Result. Math. 34 (1998) 150-155

0378-6218/98/020150-6 $ 1.50+0.20/0 r : -
© Birkhiuser Verlag, Basel, 1998 Results in Mathematics

Degree of Simultaneous Coconvex Polynomial
Approximation

K. Kopotun* and D. Leviatan

Dedicated to Professor Paul Butzer
on the occasion of his 70th birthday

Abstract: Let f € C}[-1,1] change its convexity finitely many times in the interval,
say s times, at Y, : =1 <y, < --- <1 < 1. We estimate the degree of simultane-
ous approximation of f and its derivative by polynomials of degree n, which change
convexity exactly at the points Y, and their derivatives. We show that provided n is
sufficiently large, depending on the location of the points Y, the rate of approximation
can be estimated by C(s)/n times the second Ditzian-Totik modulus of smoothness
of f. This should be compared to a recent paper by the authors together with I.
A. Shevchuk where f is merely assumed to be continuous and estimates of coconvex
approximation are given by means of the third Ditzian-Totik modulus of smoothness.
However, no simultaneous approximation is given there.
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1 Introduction and main results

Let f € C}[—1,1] change its convexity finitely many times, say s, at the points ¥, : =1 <
y, < -+ <y < lin [=1,1]. For later reference set yo := 1 and y,.; := —1. We wish to
approximate f by means of polynomials which are coconvex with f, that is, which change
convexity exactly at the points Y,. Estimates on the degree of simultaneous coconvex approx-
imation were first obtained by Kopotun [2] for a twice continuously differentiable function.
We are going to improve those results in that we do not assume the existence everywhere and
continuity of the second derivative. We are going to make use of some special polynomials
related to the function f which were constructed in that article [2]. Recently, the authors
together with Shevchuk [5] have removed completely the assumption on the existence of
derivatives but then of course one does not obtain simultaneous approximation. In order
to state our main result we recall the definition of the mth order Ditzian-Totik moduli of
smoothness w? (f,t). For f € C[—1,1], we set

wh(f,t) = ) AT FO

*Supported by NSF Grant DMS 9705638.



Kopotun and Leviatan 151

where ¢(z) := /1 — z?, and

AT f(z) = { o (T)(—l)m—if(m —~Zp+in), fzxPpel-11],

0, otherwise.

is the symmetric mth difference.
Our main result is the following.

Theorem 1 Let f € C'[—1,1] have s changes of convezity at Y, : =1 <yp <--- <Ys < 1;
and denote d(Y;) := min{l +y1,¥2 — Y1, - > ¥Ys — Ys-1, 1 —y,}. Then there exists a constant
A = A(s) which depends only on the number of convezity changes-s, such that for n > é‘k_(i’i-)j’
there is a polynomial p, of degree not ezceeding n, which is coconvez with f and satisfies

If = pall < Cls)n  wf(f',n70), (1)
and
I = Pyl < Cs)wt (f',n7H). (2)
The constant C(s) is independent of f and n and of the location of the convezity changes.
Estimate (1) follows from the following result of the authors together with Shevchuk [5].

Note however that the following says nothing about simultaneous approximation.

Theorem A Let f € C[—1,1] have s changes of convezity at Y, : =1 <y1 < -+ <y, < 1,
and denote d(Y;) := min{1 +y1,¥2 = ¥1,-- > Ys — Ys-1 1 —y,}. Then there ezists a constant
A = A(s) which depends only on the number of convezity changes-s, such that forn > f(—g)j,
there is a polynomial p, of degree not ezceeding n, which is coconvez with f and satisﬁes'

||f —an S C’(s)wf(f,n‘l),

which in turn implies (1) for f € C*[—=1,1]. The constant C(s) is independent of f and n
and of the location of the convezity changes.

As an immediate consequence of Theorem 1, we get an estimate for comonotone approx-
imation, which is also the special case for the sup-norm, of a recent result by the authors
[4]. Namely,

Corollary 2 If f € C[-1,1] changes its monotonicity at the points Y, then for n > ‘3—((:-1,
there is a polynomial p, of degree not ezceeding n which changes monotonicity ezactly at the
points Y, and satisfies

| = pall < Cs)wf(f,n77). 3)

The proof of Corollary 2 follows immediately from (2) and the observation that the
indefinite integral of f changes convexity at the points ¥,. We would also like to emphasize
that all of the estimates (1), (2) and (3) are sharp in the sense that wy cannot be replaced
by w¢ in any of them (see Zhou [6]).
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2 Proof of Theorem 1

Without loss of generality we may assume that f is convex in [—1,¥1], and by subtracting a
linear function we may assume that f(y1) = f'(y1) = 0. Then by virtue of the continuity of
the f, it follows that the flipped function

) e —f(z) ifze[-1,3)
CE {f(z) otherwise, (4)

f

is in C'[-1,1], Fn) = F(y1) = 0, it is concave in [~1,92], and changes convexity at
Y,\{y:} =: Y._,. For the sake of simplicity in notation in the sequel we rename o := y;. We
are going to use an induction assumption on the number of convexity changes. For s = 0
Theorem 1 becomes a theorem on simultaneous convex approximation which is a simple
consequence of Theorem 2 of [3]. Suppose now that Theorem 1 is true for a function f which
has s > 1 convexity changes. Since f has fewer convexity changes (s — 1) we can assume

forn > a’%}f,;ll), the existence of an nth degree polynomial g, which is coconvex with f, and
-1

which satisfies the analogues of (1) and (2). Namely,
If = gall € C(s = Dn7'wf(F,n7Y), (5)
and
If =gl < C(s = Dws(f',n7"). (6)

Note that since f(a) = 0, we may assume that gn(@) = 0 doubling the constant in (5). The
idea of flipping part of f, was originally introduced by Beatson and Leviatan [1] for their
proof of the case of comonotone approximation. It is crucial to our proof, and is the main
reason why we need the assumption that f is continuously differentiable and cannot do with
just continuity of f.

Now let z; := zjn = cos jnl, j =0,...,n, be the Chebyshev partition of [-1,1], and
denote hj; := hjn = Tj-1 — Z; and

h;

P;(e) = Yjn(z) = Bty

It is well known that hjz; < 3h; and that for z € [2j,2i-1] An(z) < hj < 5An(z), Where
as always, An(z) := 5@2 + 7. We assume that a € [©j5,Zjo—1). Then, if n > Ny :=

max{yzsfa, I%}’ we are assured that zj,43 > —1 and that zj,_4 < yz. Also it follows that

2p(a) > nlAn(a) > p(a) > 7, (7)

Thus, fix n > max{%-;{—ll)j, N,}, which readily leads to the definition of A(s).

Kopotun [2] has constructed for o and g for each n like above, two polynomials V, and
W, of degrees at most 20n(s + 1) =: 4ny, with the properties that for all z € [—1,1],

Va(z)sgn (z —a) 20,
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V,(2)gn(2)(d(z) — gn(a))sgn (2 — @) 2 0,

|[Va(@) — sgn (z — @)| < C(s)¢5, (8)
|Wa(z) —sgn (z — a)| < C(s)¥h; (9)
and finally,
W.(z)sgngh(a) >0, =€ [y2jy2541), 7=0,...,[5/2],
and

Wi (z)sgng,(e) <0, € [y2s1,92542), 7=0,..., [5/2].
We are ready to define the polynomial

pa(a) 1= [ [(dh(0) — dal@)) Va(w) + (@) Wa(w)]

of degree at most 5np, which is coconvex with f (see [2]). Hence we conclude the induction
step by proving (1) and (2). To this end we need the estimates

If'()] = |f(2)] < C¥7ef(F,n7Y), zel-1,1], (10)
and
wi(f,n7") < Cuwf(f',n7) . (11)

We delay the proof of (10) and (11) to the end of this section as we continue with the flow
of the proof.
In order to prove (2) we observe that,

£(2) - @) = |(f(2) - qu(@) Val2) + F(2) (sen (2 — @) = Va(2))
+¢.(a) (Va(z) — Wa(a))|
Cls)wf (F,m™") (L+ 9% +9%7)
where we estimated the first term by inequalities (6), (8) and (11), the second term by (8)
and (10); and the third by inequalities (6), (8), (9) and (11), bearing in mind that f’(a) =0,

This proves (2).
Recalling that g.(a) = 0, we note that [5 g/, (u)sgn (v — @) du = ga(z)sgn (z — @). Hence,

IN

(@) = an(e))sen (= = o) + [ (ah(w) - F(w)) (s8n (u — @) = Va(w)) du
. /a £(w) (sgn (u — @) = Va(w)) du + gi(a) / (V) - Wa(w)) du

wE(FnY) (l-i—n -/:wfo(u)du)ﬁ-n /::¢;—1(u)du’)
$(f,n77),

|£(z) = pa(2)]

[

In
Q

=
3

€

C(s)n?

IN
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where we estimated the first term by (5) and (11), the second term by (6), (8) and (11), the
third term by (8) and (10); and finally the forth term by (6), (8), (9) and (11), observing
that f'(a) = 0.

We conclude the proof by proving (10) and (11). First let z € Jo := [Zjo+1, Tjo—2]. The
concavity of f in [—1,ys], together with #/(a) = 0, implies that f'>0in [-1,a] and fi<o

in [@,y,]. Hence,

IN

|f'(z) — 2f'() + f'(22 = 2|
A f'(@)] < Cwf(f,n7) (12)

If'(2) = If' (=)

where hyp(a) = |z — a| < CAx(a), so that by virtue of (7), h < €hnla) o 20
Now, if z ¢ Jo, then by virtue of (7),

1Ai¢(z)f'(m)| =A@ f (@) < wi(f,n7?) for 0<h<n™t, (13)

and if z € Jo, then (13) follows by the same argument as (12). Thus (11) is proved.
Denote by L(f') the linear function interpolating f’ at o and z;,—,. Then by Whitney’s
Theorem
max £ (2) ~ L()(a)| < ConlF' Il Jo) < O (£n7) (14
where |Jo| denotes the length of Jo, thus |Jo| ~ hj, . Since L, the linear polynomial of best
approximation of f’in [—1,1], satisfies

I# - Ll € Cwl(f,n), (15)
it follows by (14) that

L(F)(e) - L(e)] < o221t P o pr oy

70

where we used the fact that we know how much a linear function grows outside an interval.
This together with (15), in turn implies

Fe) - L(F)@) < BT iy

Jo
At the same time it follows from (12) that for all z € [-1,1],

T—Q Sc|w—zl+hjou.)2¢(fl,n—l).
Jo

IL(f")(2)| = | (z50-2)]

Tj,—2 — Q&

Hence (10) follows. This completes our proof.
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