranges of bird species in Finland. 
'Iandscapc' complexity of grassland at the scale of beetle species. 

,\rca PerImeter	 landscape scale, deciduous forest patches in Louisiana, Mississippi. 
[) of rain and cloud areas, from radar and satellite data. 
I) of large landscape units, eastern seahoard and mid-west USA 
landscape patches. aerial photos (1930- 1980) of Georgia. 

Pnlbiihllll\ Dcm,lt\	 \) of hare soil areas In grasslands, to model hahitat fragmentation. 

lTequency Dislrlhutions	 taxonomic systems. 
I) and 11 (hypergcometric) of forest piitches. 
distrihution of seed sizes across species. 
D and I [(hypergeometric) of grazed areas over time, Zimhahwe. 
particle-size distrihution, various soils. 

Sp;JCe Time Series	 Dol landscapes and other environmental data. 
semivariogram D, soil data along transects. 
semivariogram D. transects in plant communities. 
semivariogram D, environmental gradient of shoreline erosion. 

POInt Pattern	 counts of microspheres in bahoon hearts: simulations. 
epicelllres of shallow earthquakes in Japan: simulations. 

SurLKe Models	 scale dependence of topography and vegetation, Montana. 
surface topography, Arizona. 
surface topography. digital elevation model, Columbia. 

Reference 

Fitter and Strickland (1992)
 
Kelll and Wong (1982)
 
Pennycuick and Kline (1986)
 
Vlcek and Cheung (1986)
 
Bradbury el al. (1983,1984)
 

(iunnarsson (1992)
 
.fellries (1993)
 

Morse et al. (1985)
 
Shorrocks et al. (199t)
 
Tatsmui ct al. (1989)
 
Virkkala (1993)
 
Wiens and Milne (1989)
 

Krummel ct al. (1987)
 

Lovejoy ( 1982)
 
O'Neill et al. (1988)
 
Turner and Ruscher (1988)
 

Milne (1988. 1991. 1992) 

Burlando (1990)
 
llastings et al. (1982)
 
Hegde et al. (1991)
 
Meltzer and Hastings (1992)
 
Tyler and Wheatcraft (1989)
 

Burrough (1981 ) 

Burrough (1983) 
Palmer (1988) 
Phillips (1985) 

King et al. (1990)
 
Ogata and Katsura (1991)
 

Sian and Walsh (1993)
 
Huang and Turcotte (1989)
 
Polidori et al. (1991)
 

alone underestimated field values for smaller size 
classes. Predictions were considerably improved 
when the fractal dimension of the habitat was in­
corporated into the model: smaller organisms 
'perceive' more space and are therefore compara­
tively more abundant. Shorrocks et aL (1991) con­
firmed this general result, as did Gunnarsson 
(1992) and Jeffries (1993) using artificial sub­
strates of differing fractal dimension. 

2. Landscapes 

Krummel et aL (1987) examined the fractal 
dimension of forest patches ('islands') using the 
perimeter-area method. They found that smaller 
forest patches had lower mean D than larger 
patches. The transition zone from low to high 

fractal dimension occurred at :::::: 60-73 ha. They 
conduded that small forest patches are the result 
of anthropogenic activities (woodlots in agricul­
tural areas). Natural woodlots have more con­
voluted edges. This decrease in landscape 
complexity with increasing anthropogenic activity 
has also be reported by O'Neill et al. (1988) and 
Turner and Ruscher (1988). A recent study by 
Bian and Walsh (1993) used two-dimensional 
semivariance and fractal analysis to examine scale 
dependency in the relationship between topog­
raphy (elevation, slope angle and slope aspect) 
and reflectance/absorbance of vegetation at 
Glacier National Park, Montana. A number of 
studies concerned with the estimation of the frac­
tal dimension of geomorphological features are 
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summarized in Goodchild and Mark (1987), Lam 
(1991l) and Lam and Quattrochi (1992). 

3. Environmental transects 

Burrough (1981) used the semivariogram method 
to cstimate D for various environmental transects 
(e.g. soil factors, vegetation cover, iron ore con­
tent in rocks, rainfall levels, crop yields). He 
found high fractal dimensions in all cases, from D 
= 1.4 (iron ore content at 3 m intervals) to D = 
2.1l (soil pH at 10 m intervals). Very high fractal 
dimensions indicate spatial independence of suc­
cessive values. While some of the series displayed 
sell-similarity over many scales (i.e. a linear log­
log plot slope), other trends suggested a change in 
D wi th changing scale. Palmer (1988) used the 
same method to examine spatial dependence of 
vegetation along transects. Values were generally 
high but not scale-invariant. Based on a fractal 
analysis, Phillips (1985) concluded that erosion 
along a portion of the Delaware coast could not 
be easily predicted. 

.J. Plant structure 

Vlcek and Cheung (1986) measured the fractal 
dimension of leaf edges in a number of species. 
They found that the fractal dimension was highly 
variable in some species (e.g. oaks), and con­
cluded that D could be a useful taxonomic charac­
ter. The fractal dimension of root systems was 
examined hy Tatsumi et al. (1989) using the box­
counting method. They found fractal dimensions 
in the range of 1.46 and 1.6 for mature crop 
plants. Fitter and Strictland (1992) used the 
dividers method to demonstrate an increase in D 
over time (to a maximum of D :::::: 1.35). They 
found some differences between species. Zeide 
and Gresham (1991) estimated the fractal dimen­
sion of the crown surface of loblolly pine trees in 
North Carolina and found evidence of variation in 
D with site quality and thinning intensity. 

5. Size-frequency distributions 

The hyperbolic distribution, because it lacks a 
characteristic scale, describes the sizes of self­
similar phenomena and has an associated 
Brownian parameter H (Goodchild and Mark 
1987). Meltzer and Hastings (1992) examined the 
size distribution of grazed areas in Zimbabwe 
over time, and related H to the relative stability of 
vegetation patches. Overall, they found that in­
creases in cattle decreased patch stability. Using 
similar methods, Hastings et al. (1982) found 
lower stability in earlier successional patches. The 

hyperbolic distribution has also been fit to 
taxonomic systems (Burlando 1990) and the size­
distribution of seeds (Hegde et al. 1991). Frontier 
(1987:359-367) discusses applications of fractal 
theory to rank-frequency diagrams of the distribu­
tion of individuals among species. 

6. Soil physics 

Tyler and Whea tcraft (1989) used particle-size 
distributiom; to determine the fractal dimension 
of various soils, and to relate D to such soil 
properties as percolation and surface water reten­
tion. Perfect and Kay (1991) used a similar 
method to examine soil fragmentation, while Bar­
toli et al. (1991) used various methods to estimate 
the mass, pore and surface fractal dimensions of 
silty and sandy soils. Tyler and Wheatcraft (1990) 
offer a useful overview of fractal scaling as applied 
to soil physics (their Fig. 8.6 is a useful illustra­
tion of fractal scaling in natural objects). Frontier 
(1987: 340) suggests that it would be interesting 
to examine the relationship between the soil 
microflora-fauna and soil fractal geometry. 

7. Movements oforganisms 

Fractional Brownian motion models (Frontier 
1987: 351-353) have been used to characterize the 
movement of organisms. Dicke and Burrough 
(1988) used fractal analysis to examine spider 
mite movements on smooth surfaces, in the 
presence and absence of a dispersing pheromone. 
Wiens and Milne (1989) took a different ap­
proach, examining beetle (genus Eleodes) move­
ments in natural fractal landscapes. They found 
that observed heetle movements deviated from 
modelled (fractional Brownian) ones. A follOW-Up 
study by Johnson et al. (1992) found that beetle 
movements reflect a combination of ordinary 
(random) and anomalous diffusions. The latter 
may simply reflect intrinsic departures from ran­
domness, or be the result of barrier avoidance and 
utilization of corridors in natural landscapes. 

8. Ecotone and interfaces 

Frontier (1987: 337-343) discusses the ecological 
significance of contact zones (ecotonal boun­
daries) between ecosystems, and outlines how 
fractal theory can be used to examine boundary 
phenomena. Consider for example contact sur­
faces in aquatic ecosystems created by turbulence 
(the geometry of which is fractal, Mandclbrot 
1982; Milne 1988: 72). Turbulent regions (e.g. in­
terfaces between warm and cold water) have high 
phytoplankton productivity due to increased con­



tact with rcsourccs (nutrients and light), which in 
turn 'feeds' higher trophic levels. It follows that 
spatial patterns determined at fine spatial scales 
determme patterns at hroader scales. Kent and 
Wong (llJX2) used Iractal analysis to determine the 
extent of the littoral mne in Precamhrian Shield 
lakL'-'. while Pennycuick and Kline (19X() estimated 
D til detennme territllly si/.e in hald eagles along 
rocky coa.,tlmes III Alaska. Forest-grassland 
ecotonl'-' could abo he examined in this way to 
determine hahitat available to foraging animals. or 
10 plant species rC\strieted to ecotonal environments. 

<J. Hatl/Jill conl/J/n:itr and fragmenta/lOn 

:\ SlllIpllfYlllg assumption of many classical 
ecological models is that habitats arc uniform, or 
that they val) linearly with distance. Some recent 
studies have examined these assumptions and/or 
modified the classical models in light of the recog­
nil.ed tractal nature of hahitats. Scheuring (1991) 
modified the classical species-area relationship 
model to include the fractal nature of vegetation. 
Palmer (/9<,)2) modified the 'competitioll along an 
L'l1Vlwnmcntal gradient' model of Czaran (19X9) 
to includL' fractal habitat complexity. He found 
that species coexistence increased with increasing 
landscape fractal dimension. Milne et al. (1992) 
examined mammalian herhivore foraging in artifi­
cial fractal landscapes. They concluded that the 
fractal nature of landscapes is an important deter­
minant of resource utilization rate. Milne (1992) 
L'xamined the fractal geometry of landscapes from 
the viewpoint of hahitat fragmentation. He con­
cluded that habitat fragmentation affects ecosys­
tem processes, and that this must he recognized in 
developing a view of landscapes and habitats that 
is ecologically meaningful. 

What can the fractal dimension tell us'! 

The fractal dimension is a summary statistic 
measuring overall 'complexity' of a system. Like 
any summary statistic (e.g. mean, species diversity 
measure). it is obtained by 'averaging' the varia­
tion in the data structure (Normant and Tricot 
1993). In doing so, information is necessarily lost. 
Thus the estimated fractal dimension of a 
lakeshore tells us nothing about the actual size 
and overall shape of the lake, nor can we 
reproduce a map of the lake from D alone. This of 
course docs not mean that the fractal dimension 
of the lake is a meaningless measure, for it tells us 
a great deal about the relative complexity of the 
lakeshore. Used in conjunction with other 
measures, it is an important descriptor of the lake. 
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During the mid-1970's, much was written about 
the utility (and limitations) of species diversity 
measures in ecolob'Y. Many of the points raised hy 
these authors now seem relevant to applications 
of fraltal thcory ill ecolob'Y. For example, Green 
(1979:97) .qa tes tha t "diversity indices have been 
extensively and often uncritically applied, without 
regard to the assumptions implicit in the various 
diversity formulae and the hiases in their estima­
tlon and despite many published critiques and 
premature funerals". We feel that a similar state­
ment applies to fractal theory, the major dif­
ference being the relative lack of published 
critiques on the suhject. However, this is to be ex­
pected given the range of applications of fractal 
theory, and the fact that applications in ecolob'Y 
have only recently begun to appear in the litera­
ture. As another example, Poole (1974) states that 
diversity measures arc "". answers to which ques­
tions have not yet been found". While somewhat 
cynical, we feel that this statement applies equally 
well to the current state of fractal theory as used in 
ecolob'Y. While ecologists recognize that habitats 
and landscapes have fractal properties, many studie,s 
have simply reported the fractal dimension as a 
summary statistic. Further progress is to he expected 
as fractal analysis is used more and more to generate 
and tc,st hypothc,ses about the relationship between 
pattern and process at various spatial scales (c.L 
Loehle 1983; Lam 1990). 

The diversity of approaches for determining the 
fractal dimension of natural Objects reflects both: 
(a) differences in the type of data analyzed; and 
(b) differences in the objectives of the study, that 
is in the questiuns being asked. It follows that the 
method chosen should reflect the objectives of the 
study, since the various methods measure quite 
different things. As an example, consider a 
landscape consisting of pixel 'islands' (Fig. 1d). A 
study focussing on ecotonal houndaries (edges) 
would usc the perimeter dimension method. With 
this method, convoluted islands have a high D, as 
do long and thin islands. A study focussing on ac­
quisition and retention of space, however, would 
use the area dimension. This method computes a 
high fractal dimension for objects that best 'fill 
up' two-dimensional space (i.e. isodiametric is­
lands). Here, the argument can be made that an 
isodiametric patch of vegetation (area to edge 
ratio high) is more likely to retain that space than 
a thin, convoluted patch (area to edge ratio lOW). 
Both methods measure a fraetal dimension, but 
application and interpretation are quite different. 
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Some unresolved problems 

1. RegressIOn analysis to estimate D 

Most fractal dimension estimation methods arc 
based on a power law and therefore usc the 
regression slope of a log-log plot to estimate D. 
The estimated slope (and D) will thus depend on 
which measure is defined as the 'dependent' vari­
able. The choice is not always straightforward. In 
computing the perimeter dimension, for example, 
Burroug,h (1986) uses the power law relationship 
A = k pj[) (log A vs. Log P, 0 = slope/2) whereas 
Lovejoy (1982) plotted log P vs. log A (D = twice 
the slope). Both methods are valid, but they do 
not have the same slope. In such situations, Zeide 
and Gresham (1991) suggest that bivariate 
methods (such as those developed by Leduc 1987 
and Ricker 1984) be used to estimate slope. Alter­
natively, the principal component can be used. 

? Edge ejfecls lind maps 

This problem, which has not been discussed in the 
literature, is particular to the area-perimeter and 
probability-density function methods. For the 
area-perimeter method, inclusion of 'islands' 
abutting the edge of the study area (grey islands in 
Fig. Id) will result in a biased estimate of fractal 
dimension. The simplest solution is to ignore 
these islands, but this will very likely lead to the 
exclusion of a greater proportion of large islands 
(which may also bias the estimate of D). For the 
probability-density method, increases in the win­
dow size (L) result in exclusion of a greater 
proportion of pixels along the periphery of the 
map (Fig. Ie). This will result in some bias unless 
it can be demonstrated that the mapped pattern is 
isotropic and homogeneous, in which case an edge 
correction can be implemented (c.f. Ripley 1977). 

1. Orientation 

In raster-based (pixel) digitizing systems, a line 
drawn at 45() to the horizontal is approximated as 
a 'staircase'. This results in an increase in the 
'perimeter' of an Object relative to its area, result­
ing in a biased estimate of 0 when area-perimeter 
methods arc used. Walker and Kenkel (un­
published data) found that estimates of 0 
depended on the orientation of the image during 
scanning. We recommend that the image be 
digitized in a number of orientations to quantify 
this variation. The same will be true for the 
dividers and eell count methods, and for this 
reason it is recommended that different orienta­
tions (or in the case of the dividers method, dif­
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ferent starting positions) be used to determine the 
distribution of D-values (Sugihara and May 1990). 

4. lsland size 

This problem (which is specific to the area 
perimeter method) is discussed by Milne (1991: 
224-226). He points out that, while the theoretical 
range is 1 ::; 0 ::; 2, these limits arc not reached 
when small islands « JO or so pixels) arc used. 
For very small islands, this bias is considerable. 
Milne (1991) suggests an empirical correction 
based on actual limits for a given island size, but 
further studies are required. A preponderance of 
small islands indicates that a more detailed map is 
required. 

5. Resolution 

The measurement of fractal dimension re4uires 
that a fractal structure be 'approximated' in 
Euclidean space using Euclidean geometry (e.g. 
map, digitized photograph, spatial series, etc.). 
Thus the paradox of fractal dimension measure­
ment: the estimate of 0 for a fractal Object b 
based on a Euclidean approximation of that ob­
ject. This can create problems, since the fine-scale 
structure of an Object is lost during this transla­
tion. Map resolution is limited by cartographic 
approXimations, while digital scanner and 
software limitations determine the resolution of 
digitized images. The consequences of this 
paradox arc not always appreciated. For the 
dividers method and related techniques, smaller 
measuring lengths will tend to underestimate the 
fractal dimension, for the simple reason that the 
resolution of the analyzed image is limited. Ken i 
and Wong (1982; sec also Goodchild and Mark 
1987: 267) found that the fractal dimension 01 
lakeshores was lower at finer spatial scales. They 
interpreted this as indicating that different 
processes operate at different scales. However, 
preliminary studies (Walker and Kenkel, un­
published) have indicated that this change in frac­
tal dimension with scale may be an artifact of the 
limited resolution of the image (the result is a 
curvilinear log-log plot). While Kent and Wong 
(1982) fitted separate linear regression to their 
data (for small and large scales), careful examina­
tion of their log-log plots reveals that the trend is 
actually curvilinear. Could it be that reported 
changes in fractal dimension with scale (e.g. 
Krummel et al. 1987; Metzler and Hastings 1991) 
are artifactual? Cartensen (1989) examined the 
problem of estimating landscape fractal dimen­
sion from maps (though in a slightly different con­



texl), concluding that "... extrapolations from 
measurements of map data to natural environ­
ment" is unwise". Givcn thaI many workers dS­
sume lhat scale-related changes in fractal 
Jmlell.Sldll drc IIlJie<ltlvc 01 Jilferent operational 
processes III ecosystems (e.g. Wiens 19W;U93), it 
is impcrative that <I detailed examination of this 
prohlem he underl<lken. 

O. E\/rllJ!0{llltOn 10 Jijjercnl Jintensinns 

~aIl1pllllg anJ tcchnological limitations, <lnd a 
lack of rohust methodologies, make the direcl 
measurement of fraclal dimension of vegetation 
cllIJ lither hl.ener- dimensional images difficult if 
IIOl Implls.,ihk. The alternative is to measure 0 at 
,1 lower Jimension and extrapolate to higher 
llimensluns. Morse et al. (19~5) quantified vegeta­
tion complexity h) estimating 'edge' 0 from 
photogra phs of hranches (I :$ 0 :$ 2) and ex­
lr<lpu[ating this to the next highest ('surface') 
Jimension. Quite <lpart from the fact that this 
(esulh in rather hroad limits, there is some 
evidence that extrapolation to (or from) higher 
Jimensions is invalid (Roy el al. 19~7; Huang and 
Turcolle 1989). Oldeman (1992) suggests that 
forests show some similarities to such fractal con­
slructions as the Menzer sponge (Schroeder 1991: 
I,,OJ and should he modelled as such. Another 
posslhilIly is to vtew foresl canopies as existing in 
the range ..~ :$ D :$ 4. Such a 'volume dimension' 
woulJ he appropriate in examining hahitat avail­
ahle 10 'l1ying' organisms (e.g. hUllerflies and 
hirds. hut also pollen). However, models of this 
type arc numerically and conceptually difficult 
(VOSS 19K,,: 11). 

/ l:\lrllJ!o!tuwn /(I tlt!Jercnl\({{!es 

I'or natural systems, it is known that fractal 
Jlmension may vary with hoth location and scale 
(c.g. Roy ct al. 19~7; Normant and Tricot 1993) 
Implying that extrapolation from one scale to 
dnotha IS unjustified. For example, the semi·· 
,ariance method determines fractal dimension 
hased on equally-spaced samples (say, pH of soil 
cores at :; m intervals). The resulting estimate 01 
D is strictly relevant only for this 5 m scale, unless 
it is assumed (or can be demonstrated) that soil 
pH is self- similar over all scales. Similarly, an es­
timate of lakeshore 0 hased on aerial photo­
graphS may not he relevant when determining 
hahitat availahlc to fIsh fry. The scale range of the 
measurement device used in determining 0 
..;hould ideally include the scale relevant to the or­
ganism heing studied. 
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H. Limits of the samplinli unit 

L<lndscape im<lges (e.g. individual Landsat pixels, 
aai<ll photographs, etc.) can he thought of as 
s<lmpling units or 'quadrats'. It is well known that 
pallern Jetection and parameter estimation arc 
dependent on the scaling of sampling units 
(Kenkel et al. 19~9). Unfortunately, the landscape 
ecologist has no control over the scaling (size and 
shape) or the relative position of landscape im­
ages. This is somewhat related to the resolution 
prohlem discussed earlier, and leads to anolher 
paradox: in estimating the scale-invariant measure 
O. ecologists arc restricted to limited measuring 
scales. The arbitrary positioning of landscape 
units (landscape dissection) is also prohlematic. 
Consider two adjacent aeri<ll photographs with es­
timates of 0 I = 2.02 and 02 = 2.32 respectively. 
lJ a third photo is taken covering one-h<llf of each 
of photos I and 2, we might compute 03 = 2.13. 
The fract<ll dimension varies continuously, hut the 
results reflect arhitrary discontinuities. 

Concluding remarks 

Concepts of scale and scaling arc central to the 
geographical sciences (Lam and Quattrochi 
1992), and their importance to ecology is being in­
creasingly recognized (e.g. Wiens 1989; Milne 
1992; ]uhasz-Na!,'Y 1992). To the ecologist, fractal 
theory is a unifying concept integrating ecosystem 
concepts of spatial scale, scale-dependence and 
complexity. Zeide and Gresham (1991) describe 
as "self-evident" the fractal nature of biological 
structures and systems. We feel that the greatest 
challenge facing ecologists lies in translating this 
"self-evident" concept into experimentally testable 
ecological hypotheses. This is not to say that es­
timation of the fractal dimension of natural sys­
tems and structures is not important. To give a 
few examples, estimati<lIl is useful for comparative 
purposes (e.g. landscape complexity of natural vs. 
anthropogenically-manipulated areas), in generat­
ing hypotheses about scaling in nature, and in 
quantifying the relationship between organism 
size and perceived niche availability. 

Given that fractal theory is such a new science, it 
is hardly surprising that ecologists are still grap­
pling with the concept and its potential applica­
tions to natural systems. We feel that recognition 
of the fractal geometry of nature has important 
implications for many ecological processes, in­
duding organism dispersal and foraging, the 
spread of disease, species, habitat and niche diver­
sity, the complexity and heterogeneity of habitats, 
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species competition and coexistence, evolutionary 
rates, and ecosystem stability. 
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