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Let Q2 denote the set of all n x n doubly-stochastic matrices and let ox(A) be the sum of all subperma-
nents of order k of matrix 4. We prove the Holens-Dokovic conjecture for k = 4 and n > 5. Namely,
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Let QY be the set of all matrices from 2, with zero main diagonal and let J? be the matrix from Q0
with 1/(n — 1) in its off-diagonal positions.
We prove the following for 2 < k < 4 and n >k+1:

n—k+1)>2 n—k+1)>
o) - E o ()5 00 - CEED oy

forany A€ Q, 4 #J2
A consequence of the last inequality and also of a result of D. London and H. Minc [8] is the inequal-
ity 0y (4) > 04 (J7) forany A€ 3, A#J%,2< k<4 andn >k

1. INTRODUCTION

We begin by recalling some standard notations. The set of all 7 x 7 doubly sto-
chastic matrices is denoted by Q,, the nx n identity matrix by I,, the n x n matrix
each of whose entries equals 1/ by J,,, and the 7 x 7 matrix with 1 /2’s in positions
(L1,(1,2).2,2). 2 3),..s(n—1,m),(n,n), (n,1) by J;;. If A is an n x n matrix and ¢
is an integer with 1 < ¢ < » then the sum of all of the subpermanents of 4 of order
t is denoted by 0,(A4). In particular, 0n(A) = per A.

In 1981 D. 1. Falikman [3] and G. P. Egorycev [2] proved the van der Waerden
conjecture on the minimum of the permanent of the matrix from Qp:

if A€Q, then perd> perJ, =n!/n". D

Egorycev also showed that in (1) the equality holds if and only if 4 = J,.

In 1982 S. Friedland [4] proved the H. Tverberg’s conjecture [15] which general-
izes from (1):

if AeQ, and A4 #Jn, then o0,(A)> 0:(Jn), 2<t<n. 2
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206 K. A. KOPOTUN

In 1967 D. Z. Dokovic [1] posed and showed the validity of the conjecture for
k <3 which in its turn generalizes from (2) (see also, F. Holens [5D:

CONJECTURE OF F. HOLENS AND D. DOKOVIC “
: If AcQu,n>2and 2 <k < n, then

n—k+1)?
o> C=ET D, ), )
nk
Equality is attained if and only if 2<k <n—1and A=J, or k =nand A=1J, or
A is a permutation of J.

Following [6] we shall call the matrix 4€ ¥ an f -minimizing matrix on ¥ if
f(A) < f(X) for all X € ¥. Here ¥ is a nonempty set of real matrices and fis
a real valued function defined on .

Let
(n—k +1)?

nk

D. London [7] showed that if perS > o,_1(S)/#? for all S € Q, of rank 2, with
equality if and only if S = J;, £ =2,...,n—1, then F(A)>0,t=2,...,n—1 for all
A € Q, of rank < 2, with equality if and only if 4 = J,.

S. G. Hwang [6] proved that if 4 is a Fy-minimizing matrix on §, with positive
entries, then 4 =J, (k =2,...,n).

It is also worth mentioning that the Holens-Dokovic conjecture is equivalent to
the assertion that the function 03 (6A4 + (1 — 6)J,) is increasing in the interval [0,1].
This assertion is known as monotonicity conjecture and was partially resolved for
some special classes of matrices. More detailed results obtained in connection with
this conjecture are discussed in [6, 11, 12]. '

In the present paper we prove (3) for k =4, n > 5 and generalize cited Hwang’s
result to some degree (see Theorem 3).

The other area of research related to the van der Waerden conjecture is the de-
termination of lower bounds of the permanent of matrices on different subsets of
2, and the investigation of the forms of per-minimizing matrices on these subsets.
A clear example of this approach is the London-Minc conjecture [8] (see also Con-
jecture 44 [12]).

Let Q) be the set of all matrices from , with zero main diagonal, and let J? be
the matrix from QY with 1/(n — 1) in its off-diagonal positions.

Fk(A) = O'k(A) = O'k_l(A).

CONJECTURE OF D. LONDON AND H. MINC ([8] AND [12])
If A€ QS and A# D, then

n! 1 1 —1)"
it i g R ®

In [8] conjecture (4) was proved for n < 4.
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Now the natural problem arises: Find the minimum of the sum of all subperma-
nents of order k of the matrix from QY. We believe that the following is true.

CONJECTURE 1 If A€ QY A#J0and 2 <k < n, then
ok (A) > 0 (J0). ©)

For k = n, clearly, this is the London-Minc conjecture.
It is possible to ask even more: What is the minimum of the function Fi(A) on
Q9? If the Holens-Dokovic conjecture is true, then for k = n we have

Anéié]g Fu(4) = min Fo(4) = Fu(J;),

and thus the minimum of F,(4) on QY is equal to the minimum on §,,. For the
other k we conjecture the following.

CONJECTURE2 If A€ QY A#J0and 2<k < n—1, then

Fi(A):= o (A4) - L:k”—)z

k-1(4) > F (7). (6)

The validity of the London-Minc conjecture and the validity of Conjecture 2 im-
ply that of Conjecture 1. Indeed, for k = 2 or k = n the estimate (5) coincides with
(6) or (4), respectively (for k = 2 functions

(n—1y
2n

clearly, achieve their minima at the same points since 01(A) = 01(JQ) = n).
For 2 <k <n-1 using (6) we have

02(A)— 1(A) and aé(A),

—k+1)? —k+1)?
k(A4) = o(A4) - @T)Uk—l(fi) & (nn\k)ak_l(A)
n—k+1)? n=k+1)? '
200 - C= g oy CR A 0y 2 gty

and thus (5) follows by induction on k.

In this paper we shall prove (6) for k < 4. Together with the result of D. London
and H. Minc [8] it will prove (5) for k < 4. :

2. ON THE MINIMIZING FUNCTIONS IN THE INTERIOR OF Qp

LEMMA A (see [11, pp. 242-243], for example) The function Fy, 2<k < n has a
strict local minimum at J,,.

THEOREM B ([6]) If all entries of Fy-minimizing matrix A on Q, are positive, then

= Jn.
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Theorem B is a consequence of the following theorem.

THEOREM 3 Let F(A) = i, Ciai(A), where C; are any real constants, be such
that matrix J, is a point of strict local extremum of F. If all entries of F-minimizing
matrix A on Q, are positive, then A = J,. S

Note that the hypothesis of Theorem 3 is satisfied if in particular

U ('.’:Zz)zci #0

im2 k

as

k k—v) [n— 2v k! :
Uk(At_,_Jn(l_t)):VZ;UV(A—J,.)(nk_t) (k—:) t +?(:)

and therefore the coefficient of #2 in the decomposition of F(A? + J,(1—1)) is not
zero when A4 # J, (the coefficient of ¢ in this decomposition is always zero).

The proof of Theorem 3 relies on two results which are based on the ideas of D.
W. Sasser and M. L. Slater [13] and S. G. Hwang [6] (see also [9] by M. Marcus and

M. Newman). _
4
Xyl

Let
denote the 7 x n matrix obtained from A4 by replacement of the columns i and j by
the n-vectors x and y, respectively.

LEMMA C Let A be F-minimizing matrix on Q, with positive entries. Then matrix

A=A

l J
a;+a; a;+aj
2 2
is F-minimizing matrix on Q,, also.
Proof (see [6, 10], for example). Let
g

B:=A[
aj a;

] : B # A.
For some €>0 matrix A(1-t)+Bt€Q, while re[—¢1+¢], and f(£):=
F(A(1—1)+ Bt) is the polynomial in ¢ of degree not exceeding two such that
f'(0) =0and £(0) = f(1)._ . ¥
This yields the identity f(¢) = f(0) = F(A) for ¢ € [-€,1+¢€]. Thus for every t €
[—€1 + €] (in particular, for ¢ = %) A(1—1t) + Bt is F-minimizing matrix. |
The fo]loWing proposition will also be used.

PROPOSITION 4 Let numbers a; >0, 1<i <n be such that Yi-,ai = 1. For one
step one replaces each of two elements a;,:=max{a;, i= 1,...,n} and aj,:=
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min{a;, i = 1,...,n} by (a;, + aj,)/2. Then for any € > 0 after a certain finite number
of steps all the elements a; are replaced by a; such that |a; — 1 /nl<ei=1,...,n

Proof of Theorem 3 Let A # J, be an F-minimizing matrix with positive entries.
It follows from Proposition 4 that there exists a sequence

A= AI’A2""1Ak7Ak+1’-f-

such that 4, is obtained from A by “averaging”

i J :
(Ak+1 = A [(ai ra)f2 (a+ aj)/2]> and kli.noloAk =)
Since F is a continuous function it follows that limy_.., F(A) = F(J,). But by
Lemma G, for every k > 1 matrix Ay is F-minimizing on Q, and F(A4) = F(A).

Therefore F(Ay) = F(A) = F(J,) for all k > 1.

Since J, is assumed to be a point of strict local extremum of F, we immediately
conclude that for some kg > 1 4; = J, for all k > k.

We assume that kg is the smallest index, i.e. that A, # J, while 1<k < ko and

Ak, = Jn. Taking into account the proof of Lemma C one can infer that for every
t € [0,1] matrix

A |
(A—0)Ag_1 +1A4 4 [ ]
aj aj

is F-minimizing (vectors a; and aj are the only columns of A,y which are not
equal to the n-vector (1/n,...,1/n)) and

k ((1_”‘4""“”’1"“‘1[; Z,-Dzﬁ(“’“‘l[(a,- +ia,-)/2 (a +ja,~)/2D

=F(Ay,)=F(J,) for every te[0,1].

Thus J, is not a point of strict local extremum. This is a contradiction.
The proof of Theorem 3 is now complete. |

3. AUXILIARY IDENTITIES AND INEQUALITIES

Throughout Sections 3 and 4 we let 4 = [a; ;] be a matrix in 2, and a summation
without specified limits is taken over all i and j with 1< i, j < n.
Using the formulae for a3, 03 and o4 (see [1, 14])

n(n—2)

i
0'2(A)= zza,zj'*' 3 ’

2 n—4 n(n?—6n+ 10
03(A) = 3 a§j+ 5 z“?ﬂ’(—T—)
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and

o4(A) = %Za;‘j + g(n—G)Za?j ¥ "2‘1#2(;3 + % (Zagj)z

; n ' g ;
t ) e g Y ( “iizaijz>
1

1<ii<iz<n \ j=1 1<ji<j2<n \i=
. n n 2
5¢ - 2 5 2 L 2
—'§j£: j{:aﬁ —-g E::aw +'§Z(n —12n 4‘52”-—84)
i=1 \ j=1 j=1 \i=1
we get the following presentation of F,, F3 and F; functions:
1 Aol
Fa(Ay= 2 ajj— 2’ @)
2 3  Nn*—4n-2 s n—4
F3(4) = 32“:‘,‘“*’7 e ®

and

3 P =6n—3¢ n3 —10n% + 23n + 36
Fy(A) = 3 Za;‘j + e a?j + & a?j

1 9. 4 n ’ 1 n 2
5 3 (Z a?j) + 2 Z (Zai,jaizj + ! Z ( - a;jlai,-2>

1<iiizsn |\ j=1 1<j1<jp<n \i=
n n 2 n n 2 2
5 2 5 2 n“—10n + 30
=8 2 (; ai}') 7 g; (Z; aij) i i PO R )

The proof of the Holens-Dokovic conjecture for k = 4, n> 5 consists of finding
bounds on each of the terms in (9). These bounds are obtained using the Jensen
and Cauchy inequalities. For convenience we recall these inequalities.

PROPOSITION D ([8, Lemma 1]) Let x1,x3,...,Xm be nonnegative numbers, and let
Y1 Xi=p.Ifs>1, then

m p:
e (10)
I=1 :

Equality holds if and only if x; = p/m,i=1,...,m.
PROPOSITION E (Cauchy inequality) For any real numbers a; and by, the following

inequality holds 5
n n n
(Z akbk) <> apd b : (11)
k=1 k=1 k=1

with equality if and only if Aay = pby for all 1< k < n and some numbers X and B
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Using (11) we obtain some awxiliary inequalities.
First of all, for every v = 1,...,n we have

2
n
2 2 2N
(1—au1"av2_"'_aun) o5 Z Zaujaij

i=Tnizvi=1

2
<(n-1) Z (Za,,}-a,-,)

i=Tni#y \Jj=1

and after the summation in v, v = 1,...,7 one gets

n “ n n 2
2 1
2 Z (Zailjaizj) Znﬁl_n—lza’zj*.n—l, (Zaﬁ-) :

1<i<ir<n \ j=1 i=1 \ j=1
(12)
Now
2 2
n n n
Yoayi| = Y Vet | < aj forall i=1,.,n. (13)
j=1 j=1 j=1
Also, for any real number r the following is true for everyi=1,...,n:
2 2
(Z af; — r) = (Z a;j(aij — r)) <ny a}(aij—ry,
i i j
and after the summation on i the following emerges
2
2
Za;‘j—ZrZa?j+<r2+ %)Zasz%Z(Za,zj) +r? reR.
i i
(14)

Finally,

ol ) exlpe

i

or, equivalently,

(Za?j)z— <2—%) Za?j +1—‘

| =

I

= (Za,?j) 2. (15)
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Note also that the inequalities (12)-(15) are true if we interchange i and j, that
corresponds to the transposing of matrix 4. Thus the following inequalities hold:

1<i1<iz<n 1<j1<j2<n

n 2 1 = E i
2 2
s s O A T DD | 2
1= ]=

j:

S
|

2
1 n
Tknt) ®
J=1 \i
2 2
£(24) +5(4) sz, @)
Za,J—ZrZaU+( %)Za?j
2 2
> 2 (za,,) L <Za,z,.> LR SR RS (18)

and
() - (-2) Seher- 238 () +33(3e)

(19)

4. PROOF OF THE HOLDENS-DOKOVIC CONJECTURE FORk =4, n> 4
Now assume that n > 5. Using (16) one has from (9):

3 2_6n-3 3_10n% +23n + 36 1
2

| 225

+5(Z) - (3- 5= 1));(;;@,)

2
3 1 n? —10n + 30 n
= <§ B 1)) 2 (Zaizf) S A e @)

i
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Now applying the inequalities (18) and (19) we get

n*—6n-3 3
F4(A) > (—2’1— +3r) E aij
n® —10n% + 25n + 34 1 3¢ 5 2r 2
+< 8n “2(n—1)"2'(’ +7)>Z”"i
2
9 1 3 5
_<1—6_8(n__1)—472)zi (Z} “U)

2
9 1 3 5
- (%-men-%) 2 (24)
n?—10n +31 n b8
= — + Zr4, 2
g I D 2h
The fact that coefficients of }7,(3;a%)? and 3 j(2ia%)? are less than zero for
n >4 enables us to use the inequality (17). For every r € R we have:

4n—33 1 3
> — 2
Fy(A) > < 3 +3r+ 4(n—1)) g aj;

n3 —10n + 251 + 34 1 3.4 2 Totee 5
EEs i it Rk
+( &n 2n=1) 2(’ ¥ n>)z”'1 2

Lo nd—10n2 +31n—1
4(n—1) 8n )

Let r = 1 if n> 6. Then coefficients of > a}; and 3 a? are equal to
4n—21+- 1 sl n2—10n+22+ 43 . n—6
8 4(n-1) 8 20n  10n(n-1))’
respectively. As they are positive for n > 6 we can use the inequality (10) for s =2
and s = 3, and thus

4n-21 1 1 n—10n% + 2n+22 1
>
F‘(A)—( g +4(n—1)) ( )

n 8n —2n=1)
1 n3 —10n2 +26n—1
=1 8n ~lEaddlo
If n =35, then for r = 25/48 the inequality is the following

e, B
el s o e
Ful) 2 7605 2%~ 755 20

It follows from Proposition D that for any n>5and 4 er,, the equality Fy(A4) =
0 holds if and only if 4 = J,. The proof is complete. '
The case n = k = 4 is still open.
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5. AUXILIARY INEQUALITIES AND PROOF OF CONJECTURE 2 FOR k < 4

Throughout all this section we shall assume that a;; are the entries of the ma-
trix A€ QY and thus a; =0 for 1<i<n. Taking this into account one gets the
following corollary of Proposition D.

PROPOSITION 5 For every 1<i < n and s > 1 the inequality

E 1
Z“E’Z(,,—_l);—_f

j=1

is valid. Equality holds only if a;; = 1/(n—1) forall 1< j <n, j # i. Thus
. 2 r
doahz ———
o (n_l)s 1

with equality if and only if A = J?.

Proof of Conjecture 2 in the cases k =2 and k =3 If k = 2, then (6) is a conse-
quence of the formula (7) and Proposition 5 with s = 2.
If k = 3, then using the inequality

n

n 1 2
> Yy (aij s n_—_l) 20,

i=1j=1

or, equivalently,

n
2 n

n
D= 21 G mom=S
Ele = )

one has the following from (8).

nt—4n—2 4 , n—4 2n
> o o i
B(4)2 ( g 3(n—1)> 2 4 3 : 3(n-1)

_n*=5n?+6n+2 gon=4. on
w2 e c ARy e Tt e
As n® —5n% + 6n + 2 > 0 for n > 4 using Proposition 5 we have
. mw-5n+6n+2 n n—4 2n
> : = =
B(4)2 3n(n—1) n—d: - 3; % 3m=1p
n*—5n+6 0
—W—Fs(fnb),

where equality holds if and only if A = J?. :
Thus Conjecture 2 is proved in the cases k = 2 and k = 3. B
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Proof of Conjecture 2 for k = 4 Using the same method as for the proof of the
inequalities (18) and (19) and taking into account that a;; = 0, 1<i<n, one can
verify the following correlations for the entries of the matrix from Q9:

2r
Zafj—ZrZa?i+(r2+nTl) a,zl

2 2
1 1
22(n-1)Z:<Z.“"Zf) +2(n—1)Z.<Z“‘zf) HIL i TGE
. i j i i

(22)

and

2
(Z a,zl) = 22(1,2} +
Now using (22) with r = } and (23) we get from (20) for any 7 > 5

n?—3n-3 3, (MP—102+22n+36 2 2
Es(4) 2 (T) D a+ ( 8n > 1) Zaij

n—

i i

2 2
21T (24) 43 (34) . e
i i

2
9 1 3
E (E- 8(n—1) 4(n—1)) 3 (;“?i)

i

2

T (1% = 8(n1— i 4(n3— 1)) b2 (z“‘zf) :

n2—10n+30+ BB 3n
8 Hn-1) 8(n-1)  8n-1

Applying (17) one has
4 2" s 7

8n 4(n-1)
n—10n+22n+36 2 2
35 ( 8n . n—l)zaij
n? —10n + 30 n

T )
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It is not difficult to check that the coefficients of 3" a3; and Y a? are positive for
n > 5. Now using Proposition 5 for s = 2 and s = 3 we have

4n? —21n—12 7 n
>
Fu4)2 ( B A 1)) (1)
i n-10n*+22n+36 2 n n2—10n+30+ n
8n n-1/n-1 8 2(n—1)
n* —12n® + 54n? —107n + 78 5
=i 8(71-— 1)3 i F4(Jn)7
with equality if and only if A4 = JJ. :
Thus Conjecture 2 is proved for k = 4. |
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