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COMONOTONE POLYNOMIAL
APPROXIMATION IN L,[-1,1],0<p < o0

K. KOPOTUN (Edmoerton) and D. LEVIATAN® (Tel Aviv)

1. Introduction and main result

Let P, denote the set of all algebraic polynomials of degree £ n, Ly[a, 1],
0 < p £ cc, be the set of all measurable functions on [a, b] such that the
(quasi)norm [{flly ; 4 is finite, where as always,

b 1/p
1l g = ([ |f(a:)|"d:e) . 0<p<oo,

and it is the sup-norm for p = oo. Thus throughout the paper, Lo, [a, 0] is
understood to be C[e, b] with the usual uniform norm. Also for brevity, we
denote || - I, := [T - Hppp—1,1)-

Let Yo :={y1,.-- o= =-1<mm<yp<...<ir <l=typp1}, r 2 0.
We denote by A!(Y,) the set of all functions f such that f is nondecreas-
ing on {¥r-.2k, Yr—2x+41], and is nonincreasing on [y, _2x—1, Yr-2], i.€., those
that have () £ r < co monotonicity changes at the points in ¥, and are non-
decreasing near 1. Also, let Al := A!(Y,) denote the set of all nondecreasing
functions on [~1, 1]. Functions from the class A'(Y,) are said to be comono-
tone with one another.

Comonotone polynomial approzimation is the approximation of a
function f € A}(Y,), by polynomials which are comonotone with it. For
fely[—1,1]NAYY;), r Z 0, let

E,(})(f, Yr),, = inf If - Pﬂ“:o’

PoePanAl(Yr)
be the degree of comonotone polynomial approximation of f. (In particular,

E,(,l)(f)p = E,(f)(f, Yﬂ)p = inf Al ”f - 'Pn”p’
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302 K. KOPOTUN and D, LEVIATAN

is the degree of monotone approximation.)
Recall that the m-th order Ditzian-Totik modulus of smoothness
wi(f,8),, (see [6]) is given by

(1) wh(f,8), = Sup | ARy (F Lo

where p(2) 1= V1 — 22, and

AT (f,2) = { Tito (0" Mz = Fn+in), if 2dFne(-1,1]

0, otherwise,

is the symmetric m-th difference. (Note that if we set o(2) =1, then (1)
becomes the deflinition of the usual m-th modulus of smoothness w,,( f, 6)p
= w}n(fv 6)39)

The following result on comonotone approximation of continuous fune-
tions in the sup-norm {i.e., in the case when p = o0) is known.

THeorREM A. Let f € C[-1,1]NANY,), » 2 1. Then

(2) E(1,Y) 5 £ C*(r,d(r) walfin™h), n21,
and

(3) EM(f V) SC™( 0 (fin ), n 21,
where

(4) d{r) :==min{y1 + Lo =91,y ¥ — Yt L = 4 )

Estimate (3) was first proved by Leviatan [10], with a constant C**{r,dg},
where dg := min{y; + 1,1 — %, }. In its present form it appears in a rccent
paper by Leviatan and Shevchuk [11]. Estimate (2) is due to Shvedov [18]
(see also Yu [20]). It was also shown by Shvedov [18] that the constant C*
in (2) cannot be replaced by one independent of d(r) (if no extra conditions
are put on n). Moreover, estimate (2) is exact in the sense that wy cannot
be replaced by wy as follows immediately from a result of Zhou [21].

For other relevant results see the list of references.

The purpose of this paper is to prove the following generalization of The-
orem AinL,, 0 < p £ .
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Turorem 1. Let f e L,[-1, 11N ANY,), 0 < p £ oo. Then, for each
n > C(r)/d(r), where d(r) is defined in (4),

(5) EV(£,Y7), £ Clrif(fin™),.

The constant C(r) depends on p when p — 0.

We emphasize that the constant in (5) does not depend on V,. (This
does not contradict the above mentioned negative result by Shvedov since
(5) is valid only for n > n(Y,) = C(r)/d(r).)

Proor. We are going to prove Theorem 1 in stages. We first approximate
feL,[-1,1]nA'(Y;) by a continuous piccewise-linear spline s € AY(Y;)
such that | f - sfi, & cwf(f,n_l)p. Then we will show how to approximate
s by polynomials in AY(Y,).

We begin with the partition of the interval [—1, 1] by the Chebyshev
nodes Ty 1= Ty, := arccos Tk/n which we augment with Y,. Then we delete
z; and 2;_; for which thereisa y;, = ,...,r such that 2; < ¥; < ®i_y, and
we end up with a new partition which we denote Z, ,,. Explicitly,

Z‘r,'n =Y. U ({Ik}zzu \ {;L'iv Ty ¥ S Yy <z for some j=1,.. .,?“}) :

Now we have,

LemMa 2. Let a function f € L, N AYY,), 0 < p £ oo, be given. Then
for every n 2 C(r)/d(r), there exists ¢ continuous piecewise-linear spline
s € AYY,) on the knot sequence Z,.,, satisfying

(6) 1f = sll, € C(wf(f,n7h),
and
(7) wy (8,071, £ C(rf(f,n7),,

where C{r) is as in Theorem 1.

Note first that (7) is stated here only for convenient reference as it follows
immediately by (6) since

wy(s,n '), £ Cof(f,n7" ), + Clls ~ fiI7.

Also, when p = 00, then the conrstruction of the spline s is trivial. Indeed, we
can simply take s as the piecewise-linear interpolant to f on Zy - For then
s € AY(Y;), and using Whitney’s theorem (see [4, p. 183, Theorem 4.2]) we
conclude that s satisfies (6). T'herefore we will eoncentrate on proving (6)
for the case 0 < p < oc.
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Proor. Assume 0 < p < ce. Then it is not difficult to construct a spline
5 which satisfies all of the conditions of the theorem except that it may be
discontinuous at {y;};_,. Moreover, i can be so chosen that, for every in-
terval I of the partition Z;,,, the restriction of & to I is a near-best linear
approximant to f in Ly([). There are different ways to construct such a
spline. In particular, it can be constructed by following the line of proof of
{2, Theorem 3)]. (The only difference is that in [2] a continuous piecewise-
quadratic spline was constructed and this demanded a much more elaborate
work.)

Our next step is to alter the spline & in the neighborhood of the y;’s in
order to obtain a continuous spline s satisfying all the requirements of the
lemma. To simplify the notation we describe the construction of s in the
neighborhnnd of a generic knot §, which will denate any of the y;’s, and un-
der the assumption that & is nondecreasing in some small neighborhood on
the left of § and nonincreasing in some small neighborhood on the right.
Let ¢ € {»;,m; 1), say and let py(x) be the linear piece of 3 in {2iye.2i41].
while pz(z) be the linear piece of 3 in [z;_2,2i—3). Note that n should be
sufficiently large so that z;;1» and z;_3 are well defined. In fact we assume
it is so large that p; is nondecreasing and p; is nonincreasing. This is the
first occurrence where the dependence of n on d(r), comes in. Now, we de-
fine s in [#;42,%;—3] as the piecewise-linear continuous spline s(z} = §(z) for
T & (Titt, Ti2), and s(¥) = ;i (§), if pol@i2) € pi(zis1), or $(T) = pa(7), if
pal{zi_2) > pi(aiy1). Putting s(z) := 3(2) outside the neighborhoods of the
y;’s, we obtain a continuous piecewise-linear spline s € A'(Y;).

It remains to verify that s satisfies (6). To this end it suffices to show
that the degree of local approximation of f (near §) by s is not worse than
that by 3. We consider the case where pa(zi—2) £ p1(2i+1), the other case is

analogous. Since in this case 5'{3:.-.“,9] = 3‘|[,,‘+1,3-,]‘ all we have to show is that

®) 1 = sly,gaa S CO = Pl T M = Pollig, o)) -
Indeed,
s — P2||c@,x,_2] - ‘S(@) - Pz(i‘-/)| - IPl(fv’) - Pz(@)|

Sl - Pollega,_y S Ch7 NPy = Polly, o

Thus,

lls — pallp fg,0_5) = Chl/m|s - Pallefye_s) = Clipr — P2lle [g,2i_a)

and

1S = 8l gy S CUILS = p2llfy g5 ey + s = P2l o)
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)
<O - pillf o + 1 = Poll ey O

Lemma 2 implies that from now on, we may assnme that the function f
in the statement of Theorem 1 is a continuocus piecewise-linear spline on the
knot sequence Z.,. Evidently, this assumption considerably simplifies all
subsequent considerations. Furthermore, replacing f by f — f(y), we may
assume without loss of gencrality, that f(y;) = 0.

Hence, in the rest of the paper f is going to be a continuous piecewise-
linear function on the knot sequence Z,, which belongs to A'(Y,) and sat-

isfies f(yy) = 0.
Let yy € I; := [xj,xj-1) and set hj := |I;| = @j_1 — &;. We will show that

(9) Ilffll.,.[gl—n,/s,y1+h,/ﬁ] £ Cwa(f, Ry, Jj)ps
where J; = [z;49, 23]

Clearly, while I, C J,, we have |J;]| £ C|I;| = Ch;, and for n 2 C(v)/d(r)
with a sufficiently large C(r) we obtain

(10) wrl £ hgn d3), S Cwf (S0,

In order to prove (9), we take I to be the straight line such that L,
- f|[y1,a:3_2]’ and we get

'3} vle-"-?]

|If”r.,,[y1-hj/6sy1] slifr-1L Lplen Rj/6wn)
= “ f() = L)+ (L() —-2L(-+ hj/G) +L(-+ h.?'/3)) ” Ly [y —h; /6,1
= SC) = 20 C+ R [6)+ FC+ b33l i s

N
= ||Ahjfsf|inpi

vy]]

< .
yi—h;[6an] = Ceorlf by o)y

where in the first inequality we used the fact that f <0 in [y; — b, /6, 1],
since it is nondecreasing there and f(y;) =0, while L 2 0 in that interval
because it is a nonincreasing straight line and L(y) = f(y1) = 0.

Similarly, one can show that

“f”l.p[-y] W1k 6] “S*. sz(f'l h.?" Jj)pi

and, hence, (9) is satisfied.
We now define the flipped function

on . Jfe), iz <y,
f('""')‘*{f(x), it 22y
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Then evidently, the function f is a continuous piecewise-linear spline from
the class AYY, \ {y1}), and (10) implies that for n 2 C(r)/d(r),

wlf(}‘, nfl)p S Cwf(f, n"l)p.

We can now apply the method from [1] and [10] (see also [9]) and prove
Theorem 1 by induction on r. For 7 = 0 Theorem 1 becomes a theorem on
monotone polynomial approximation in L,, 0 < p £ oc, which was proved in
[19] (see also {12]) for 1 £ p £ oo, and in [3] for 0 < p < 1. To complete the
proof it remains to show that if Theorem 1 is valid for Te ALY\ {u}),
then it remains valid for f € AY(Y,). We will use the construction from [9].
Namely, let ¢, € P,, be a polynomial whirh is comonatone with }' and such

that
(11) 17 = aali, £ Cwf(Jon7h),,
Similarly to [9] one can show that for sufficiently large p = p(r) (p = 157

will do), there exist polynomials V,.(z) and W,(z) of degree £ C(r)n such
that the polynomial

pola) = (qn,(w) - Qn(:th)) V(@) + gy )W (2)

is comonotone with f, and the following inequalities are satisfied:
| sgnfe — y1) — Vala)| £ Clr)dl(x),

and

| sgn(z — y1) ~ Walx)| S C(r)di(2),

where () := I}_—T?W (recall that y € [z;,2;-1)).

To complete the proof it remains to show that
(12) 17 = pall, € COrIf(Sn),.

Now,
1/ =2l = || (F = ¢n)sgn(- — 91) + gu( s80(- — 1) — Val))

+aa (Y1) (Ve — Wa)|| 7

1 1
scuf(fa 4 [ | 1@Per@d+ ¢ [ o]
=L+ I3+ 13, say.
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Tu estimate 3 we observe that fil Yi’(z}de < Ch; and that g, is monotone
near ;. Hence,

fs= / lq’” 0 } wﬂp (z)dz < Ch; lqn(y] fp s p||q11||Lp Iy1—h; f6.y1+h, /6]

= Cllgn — f”Lp[yl hyf6an+hy f6) T Cl |f“1.p[y1 —h;[6.51+h; 6] = = Cwy(f, rrl)p:

where we applied {9) and (10).
It remains to estunate Iy, for which we need one more lemma.

LeEMMA 3. Let f € AYY,) be a continuous piecewise-linear spline on the
knol sequence 2y, ty € [¢j,2;-1), and f(yy) = 0. Then for all z € {—1,1],

- . 2
09 1) ¢ (14 FEEY b g,
where 6n (2, 2;) = min { An(z), Au(z;)}.

Proor. For the sake of convenience in notation set Z,, = {—1 = 2
v m

< ipey < ... < 21 < 29 =1} and h1 '= 2;.1 — %. Then fnai < 12&-:&1. Tix
z >y (the case # < 3 is similar) and denote

Zeglyn,2) = {ilz; € Zp 1 30 S 7 S 2}
Since f is piecewise linear, we have
| F@)] = [£(=) = fw)] £ 1F(8)] (= - w)
for some £ € (y1,2). Now,
| £O)] £ 1706 = Fm+)| +]| F(y+)]
SHAE) = )] + [ ) = ()]
< Y Feh-FEal s Y e - e

iezr,ﬂ(yl 5&) iEZr,n(y] ,I‘)

<C (1 + Mll—) max | f'(z+) - flzi-),

Sp{x,2;) ) i€Zrnly,z)

where in the second inequality we used the fact that f(3+) have nppnqrfp

signs, and in the last inequality, that h; > 6 a{E,2;5), for all i € Z, oy, 2)
Therefore,

iz — 2y ‘ . .
@] <6 (14 Zo2 ool _max |7 - 7o)

1€Zr,n ('y} 1-73)
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Thus, to complete the proof we need an estimate of maxyez (41 ) {f"( 74-)
- f’(zg—)l. To this end, let ¢ € Z, {11, 2) be fixed, and let f; be the linear
function defined by fil,,,, .1 = fli,, .- We observe that with R = 1/100n
and a = 1/1000, say, the set

A:={:v:z;+1§a:—ﬁga(:£)<a:<zg

<{(l-a)z+aziy S+ hp(x) <z},
is of measure meas A ~ iz,-, and for every z € A,
|87 (0] = [Nz + Bp)) = f(z+ he(a)) |
2| fi((1~ @)z + azicg) = f{(1 - @)z + azi1) |
= Cahy| f'(z4) — ['(z-)|-

This in turn implies,

1 1
w?(f’ wl )g - 0(?:3:1;“] [1 | A}zup(.r)(fﬁ "’7)| P dex = J/-‘-l | A%W(I)(fa a:)| ?de

2 Cmeas APhY| f(zi4) = f'(z=)|" = CATV | '(zit) = F(2i)| "

Thus,
| [(z4) — ['(z=)| & CR; @ P0g (7Y,

and since h; = 6n{Z,25)s ¢ € Zpol{tn, ), then

|z — 4l

m) |z — Ijlﬁn(w,wj)_(p+1)/pwz¢(f, nty

e (14

b

|z — ;] \? ~1/ ~1
< _ . PP
=C (1 + NEwS) Sz, ;)" Pwi(fin™7),

The proof is complete. [

We are ready to complete the proof of Theorem } by showing the proper
estimate of I,. By the same arguments as in the proof of Lemma 3.4 of [7],
we see that

b, 2j)
(2 9 S C L] .
")L'J( ) - |Q;—-:l}jl+6n(m1$j)
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Hence,

1 | \ 2P
I: < Cwf(f,n7h) ] (1 + M)
-1

6n(2’3,$j)

. - bnlz,2;) up/2 _
. =1 LRl s < NLE P
$n(z, z5) (I’E “ 20+ 6ula, .’EJ)) de = Cwy(f.n™),

References

[1] R. K. Beatson and D. Leviatan, On comonotone approximation, Canad. Math. Bull,
26 (1983), 220-224.

{21 . A. DeVore, Y. K. Hu and D. Leviatan, Convex polynomial and spline approximation
in Lp, 0 < p < oo, Constr, Approz., 12 (1996), 409-422,

{31 R. A. DeVore, D. Leviatan and X. M. Yu, Polynomial approximation in L, (0 <p < 1)
space, Constr. Appror., B (1992), 187-201.

[4] R. A. DeVore and Q. (. Lorents, Constructive Approsimation, Springei-Verlag (Derlin,
1993).

[5] R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Am. Math.
Soc., 305 (1988), 397-414.

[6] %. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag (Berlin, 1987).

[71 Y. K. Hu, K. Kopotun and X. M. Yu, On positive and copositive polynomial and
spline approximation in Ly[—1, 1], 0 < p < oo, J. Approxr. Theory, 86 (1996),
320 334.

(8] G. L. Iliev, Exact estimates for partially monotone approximation, Anal. Math., 4
(1978), 181-197.

{9} K. A. Kopotun, Coconvex polynomial approximation of twice differentiable functions,
J. Approz. Theory, 83 (1995), 141-156.

[10] D. Leviatan, Monotone and comonotone polynomial approximation revisited, J. Ap-
proz. Theory, 53 (1988), 1-16.

[11] D. Leviatan and I. A. Shevchuk, Some positive results and counter exarnples in comano-
tone approximation, J. Approz. Theory, 86 (1996), 195-206.

[12] D. Leviatan and X. M. Yu, Shape preserving approximation by polynomials in LP
{(preprint}) (1991).

{13] D. J. Newman, Efficient comonotone approximation, J. Appror. Theory, 25 (1979),
189--192.

{14] D. J. Newman, E. Passow and L. Raymon, Piecewise monotone polynomial approxi-
mation, Trans. Am. Math. Soc., 172 (1972), 465-172,

[15] E. Passow and L. Raymon, Monotone and comonotone approximation, Proc. Amer.
Math. Soc., 42 (1974), 390-394.

[16] E. Passow , L. Raymon and J. A. Roulier, Comonotone polynomial approximation, J.
Approz. Theory, 11 (1974), 221-224,

[17] A. 8. Shvedov, Orders of coapproximation of functions by algebraic polynomials, Mat.
Zametki, 29 (1981}, 117-130. (English translation: Math. Notes, 30, 63-70.)

[18] A. S. Shvedov, Coapproximation of piecewise-monotone functions by polynomials,
Mat. Zametki, 30 (1981), 839-846. (English translation: Math. Notes, 30,
920-924.)

Acte Mathematica Hungarice 77, 1997



310 K. KOPOTUN and D. LEVIATAN: COMONOTONE POLYNOMIAL APPROXIMATION

[19] X. M. Yu, Monrotone polynomial approximation in L, spaces, Acta Math. Sinica {New
Series), 3 (1987), 315-326.
20] X. M. Yu, Degree of comonotene polynomial approximation, Approz. Theory Appl.,
, 8 pely P
4 (1988), 73-78.
[21] 5. P. Zhou, On comonotone approximation by polynomials in L? space, Analysis, 13
(1993), 363- 376.

{Received April 26, 1996; revised February 20, 1997}

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF ALBERTA

EDMONTON, ALBERTA

CANADA T6G 2G1

SCHOOL OF MATHEMATICS

RAYMOND AND HEVERLEY SACKLER FACULTY OF EXACT SCIENCES
TEL-AVIV UNIVERSITY

689978 TEL AVIV

ISRAKL



