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Abstract. This paper deals with approximation of smooth convex func-
tions f on an interval by convex algebraic polynomials which interpolate f and
its derivatives at the endpoints of this interval. We call such estimates “in-
terpolatory”. One important corollary of our main theorem is the following
result on approximation of f ∈ ∆(2), the set of convex functions, from W r,
the space of functions on [−1, 1] for which f (r−1) is absolutely continuous and

�f (r)�∞ := ess sup
x∈[−1,1] |f (r)(x)| < ∞:

For any f ∈ W r ∩∆(2), r ∈ N, there exists a number N = N (f, r), such that

for every n ≥ N , there is an algebraic polynomial of degree ≤ n which is in ∆(2)

and such that
∥

∥

∥

f − Pn

ϕr

∥

∥

∥

∞
≤ c(r)

nr
�f (r)�∞,

where ϕ(x) :=
√
1− x2.

For r = 1 and r = 2, the above result holds with N = 1 and is well known.
For r ≥ 3, it is not true, in general, with N independent of f .

1. Introduction and main results

We start by recalling some standard notation. As usual, Cr(I) denotes
the space of r times continuously differentiable functions on a closed inter-
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val I , C0(I) := C(I) is the space of continuous functions on I , equipped with
the uniform norm which will be denoted by � ·�I . For k ∈ N and an interval I ,

∆k
u(f,x; I) :=

∑k
i=0(−1)i

(k
i

)
f(x+(k/2− i)u) if x±ku/2 ∈ I and := 0, other-

wise, and ωk(f, t; I) := sup0<u≤t �∆k
u(f, ·; I)�I is the kth modulus of smooth-

ness of f on I . When dealing with I = [−1, 1], we suppress referring to the
interval and use the notation � · � := � · �[−1,1], ωk(f, t) := ωk(f, t; [−1, 1]),

Cr := Cr[−1, 1], etc. We denote by ∆(q) the class of all q-monotone func-
tions on [−1, 1], i.e., continuous functions such that ∆q

u(f, x) ≥ 0 for all
x ∈ [−1, 1] and u > 0. In particular, ∆(1) and ∆(2) are the classes of all
monotone and convex functions on [−1, 1], respectively. Also,

(1.1) ϕ(x) :=
√

1− x2 and ρn(x) := ϕ(x)n−1 + n−2, n ∈ N,

ρ0(x) ≡ 1, and Πn denotes the space of algebraic polynomials of degree ≤ n.
The following classical Timan–Dzyadyk–Freud–Brudnyi direct theorem

for the approximation by algebraic polynomials (see e.g. [3, Theorem 8.5.3])
shows that the order of approximation becomes significantly better near the
endpoints of [−1,1]: if k ∈ N, r ∈ N0 and f ∈ Cr, then for each n ≥ k+ r− 1
there is a polynomial Pn ∈ Πn satisfying

(1.2) |f(x)− Pn(x)| ≤ c(k, r)ρrn(x)ωk(f
(r), ρn(x)), x ∈ [−1, 1].

Clearly, if we require that the approximating polynomials interpolate f
as well as its derivatives at the endpoints, and we are successful, then the
estimates should become even better.

Indeed, the following Telyakovskii–Gopengauz–type (i.e., “interpolatory”-
type) theorem is an immediate consequence of [8, Corollary 2-3.4] (see e.g.
[8] for the history of this problem).

Theorem 1.1 [8, Corollary 2-3.4]. Let r ∈ N0, k ∈ N and f ∈ Cr. Then
for any n ≥ max{k+ r− 1, 2r+ 1}, there is a polynomial Pn ∈ Πn such that
(1.2) is valid and, moreover,

(1.3) |f(x)− Pn(x)| ≤ c(r, k)ϕ2r(x)ωk(f
(r), ϕ2/k(x)n−2(k−1)/k),

if 1− n−2 ≤ |x| ≤ 1.

It follows from [8, Theorem 3] that, for any γ ∈ R, the quantity
ϕ2/k(x)n−2(k−1)/k in (1.3) cannot be replaced by ϕ2β(x)nγ with β > 1/k.
Hence, the estimate (1.3) provides the optimal rate of approximation near
the endpoints of [−1, 1].

It is a natural question if these estimates are valid if we approximate
q-monotone functions by q-monotone polynomials. Of course, as is rather
well known, (1.2) may not be valid in the q-monotone case for certain r and k
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even if n is allowed to depend on the function f that is being approximated.
For example, this is the case if (i) 1 ≤ q ≤ 3, 0 ≤ r ≤ q− 1 and r+ k ≥ q+2
([16] if q = 1, [21] if q = 2 or q = 3), and (ii) q ≥ 4 and r + k ≥ 3 ([1]).

Moreover, for any q, r, k, n ∈ N, there exists a function fn ∈ Cr ∩∆(q)

such that (1.3) is not valid for any polynomial Pn ∈ Πn ∩∆(q) (the construc-
tion of such an fn is the same as in [14], see also [7,13,18]). This means that,
in the case r ≥ 1, (1.3) cannot be true for all functions f ∈ Cr ∩∆(q) and all
n ≥ N (k, r, q). We emphasize that this does not mean that, for each fixed
f ∈ Cr ∩∆(q), (1.3) is invalid for sufficiently large n, i.e., (1.3) may still be
valid if n ≥ N (f) (in fact, the proof of this fact in the case q = k = 2 is the
main result of this paper).

If r = 0 and k is “small”, then the situation is different: for any q, n ∈ N,
if r = 0 and 1 ≤ k ≤ 2, then (1.2) and (1.3) are both valid for q-monotone
approximation (it is possible to show that the case for k = 1 follows from
that for k = 2). Indeed, the following interpolatory estimate follows from [4]
(q = 1), [15,20] (q = 2) and [2] (q ≥ 3): for any q, n ∈ N and f ∈ C ∩∆(q),
there exists a polynomial Pn ∈ Πn ∩∆(q) such that

(1.4) |f(x)− Pn(x)| ≤ c(q)ω2(f, ϕ(x)/n), x ∈ [−1, 1],

where c(q) is an absolute constant. Additionally, (1.2) and (1.3) with n ≥ 2
are valid for convex approximation (i.e., q = 2) if r = 0 and k = 3 ([8]), and
the case q = 3, r = 0 and k = 3 or k = 4 is still unresolved (in fact, it is not
even known if (1.2) holds if (q, r, k) = (3, 0, 4)).

Recently, we were able to show (see [13]) that (1.2) and (1.3) hold for
monotone approximation (q = 1) if r ∈ N, k = 2 and n ≥ N (f, r), and the
main purpose of this paper is to prove an analogous result for convex ap-
proximation (q = 2). In fact, we follow similar ideas and apply some of the
construction in [13], but there are some additional rather significant tech-
nical difficulties that we have to overcome in this case (for example, proofs
in the cases for r = 1 and r ≥ 2 turn out to be completely different). Also,
one of the important tools that we are using is our recent result [14] on con-
vex approximation of f ∈ Cr ∩∆(2), by convex piecewise polynomials (see
Theorem 8.1 below).

The following theorem is the main result in this manuscript.

Theorem 1.2. Given r ∈ N, there is a constant c = c(r) with the prop-

erty that if f ∈ Cr∩∆(2), then there exists a number N = N (f, r), depending
on f and r, such that for every n ≥ N , there is Pn ∈ Πn ∩∆(2) satisfying

(1.5) |f(x)− Pn(x)| ≤ c(r) (ϕ(x)/n)r ω2(f
(r), ϕ(x)/n), x ∈ [−1, 1].
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Moreover, for x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1] the following stronger esti-
mates are valid:

(1.6) |f(x)− Pn(x)| ≤ c(r)ϕ2r(x)ω2(f
(r), ϕ(x)/n)

and

(1.7) |f(x)− Pn(x)| ≤ c(r)ϕ2r(x)ω1(f
(r), ϕ2(x)).

Remark 1.3. [14, Theorem 2.3] implies that Theorem 1.2 is not valid
with N independent of f .

We now discuss some corollaries and applications of Theorem 1.2.
Recall that, given a number α > 0, Lip∗ α denotes the class of all func-

tions f on [−1, 1] such that ω2(f
(⌈α⌉−1), t) = O

(
tα−⌈α⌉+1

)
. Together with

the classical inverse theorems (see e.g. [12, Theorem 5 and Corollary 6]),
(1.2) implies that, if α > 0, then a function f is in Lip∗ α if and only if

(1.8) inf
Pn∈Πn

�ρ−α
n (f − Pn)� = O(1).

Corollary 1.4. If α > 0 and f ∈ Lip∗ α∩∆(2), then there exists a con-
stant C = C(α) such that, for all sufficiently large n, there are polynomials

Pn ∈ Πn ∩∆(2) satisfying

(1.9) |f(x)− Pn(x)| ≤ C (ϕ(x)/n)α , x ∈ [−1, 1].

For 0 < α < 2, (1.9) follows from (1.4) (and was stated in [15]).
In order to state another consequence of Theorem 1.2 we recall that

W r denotes the space of functions on [−1, 1] for which f (r−1) is absolutely
continuous and �f (r)�∞ := ess supx∈[−1,1] |f (r)(x)| < ∞.

Corollary 1.5. For any f ∈ W r ∩∆(2), r ∈ N, there exists a number
N = N (f, r), such that

(1.10) sup
n≥N

inf
Pn∈Πn∩∆(2)

∥∥∥
f − Pn

ϕr(min{1/n, ϕ})r
∥∥∥
∞

≤ c(r)�f (r)�∞.

In particular,

(1.11) sup
n≥N

inf
Pn∈Πn∩∆(2)

∥∥∥
f − Pn

ϕr

∥∥∥
∞

≤ c(r)

nr
�f (r)�∞.

It follows from [14, Theorem 2.3] that, if r ≥ 2 and r ≥ 3, then, re-
spectively, inequalities (1.10) and (1.11) are not true, in general, with N
independent of f . For all other r ∈ N, these inequalities hold with N = 1
which is a corollary of (1.4) with q = 2.
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2. Notations and some inequalities for the Chebyshev partition

Most symbols used in this paper were introduced and discussed in [13].
For convenience, we list them in the following table which also includes sym-
bols introduced in the previous section. Note that, in the proofs below (but
not in definitions and statements), we often omit writing index “n” if it does
not create any confusion (thus, we write “ρ” instead of “ρn”, “xj” instead
of “xj,n”, etc.).

Chebyshev knots and Chebyshev partition

xj := xj,n := cos(jπ/n), 0 ≤ j ≤ n; 1 for j < 0 and −1 for j > n
(Chebyshev knots)

Tn := (xj)
n
j=0 (Chebyshev partition)

Ij := Ij,n := [xj , xj−1]

hj := hj,n := |Ij,n| = xj−1 − xj

Ii,j :=
⋃max{i,j}

k=min{i,j} Ik = [xmax{i,j}, xmin{i,j}−1], 1 ≤ i, j ≤ n (the

smallest interval containing both Ii and Ij)

hi,j := |Ii,j | =
∑max{i,j}

k=min{i,j} hk = xmin{i,j}−1 − xmax{i,j}

ψj := ψj(x) := |Ij |/(|x− xj |+ |Ij |)
ϕ(x) :=

√
1− x2

ρn(x) := ϕ(x)n−1 + n−2, n ∈ N, and ρ0(x) ≡ 1

δn(x) := min{1, nϕ(x)}
k-majorants

Φk :=
{
ψ ∈ C[0,∞) | ψ ↑, ψ(0)=0, and t−k

2 ψ(t2) ≤ t−k
1 ψ(t1)

for 0 < t1 ≤ t2
}
. Note: if f ∈ Cr, then φ(t) := trωk(f

(r), t)

is equivalent to a function from Φk+r

Piecewise polynomials on Chebyshev partition

Σk := Σk,n the set of continuous piecewise polynomials of degree ≤
k − 1 with knots at xj , 1 ≤ j ≤ n− 1

Σ
(1)
k := Σ

(1)
k,n the set of continuously differentiable piecewise polynomi-

als of degree ≤ k − 1 with knots at xj , 1 ≤ j ≤ n− 1

pj := pj(S) := S|Ij , 1 ≤ j ≤ n (polynomial piece of S on the interval
Ij)

bi,j(S, φ) :=
�pi−pj�Ii

φ(hj)

(
hj

hi,j

)k
, where φ ∈ Φk, φ �≡ 0 and S ∈ Σk

bk(S, φ,A) := max1≤i,j≤n{bi,j(S,φ) | Ii ⊂ A and Ij ⊂ A}, where an in-
terval A ⊆ [−1, 1] contains at least one interval Iν

bk(S, φ) := bk(S, φ, [−1, 1]) = max1≤i,j≤n bi,j(S, φ)
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Constants

C(γ1, . . . , γµ) positive constants depending only on parameters
γ1, . . . , γµ that may be different on different occurences

c positive constants that are either absolute or may only
depend on the parameters k and r (if present)

Ci positive constants that are fixed throughout this paper
γ1,...,γµ∼ A

γ1,...,γµ∼ B iff C−1B ≤ A ≤ CB, for some positive con-
stant C = C(γ1, . . . , γµ)

Indicator functions and truncated powers

χj(x) := χ[xj,1](x) := 1, if xj ≤ x ≤ 1, and := 0, otherwise

Φj(x) := (x− xj)+ := (x− xj)χj(x) =
∫ x
−1 χj(t) dt

We now collect all facts and inequalities for the Chebyshev partition that
we need throughout this paper. Many of them are checked by straightfor-
ward calculations (also, see e.g. [5,13,19] for references). Unless specified
otherwise, it is assumed that 1 ≤ j ≤ n, x, y ∈ [−1, 1].

n−1ϕ(x) < ρn(x) < hj < 5ρn(x), x ∈ Ij(2.1)

hj±1 < 3hj(2.2)

ρ2n(y) < 4ρn(x)(|x− y|+ ρn(x))(2.3)

(|x− y|+ ρn(x))/2 < (|x− y|+ ρn(y)) < 2(|x− y|+ ρn(x))(2.4)

ρn(x) ≤ |x− xj |, for any 0 ≤ j ≤ n and x �∈ (xj+1, xj−1)(2.5)
{
δn(x) ≤ nϕ(x) < πδn(x), if x ∈ [−1, xn−1] ∪ [x1, 1],

δn(x) = 1, if x ∈ [xn−1, x1]
(2.6)

ρ2n(x) < 8hj(|x− xj |+ ρn(x))(2.7)

( ρn(x)

ρn(x) + |x− xj |
)2

< cψj(x)(2.8)

ρn(x) + |x− xj | ∼ ρn(x) + dist(x, Ij)(2.9)

n∑

j=1

ψ2
j (x) ≤ c(2.10)

n∑

j=1

( ρn(x)

ρn(x) + dist(x, Ij)

)4
≤ c(2.11)
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cψ2
j (x)δ

2
n(x) ≤

1− x2

(1 + xj−1)(1− xj)
≤ cδ2n(x)ψ

−2
j (x)(2.12)

cψ2
j (x)ρn(x) ≤ hj ≤ cψ−1

j (x)ρn(x)(2.13)

cψ2k
j (x)φ(ρn(x)) ≤ φ(hj) ≤ cψ−k

j (x)φ(ρn(x)).(2.14)

3. Auxiliary results on polynomial approximation of indicator

functions and truncated powers

Recall the notation

(3.1) tj(x) :=
(cos 2n arccosx

x− x0j

)2
+
(sin 2n arccosx

x− x̄j

)2
,

where x̄j := cos((j− 1/2)π/n) for 1 ≤ j ≤ n, x0j := cos((j− 1/4)π/n) for 1 ≤
j < n/2, x0j := cos((j − 3/4)π/n) for n/2 ≤ j ≤ n, and note that tj ∈ Π4n−2

and, for all 1 ≤ j ≤ n,

(3.2) tj(x) ∼ (|x− xj |+ hj)
−2, x ∈ [−1, 1],

(see e.g. [19] or [10, (22), Proposition 5]).
For γ1, γ2 ∈ N0, ξ, µ ∈ N, and 1 ≤ j ≤ n, we let

Tj(x) := Tj,n(x) := Tj,n(x; γ1, γ2, ξ, µ)

:= d−1
j

∫ x

−1
(y − xj)

γ1(xj−1 − y)γ2(1− y2)ξtµj (y) dy,

where dj := dj(γ1, γ2, ξ, µ) is the normalizing constant such that Tj(1) = 1.
Then, it is possible to show (see e.g. [9, Proposition 4]) that, for sufficiently
large µ, the function Tj is well defined and is a polynomial of degree ≤ cµn
(with some absolute constant c), and

dj ∼ (1 + xj−1)
ξ(1− xj)

ξh−2µ+1+γ1+γ2

j .

Also,

(3.3) 1− xj−1 <

∫ 1

−1
Tj(t) dt < 1− xj , 1 ≤ j ≤ n.

Indeed, denoting for convenience ϑ(y) := (y−xj)
γ1(xj−1−y)γ2(1−y2)ξtµj (y),

we have
∫ 1

−1
Tj(t) dt < 1− xj ⇐⇒

∫ 1

−1

∫ t

−1
ϑ(y) dy dt < (1− xj)

∫ 1

−1
ϑ(t) dt

Acta Mathematica Hungarica
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⇐⇒
∫ 1

−1
(t− xj)ϑ(t) dt = dj(γ1 + 1, γ2, ξ, µ) > 0

(the other inequality is proved similarly).
Now, for the polynomials

τj(x) := Tj,n(x; 0, 0, ξ, µ) and τ̃j(x) := Tj,n(x; 1, 1, ξ, µ),

the following lemma was proved in [13].

Lemma 3.1 [13, Lemmas 4.1 and 4.2]. If α, β ≥ 1, then for sufficiently
large ξ and µ depending only on α and β and for each 1 ≤ j ≤ n− 1, the
polynomials τj and τ̃j of degree ≤ C(α, β)n satisfy

τ ′j(x) ≥ C(α, β)|Ij |−1δ8αn (x)ψ
30(α+β)
j (x), x ∈ [−1, 1],(3.4)

τ̃ ′j(x) ≤ 0, for x ∈ [−1, xj ] ∪ [xj−1, 1],(3.5)

and for all x ∈ [−1, 1],

(3.6) max
{
|τ ′j(x)|, |τ̃ ′j(x)|} ≤ C(α, β)|Ij |−1δαn(x)ψ

β
j (x)

and

(3.7) max
{
|χj(x)− τj(x)|, |χj(x)− τ̃j(x)|

}
≤ C(α, β)δαn(x)ψ

β
j (x).

Remark 3.2. The statement of this lemma is not valid if j = n since
χn ≡ 1, τn(−1) = 0 and δn(−1) = 0.

Inequalities (3.3) imply that, for each 1 ≤ j ≤ n− 1, there exists a con-
stant 0 < λj < 1 such that the polynomial

Qj(x) := Qj,n(x) := Qj,n(x; γ1, γ2, ξ, µ)(3.8)

:=

∫ x

−1
(λjTj(t) + (1− λj)Tj+1(t)) dt

satisfies Qj(1) = 1−xj . This implies that, if Tj is such that (3.7) is satisfied,
then Qj provides a “good” approximation of Φj , 1 ≤ j ≤ n− 2. The proof
of this fact is rather standard. Indeed, first note that, for 1 ≤ j ≤ n− 2 and
x ∈ [−1, 1],

|χj(x)− χj+1(x)| ≤ |χIj+1
(x)| ≤ Cδαn(x)ψ

β
j (x) and ψj(x) ∼ ψj+1(x).

Now, if x ≤ xj , then (assume that β > 1)

|Φj(x)−Qj(x)| ≤
∣∣∣∣
∫ x

−1

(
λj|Tj(t)− χj(t)|+ (1− λj)|Tj+1(t)− χj(t)|

)
dt

∣∣∣∣

Acta Mathematica Hungarica

K. A. KOPOTUN, D. LEVIATAN, I. L. PETROVA and I. A. SHEVCHUK8



Acta Mathematica Hungarica

CONVEX POLYNOMIAL APPROXIMATION 9

≤ C

∫ x

−1
δαn(t)ψ

β
j (t) dt ≤ Cδαn(x)

∫ x

−∞
|Ij |β(xj − t+ |Ij |)−β dt

≤ C|Ij|δαn(x)ψβ−1
j (x)

and, if x > xj , then, similarly,

|Φj(x)−Qj(x)| =
∣∣∣∣
∫ 1

x

(
χj(t)−Q′

j(t)
)
dt

∣∣∣∣

≤
∣∣∣∣
∫ 1

x

(
λj |Tj(t)− χj(t)|+ (1− λj)|Tj+1(t)− χj(t)|

)
dt

∣∣∣∣

≤ C|Ij |δαn(x)ψβ−1
j (x).

Now, for 1 ≤ j ≤ n− 1, defining

(3.9)

{ Fj(x) := Fj,n(x) := Q2j,2n(x; 0, 0, ξ, µ),

F̃j(x) := F̃j,n(x) := Q2j−1,2n(x; 1, 1, ξ, µ),

and noting that xj,n=x2j,2n, hj,n∼h2j,2n∼h2j−1,2n, ψj,n∼ψ2j,2n∼ψ2j−1,2n,
δn∼δ2n, we have the following result which follows from Lemma 3.1.

Lemma 3.3. If α, β ≥ 1, then for sufficiently large ξ and µ depending

only on α and β and for each 1 ≤ j ≤ n− 1, polynomials Fj and F̃j of degree
≤ C(α, β)n defined in (3.9) satisfy

F ′′
j (x) ≥ C(α, β)|Ij |−1δ8αn (x)ψ

30(α+β)
j (x), x ∈ [−1, 1],(3.10)

F̃ ′′
j (x) ≤ 0, for x ∈ [−1, xj ] ∪ [xj−1, 1],(3.11)

and for all x ∈ [−1, 1],

max
{
|F ′′

j (x)|, |F̃ ′′
j (x)|

}
≤ C(α, β)|Ij |−1δαn(x)ψ

β
j (x)(3.12)

max
{
|χj(x)− F ′

j(x)|, |χj(x)− F̃ ′
j(x)|

}
≤ C(α, β)δαn(x)ψ

β
j (x)(3.13)

and

(3.14) max
{
|Φj(x)−Fj(x)|, |Φj(x)− F̃j(x)|

}
≤ C(α, β)|Ij|δαn(x)ψβ−1

j (x).

4. Auxiliary results on properties of piecewise polynomials

Lemma 4.1 [13, Lemma 5.1]. Let k ∈ N, φ ∈ Φk, f ∈ C[−1, 1] and
S ∈ Σk,n. If ωk(f, t) ≤ φ(t) and |f(x)− S(x)| ≤ φ(ρn(x)), x ∈ [−1, 1], then
bk(S, φ) ≤ c(k).
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Lemma 4.2 [6, Lemma 2.1]. Let k ≥ 3, φ ∈ Φk and S ∈ Σ
(1)
k,n. Then

bk(S, φ) ≤ c(k)�ρ2nφ−1(ρn)S
′′�∞.

The following lemma on simultaneous polynomial approximation of
piecewise polynomials and their derivatives is an immediate corollary of [13,
Lemma 8.1] (with q = r = 2 and k ≥ 2).

Lemma 4.3 [13, Lemma 8.1]. Let γ > 0, k ∈ N, φ ∈ Φk, and let n,n1 ∈ N

be such that n1 is divisible by n. If S ∈ Σk,n, then there exists a polynomial

Dn1
(·, S) of degree ≤ Cn1 such that

(4.1) |S(x)−Dn1
(x, S)| ≤ Cδγn(x)φ(ρn(x))bk(S, φ).

Moreover, if S ∈ C1 and A := [xµ∗ , xµ∗
], 0 ≤ µ∗ < µ∗ ≤ n, then for all x ∈

A \ {xj}n−1
j=1 , we have

∣∣S′′(x)−D′′
n1
(x, S)

∣∣ ≤ Cδγn(x)
φ(ρn(x))

ρ2n(x)
(4.2)

×
(
bk(S, φ,A) + bk(S, φ)

n

n1

( ρn(x)

dist(x, [−1, 1] \A)
)γ+1)

.

All constants C may depend only on k and γ and are independent of the

ratio n1/n.

5. Convex polynomial approximation of piecewise polynomials

with “small” derivatives

Lemma 5.1. Let α > 0, k ∈ N and φ ∈ Φk, be given. If S ∈ Σk,n ∩∆(2)

is such that

|S′′(x)| ≤ φ(ρn(x))

ρ2n(x)
, x ∈ [xn−1, x1] \ {xj}n−1

j=1 ,(5.1)

0 ≤ S′(xj+)− S′(xj−) ≤ φ(ρn(xj))

ρn(xj)
, 1 ≤ j ≤ n− 1,(5.2)

and

(5.3) S′′(x) = 0, x ∈ [−1, xn−1) ∪ (x1, 1],

then there is a polynomial P ∈ ∆(2) ∩ΠCn, C = C(k, α) such that

(5.4) |S(x)− P (x)| ≤ C(k, α)δαn(x)φ (ρn(x)) , x ∈ [−1, 1].
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Proof. Denote by S1 the piecewise linear continuous function interpo-
lating S at the points xj , 0 ≤ j ≤ n, and let lj := S1

∣∣
Ij
. Then S1 ∈ ∆(2),

(5.5) S1(x) = S(x), x ∈ I1 ∪ In,

and, for x ∈ Ij , 1 ≤ j ≤ n, we have by Whitney’s inequality and (2.1)

|S(x)− S1(x)| ≤ cω2(S, hj; Ij) ≤ ch2
j�S′′�L∞(Ij) ≤ cφ(hj),

which can be rewritten as

(5.6) |S(x)− S1(x)| ≤ cφ(ρn(x)), x ∈ [−1, 1].

We now write S1 as

S1(x) = S1(−1)+ S′
1(−1)(x+1)+

n−1∑

j=1

αjΦj(x), αj := S′
1(xj+)− S′

1(xj−),

and note that, by Markov and Whitney inequalities,

0 ≤ αj = l′j(xj)− l′j+1(xj) ≤ ch−1
j �lj − lj+1�Ij∪Ij+1

≤ ch−1
j ω2(S, hj; Ij ∪ Ij+1) ≤ chj

(
�S′′�L∞(Ij) + �S′′�L∞(Ij+1)

)

+ c
(
S′(xj+)− S′(xj−)

)
≤ ch−1

j φ(hj), 1 ≤ j ≤ n− 1.

Now, if

P (x) := S1(−1) + S′
1(−1)(x+ 1) +

n−1∑

j=1

αjFj(x),

then P is a convex polynomial of degree ≤ Cn and, in view of (5.5) and
(5.6), we only need to estimate |S1(x)− P (x)|. Note that (2.13) implies, for
all 1 ≤ j ≤ n and x ∈ [−1, 1],

φ(hj) ≤ φ(cψ−1
j (x)ρn(x)) ≤ C ψ−k

j (x)φ(ρn(x)).

Hence, by Lemma 3.3 and (2.10), we have

|S1(x)− P (x)| ≤
n−1∑

j=1

αj |Φj(x)− Fj(x)| ≤ C
n−1∑

j=1

φ(hj)δ
α
n(x)ψ

β
j (x)

≤ Cδαn(x)φ(ρn(x))

n−1∑

j=1

ψβ−k
j (x) ≤ Cδαn(x)φ(ρn(x)),

provided β ≥ k + 2. �
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6. One particular polynomial with controlled second derivative

All constants C in this section may depend on k, α and β.
We start with the following auxiliary lemma.

Lemma 6.1 [17, Lemma 9]. Let A := {j0, . . . , j0+ l0} and let A1,A2 ⊂ A
be such that #A1 = 2l1 and #A2 = l2. Then, there exist 2l1 constants ai,
i ∈ A1, such that |ai| ≤ (l0/l1)

2 and

1

l2

∑

j∈A2

(x− xj) +
1

l1

∑

j∈A1

aj(x− xj) ≡ 0.

Lemma 6.2. Let α > 0, k ∈ N, k ≥ 2, β > 0 be sufficiently large (β ≥
k + 7 will do) and let φ ∈ Φk be of the form φ(t) := tψ(t), ψ ∈ Φk−1. Also,
let E ⊂ [−1, 1] be a closed interval which is the union of mE ≥ 100 of the
intervals Ij , and let a set J ⊂ E consist of mJ intervals Ij , where 1 ≤ mJ <
mE/4. Then there exists a polynomial Qn(x) = Qn(x,E, J) of degree ≤ Cn,
satisfying

(6.1) Q′′
n(x) ≥ C

mE

mJ
δα1

n (x)
φ(ρn(x))

ρ2n(x)

( ρn(x)

max{ρn(x),dist(x,E)}
)β1

,

where x ∈ J ∪ ([−1, 1] \ E),

(6.2) Q′′
n(x) ≥ −δαn(x)

φ(ρn(x))

ρ2n(x)
, x ∈ E \ J,

and
(6.3)

|Qn(x)| ≤ Cmk1

E δαn(x)ρn(x)φ(ρn(x))
∑

j:Ij⊂E

hj

(|x− xj |+ ρn(x))2
, x ∈ [−1, 1],

where α1 = 8α, β1 = 60(α+ β) + k + 1 and k1 = k + 6.

Proof. As in the proof of [13, Lemma 9.1], we may assume that In �⊂ E
provided that the condition mJ < mE/4 is replaced by mJ ≤ mE/4. Also,
we use the same notation that was used in [13]: ρ := ρn(x), δ := δn(x), ψj :=
ψj(x),

E :=
{
1 ≤ j ≤ n | Ij ⊂ E

}
, J :=

{
1 ≤ j ≤ n | Ij ⊂ J

}
,

j∗ := min
{
j | j ∈ E

}
, j∗ := max

{
j | j ∈ E

}
,

A := J ∪ {j∗, j∗} and B := E \ A.

Now, let Ẽ ⊂ E be the subinterval of E such that
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(i) Ẽ is a union of ⌊mE/3⌋ intervals Ij , and

(ii) Ẽ is centered at 0 as much as E allows it, i.e., among all subintervals

of E consisting of ⌊mE/3⌋ intervals Ij , the center of Ẽ is closest to 0.
Then (see [13]),

if Ij ⊂ Ẽ and Ii ⊂ E \ Ẽ, then |Ij | ≥ |Ii|,(6.4)

|Ij | ∼
|Ẽ|
mE

, for all Ij ⊂ Ẽ,(6.5)

and, with Ẽ := {1 ≤ j ≤ n | Ij ⊂ Ẽ} and B̃ := B ∩ Ẽ = Ẽ \ A,

(6.6) #B̃ ≥ mE/20.

Note that index j = n is in none of the sets A, B and B̃.
It follows from Lemma 6.1 (l0 ∼ mE , l1 ∼ ⌊#B̃/2⌋ ∼ mE , l2 ∼ mJ ) that

there exist constants λi, i ∈ B̃, such that |λi| ≤ c, i ∈ B̃, and

(6.7)
mE

mJ

∑

j∈A

(x− xj) +
∑

j∈B̃

λi(x− xj) ≡ 0.

We now let i∗ be such that Ii∗ is the largest interval in Ẽ and h∗ := hi∗ =
|Ii∗ |, and

Qn(x) := κ
φ(h∗)

h∗

(
mE

mJ

∑

j∈A

Fj(x) +
∑

j∈B̃

λjF j(x)

)
,

where κ is a sufficiently small absolute constant to be prescribed and

Fj :=

{
F̃j , if λj < 0,

Fj , if λj ≥ 0.

It follows from (6.4) that

hj ≤ h∗, j ∈ E ,

and so ρ ≤ h∗ and φ(ρ)/ρ = ψ(ρ) ≤ ψ(h∗) = φ(h∗)/h∗, for all x ∈ E as well
as all x �∈ E such that h∗ ≥ ρ. If x �∈ E and h∗ < ρ, then by (2.1), (2.3) and
(2.4)

φ(h∗)

h∗
≥ φ(ρ)hk−1

∗

ρk
≥ φ(ρ)

ρk
max{hk−1

j∗
, hk−1

j∗ }
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≥ c
φ(ρ)

ρk
· ρ2k−2

(min{|x−xj∗|, |x−xj∗|}+ ρ)k−1

≥ cφ(ρ)
ρk−2

(max{ρ,dist(x,E)})k−1
.

Hence,

(6.8)
φ(h∗)

h∗
≥ c

φ(ρ)

ρ

( ρ

max{ρ,dist(x,E)}
)k−1

, for all x ∈ [−1, 1].

We now note that λiF ′′
j (x) ≥ 0 if j ∈ B and x ∈ J ∪ ([−1,1] \E) (as well

as for any x ∈ Ij∗ ∪ Ij∗). Hence, for these x, using Lemma 3.3, (2.13), (2.8)
and (6.8) we have

Q′′
n(x) ≥ κ

φ(h∗)

h∗
· mE

mJ

∑

j∈A

F ′′
j (x) ≥ Cκδ8α(x)

φ(h∗)

h∗
· mE

mJ

∑

j∈A

h−1
j ψ

30(α+β)
j

≥ Cκδ8α(x)
φ(h∗)

ρh∗
· mE

mJ

∑

j∈A

ψ
30(α+β)+1
j

≥ Cκδ8α(x)
φ(h∗)

ρh∗
· mE

mJ

∑

j∈A

(
ρ

ρ+ |x− xj |

)60(α+β)+2

≥ Cκδ8α(x)
mE

mJ
· φ(ρ)

ρ2

(
ρ

max{ρ,dist(x,E)}

)60(α+β)+k+1

,

since, for x �∈ E, max{ρ,dist(x,E)} ∼ min {|x− xj∗ |, |x − xj∗|}+ ρ, and if
x ∈ J , then x ∈ Ij for some j ∈ A, so that ρ/(|x− xj |+ ρ) ∼ 1 for that j.

If x ∈ E \ J and x �∈ Ij∗ ∪ Ij∗ , then there exists j0 ∈ B such that x ∈ Ij0 .

If j0 �∈ B̃, or if j0 ∈ B̃ and λj0 ≥ 0, then, clearly, Q′′
n(x) ≥ 0. Otherwise, since

h∗ ∼ hj0 by (6.5), we have using (3.12)

Q′′
n(x) ≥ κλj0φ(h∗)h

−1
∗ F̃ ′′

j0(x) ≥ −Cκφ(hj0)h
−2
j0

δαψβ
j0

≥ −Cκ
φ(ρ)

ρ2
δα ≥ −φ(ρ)

ρ2
δα,

for sufficiently small κ.
We now estimate |Qn(x)|. Let

L(x) := κ
φ(h∗)

h∗

(
mE

mJ

∑

j∈A

Φj(x) +
∑

j∈B̃

λjΦj(x)

)
,
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It follows from [13, (9.8)] that, for any j ∈ E , cmE ≤ |E|/hj ≤ m2
E .

This implies that h∗ ≤ c|E|/mE ≤ cmEhj , j ∈ E , and so φ(h∗) ≤ cmk
Eφ(hj),

j ∈ E . Hence, using (3.14) as well as the estimate (see [13, pp. 1282-1283])

∑

j∈E

φ(hj)ψ
β−1
j ≤ Cφ(ρ)

∑

j∈E

hjρ

(|x− xj|+ ρ)2

which is true if β ≥ k + 7, we have

|Qn(x)− L(x)| = κ
φ(h∗)

h∗

∣∣∣∣
mE

mJ

∑

j∈A

(Fj(x)− Φj(x)) +
∑

j∈B̃

λj(Fj(x)− Φj(x))

∣∣∣∣

≤ CmEδ
αφ(h∗)

h∗

∑

j∈E

hjψ
β−1
j ≤ Cmk+1

E δα
∑

j∈E

φ(hj)ψ
β−1
j

≤ Cmk+1
E δαφ(ρ)

∑

j∈E

hjρ

(|x− xj|+ ρ)2
.

It remains to estimate |L(x)|. First assume that x �∈ E. If x ≤ xj∗ , then

Φj(x) = 0, j ∈ A ∪ B̃, and L(x) = 0. If, on the other hand, x > xj∗ , then

Φj(x) = x− xj , j ∈ A ∪ B̃, so that (6.7) implies that L(x) = 0. Hence, in
particular, L(x) = 0 for x ∈ I1 ∪ In.

Suppose now that x ∈ E \ I1 (recall that we already assumed that E
does not contain In). Then, as above, h∗ ≤ c|E|/mE ≤ cρmE and so φ(h∗)
≤ cmk

Eφ(ρ). Also, h∗ ≥ |E|/m2
E . Hence, since δ = 1 on [xn−1, x1],

|L(x)| ≤ C
φ(h∗)

h∗

(
mE

mJ

∑

j∈A

|x− xj|+ c
∑

j∈B̃

|x− xj|
)

≤ Cmk+3
E

φ(ρ)

|E|
∑

j∈E

|x− xj | ≤ Cmk+3
E

φ(ρ)

|E|
∑

j∈E

|E| ≤ Cmk+4
E δαφ(ρ).

It remains to note that

1 = |E|
∑

j∈E

hj

|E|2 ≤ c|E|
∑

j∈E

hj

(|x− xj |+ ρ)2
≤ cm2

E

∑

j∈E

ρhj

(|x− xj |+ ρ)2
,

and the proof is complete. �

7. Convex polynomial approximation of piecewise polynomials

Lemma 7.1 [6, Lemma 4.3]. Let k ≥ 3, φ ∈ Φk and S ∈ Σ
(1)
k,n be such that

bk(S, φ) ≤ 1. If 1 ≤ µ, ν ≤ n are such that the interval Iµ,ν contains at least
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2k − 5 intervals Ii and points x∗i ∈ (xi, xi−1) so that

ρ2n(x
∗
i )φ

−1(ρn(x
∗
i ))|S′′(x∗i )| ≤ 1,

then, for every 1 ≤ j ≤ n, we have

�ρ2nφ−1(ρn)S
′′�L∞(Ij) ≤ c(k)

[
(j − µ)4k + (j − ν)4k

]
.

Theorem 7.2. Let k, r ∈ N, r ≥ 2, k ≥ r + 1, and let φ ∈ Φk be of the
form φ(t) := trψ(t), ψ ∈ Φk−r. Also, let d+ ≥ 0, d− ≥ 0 and α ≥ 0 be given.
Then there is a number N = N (k, r, φ, d+, d−, α) satisfying the following as-

sertion. If n ≥ N and S ∈ Σ
(1)
k,n ∩∆(2) is such that

(7.1) bk(S, φ) ≤ 1,

and, additionally,

if d+ > 0, then d+|I2|r−2 ≤ min
x∈I2

S′′(x),(7.2)

if d+ = 0, then S(i)(1) = 0, for all 2 ≤ i ≤ k − 2,(7.3)

if d− > 0, then d−|In−1|r−2 ≤ min
x∈In−1

S′′(x),(7.4)

if d− = 0, then S(i)(−1) = 0, for all 2 ≤ i ≤ k − 2,(7.5)

then there exists a polynomial P ∈ ∆(2) ∩ΠCn, C = C(k, α), satisfying, for
all x ∈ [−1, 1],

|S(x)− P (x)| ≤ C(k, α) δαn(x)φ(ρn(x)), if d+ > 0 and d− > 0,(7.6)

|S(x)− P (x)| ≤ C(k, α) δmin{α,2k−2}
n (x)φ(ρn(x)), if min{d+, d−} = 0.

(7.7)

The proof of Theorem 7.2 is quite long and technical and is similar (with
some rather significant changes) to that of [13, Theorem 10.2]. It is given in
the last section of this paper.

8. Convex approximation by smooth piecewise polynomials

Theorem 8.1 [14, Theorem 2.1]. Given r ∈ N, there is a constant c =
c(r) such that if f ∈ Cr[−1,1] is convex, then there is a number N = N (f, r),
depending on f and r, such that for n ≥ N , there are convex piecewise poly-
nomials S of degree r + 1 with knots at the Chebyshev partition Tn (i.e.,

S ∈ Σr+2,n ∩∆(2)), satisfying

(8.1) |f(x)− S(x)| ≤ c(r)(ϕ(x)/n)rω2(f
(r), ϕ(x)/n), x ∈ [−1, 1],
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and, moreover, for x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1],

(8.2) |f(x)− S(x)| ≤ c(r)ϕ2r(x)ω2(f
(r), ϕ(x)/n)

and

(8.3) |f(x)− S(x)| ≤ c(r)ϕ2r(x)ω1(f
(r), ϕ2(x)).

As was shown in [14], N in the statement of Theorem 8.1, in general,
cannot be independent of f .

We will now show that the following “smooth analog” of this result also
holds.

Theorem 8.2. Given r ∈ N, there is a constant c = c(r) such that if
f ∈ Cr[−1, 1] is convex, then there is a number N = N (f, r), depending on f
and r, such that for n ≥ N , there are continuously differentiable convex piece-
wise polynomials S of degree r + 1 with knots at the Chebyshev partition Tn

(i.e., S ∈ Σ
(1)
r+2,n ∩∆(2)), satisfying (8.1), (8.2) and (8.3).

Let Sr(zm) denote the space of all piecewise polynomial functions (ppf)
of degree r − 1 (order r) with the knots zm := (zi)

m
i=0, a =: z0 < z1 < · · · <

zm−1 < zm := b. Also, the scale of the partition zm is denoted by

(8.4) ϑ(zm) := max
0≤j≤m−1

|Jj±1|
|Jj |

,

where Jj := [zj , zj+1].
In order to prove Theorem 8.2 we need the following lemma which is an

immediate corollary of a more general result in [11].

Lemma 8.3 [11, Lemma 3.8]. Let r ∈ N, zm := (zi)
m
i=0, a =: z0 < z1 <

· · · < zm−1 < zm := b be a partition of [a, b], and let s ∈ ∆(2) ∩ Sr+2(zm).
Then, there exists s̃ ∈ ∆(2) ∩ Sr+2(zm) ∩ C1[a, b] such that, for any 1 ≤ j
≤ m− 1,

(8.5) �s− s̃�[zj−1,zj+1] ≤ c(r, ϑ(zm))ωr+2(s, zj+2 − zj−2; [zj−2, zj+2]) ,

where zj := z0, j < 0 and zj := zm, j > m. Moreover,

(8.6) s̃(ν)(a) = s(ν)(a) and s̃(ν)(b) = s(ν)(b) , ν = 0, 1 .

Proof of Theorem 8.2. Let n be a sufficiently large fixed number,
and let S0 ∈ Σr+2,n ∩∆(2) be a piecewise polynomial from the statement
of Theorem 8.1 for which estimates (8.1)–(8.3) hold. Let a := x2n−1,2n,
b := x1,2n and let zn := (zi)

n
i=0 be such that z0 := a, zn := b and zi := xn−i,

1 ≤ i ≤ n− 1 (note that zn ⊂ T2n). Clearly, S0 ∈ Sr+2(zn), ϑ(zn) ∼ 1, and
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Lemma 8.3 implies that there exists S̃0 ∈ ∆(2)∩Sr+2(zn)∩C1[a, b] such that,
for any 1 ≤ j ≤ n,

(8.7) �S0 − S̃0�Ĩj ≤ c(r)ωr+2(S0, hj;Jj) ,

where Ĩj := Ij ∩ [a, b] and Jj := [xj+2, xj−2] ∩ [a, b], and

(8.8) S̃
(ν)
0 (a) = S

(ν)
0 (a) and S̃

(ν)
0 (b) = S

(ν)
0 (b) , ν = 0, 1 .

We now define

S(x) :=

{
S0(x), if x ∈ [−1, 1] \ [a, b],
S̃0(x), if x ∈ [a, b].

Clearly, S ∈ Σ
(1)
r+2,2n ∩∆(2), estimates (8.2) and (8.3) hold (with n replaced

by 2n), and (8.1) also holds (clearly, it does not matter if we use n or 2n

there) since ϕ(x)/n ∼ hj , for any x ∈ Jj , 1 ≤ j ≤ n. Thus, for x ∈ Ĩj , 1 ≤ j
≤ n,

|f(x)− S(x)| ≤ |f(x)− S0(x)|+ �S0 − S̃0�Ĩj
≤ c�f − S0�Jj

+ cωr+2(f, hj;Jj) ≤ chr
jω2(f

(r), hj)

≤ c(ϕ(x)/n)rω2(f
(r), ϕ(x)/n). �

Remark 8.4. It follows from [11, Corollary 3.7] that Theorem 8.2 is, in
fact, valid for splines of minimal defect, i.e., for S ∈ Σr+2,n ∩ Cr ∩∆(2).

9. Proof of Theorem 1.2

9.1. The case for r ≥ 2. Let S be the piecewise polynomial from the
statement of Theorem 8.2. Without loss of generality, we can assume that S
does not have knots at x1 and xn−1 (it is sufficient to treat S as a piecewise
polynomial with knots at the Chebyshev partition T2n). Then,

l1(x) := S(x)
∣∣
I1∪I2

= f(1) +
f ′(1)

1!
(x− 1) + · · · + f (r)(1)

r!
(x− 1)r + a+(n; f)(x− 1)r+1

and

ln(x) := S(x)
∣∣
In∪In−1

= f(−1) +
f ′(−1)

1!
(x+ 1) + · · · + f (r)(1)

r!
(x+ 1)r + a−(n; f)(x+ 1)r+1,
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where a+(n,f) and a−(n,f) are some constants that depend only on n and f .
We will now show that

(9.1) n−2max{|a+(n, f)|, |a−(n, f)|} → 0 as n → ∞.

Indeed, it follows from (8.3) that, for all x ∈ I1 ∪ I2,

|a+(n, f)(1− x)| ≤ |l1(x)− f(x)|
(1− x)r

+
1

(1− x)r

∣∣∣f(x)− f(1)− f ′(1)

1!
(x− 1)− · · · − f (r)(1)

r!
(x− 1)r

∣∣∣

≤ cω1(f
(r), 1− x) +

1

(r − 1)!(1− x)r

∣∣∣∣
∫ 1

x

(
f (r)(t)− f (r)(1)

)
(t− x)r−1 dt

∣∣∣∣

≤ cω1(f
(r), 1 − x),

and, in particular, n−2|a+(n, f)| ≤ cω1(f
(r), n−2) → 0 as n → ∞. Analo-

gously, one draws a similar conclusion for |a−(n, f)|.
For f ∈ Cr, r ≥ 2, let i+ ≥ 2, be the smallest integer 2 ≤ i ≤ r, if it

exists, such that f (i)(1) �= 0, and denote

D+(r, f) :=

{
(2r!)−1|f (i+)(1)|, if i+ exists,

0, otherwise.

Similarly, let i− ≥ 2, be the smallest integer 2 ≤ i ≤ r, if it exists, such that
f (i)(−1) �= 0, and denote

D−(r, f) :=

{
(2r!)−1|f (i−)(−1)|, if i− exists,

0, otherwise.

Hence, if n is sufficiently large, then

(9.2) S′′(x) ≥ D+(r, f)(1− x)r−2, x ∈ (x2, 1],

and

(9.3) S′′(x) ≥ D−(r, f)(x+ 1)r−2, x ∈ [−1, xn−2).

Proof of Theorem 1.2 in the case r ≥ 2. Given r ∈ N, r ≥ 2, and
a convex f ∈ Cr, let ψ ∈ Φ2 be such that ω2(f

(r), t) ∼ ψ(t), denote φ(t) :=
trψ(t), and note that φ ∈ Φr+2.
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For a sufficiently large N ∈ N and each n ≥ N , we take the piecewise
polynomial S ∈ Σr+2,n of Theorem 8.2 satisfying (9.2) and (9.3), and observe
that

ωr+2(f, t) ≤ trω2(f
(r), t) ∼ φ(t),

so that by Lemma 4.1 with k = r + 2, we conclude that

br+2(S, φ) ≤ c.

Now, it follows from (9.2) and (2.2) that

min
x∈I2

S′′(x) ≥ D+(r, f)|I1|r−2 ≥ 3−r+2D+(r, f)|I2|r−2

and, similarly, (9.3) yields

min
x∈In−1

S′′(x) ≥ 3−r+2D−(r, f)|In−1|r−2.

Hence, using Theorem 7.2 with k = r + 2, d+ := 3−r+2D+(r, f), d− :=
3−r+2D−(r, f) and α = 2k − 2 = 2r + 2, we conclude that there exists a
polynomial P ∈ Πcn ∩∆(2) such that

(9.4) |S(x)− P (x)| ≤ cδ2r+2
n (x)ρrn(x)ψ(ρn(x)), x ∈ [−1, 1].

In particular, for x ∈ I1 ∪ In, x �= −1, 1, using the fact that ρn(x) ∼ n−2

for these x, and t−2ψ(t) is nonincreasing we have

|S(x)− P (x)| ≤ c(nϕ(x))2r+2ρrn(x)ψ(ρn(x))(9.5)

≤ cn2ϕ2r+2(x)
(nρn(x)

ϕ(x)

)2
ψ
(ϕ(x)

n

)
≤ cϕ2r(x)ω2

(
f (r),

ϕ(x)

n

)
.

In turn, this implies for x ∈ I1 ∪ In, that

|S(x)− P (x)| ≤ c
(ϕ(x)

n

)r
ω2

(
f (r),

ϕ(x)

n

)
,

which combined with (9.4) implies

(9.6) |S(x)− P (x)| ≤ c
(ϕ(x)

n

)r
ω2

(
f (r),

ϕ(x)

n

)
, x ∈ [−1, 1].

Now, (9.6) together with (8.1) yield (1.5), and (9.5) together with (8.2) yield
(1.6). In order to prove (1.7), using the fact that t−1ω1(f

(r), t) is nonincreas-
ing we have, for x ∈ I1 ∪ In, x �= −1, 1,

|S(x)− P (x)| ≤ c(nϕ(x))2r+2ρrn(x)ω1(f
(r), ρn(x))(9.7)
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≤ cn2ϕ2r+2(x)
ρn(x)

ϕ2(x)
ω1(f

(r), ϕ2(x)) ≤ cϕ2r(x)ω1(f
(r), ϕ2(x)),

which together with (8.3) completes the proof of Theorem 1.2. �

9.2. The case for r = 1. It is possible to show that, in order to prove
Theorem 1.2 in the case r = 1, it is sufficient to construct a convex polyno-
mial Pn that approximates the quadratic spline S from Theorem 8.1 (with
r = 1) so that

|S(x)− Pn(x)| ≤ cω3(f, ρn(x)),

and

(9.8) Pn(±1) = S(±1) and P ′
n(±1) = S′(±1).

In order to construct such a polynomial, one can use exactly the same method
as in [8] (using S instead of f and 2n instead of n) with the only difference
that extra factors (1− y2) should appear inside integrals in the definitions
of Qj , Qj and Tj (see [8, p. 158]). All estimates are then still valid and ei-
ther follow from the statements in Section 3 or are proved similarly. This
change is needed in order to guarantee that (9.8) holds because addition of
these factors implies that the first derivatives of these modified polynomials
Qj , Qj and Tj are 0 at ±1 which, in turn, implies that the first derivatives

of other auxiliary polynomials σj , Rj and Rj at ±1 are “correct”. We omit
details.

Appendix A. Proof of Theorem 7.2

Throughout the proof, we fix β := k+7 and γ := β1− 1 = 60(α+β)+k.
Hence, the constants C1, . . . , C6 (defined below) as well as the constants C,
may depend only on k and α. We also note that S does not have to be twice
differentiable at the Chebyshev knots xj . Hence, when we write S′′(x) (or
S′′
i (x), 1 ≤ i ≤ 4) everywhere in this proof, we implicitly assume that x �= xj ,

1 ≤ j ≤ n− 1.
Let C1 := C, where the constant C is taken from (6.1) (without loss of

generality we assume that C1 ≤ 1), and let C2 := C with C taken from (4.2).
We also fix an integer C3 such that

(A.1) C3 ≥ 8k/C1.

Without loss of generality, we may assume that n is divisible by C3, and put
n0 := n/C3.

We divide [−1, 1] into n0 intervals

Eq := [xqC3
, x(q−1)C3

] = IqC3
∪ · · · ∪ I(q−1)C3+1, 1 ≤ q ≤ n0,
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consisting of C3 intervals Ii each (i.e., mEq
= C3, for all 1 ≤ q ≤ n0).

We write “j ∈ UC” (where “UC” stands for “Under Control”) if there
is x∗j ∈ (xj , xj−1) such that

(A.2) S′′(x∗j) ≤
5C2φ(ρn(x

∗
j))

ρ2n(x
∗
j)

.

We say that q ∈ G (for “Good”), if the interval Eq contains at least
2k − 5 intervals Ij with j ∈ UC.

Then, (A.2) and Lemma 7.1 imply that,

(A.3) S′′(x) ≤ Cφ(ρ)

ρ2
, x ∈ Eq, q ∈ G.

Set E :=
⋃

q �∈GEq, and decompose S into a “small” part and a “big” one,
by setting

s1(x) :=

{
S′′(x), if x �∈ E,

0, otherwise,
.

and

s2(x) := S′′(x)− s1(x) =

{
0, if x �∈ E,

S′′(x), otherwise,

and putting

S1(x) := S(−1) + (x+ 1)S′(−1) +

∫ x

−1
(x− u)s1(u) du,

S2(x) :=

∫ x

−1
(x− u)s2(u) du.

(Note that s1 and s2 are well defined for x �= xj , 1 ≤ j ≤ n− 1, so that S1

and S2 are well defined everywhere and possess second derivatives for x �= xj ,
1 ≤ j ≤ n− 1.)

Evidently, S1, S2 ∈ Σ
(1)
k,n, and

S′′
1 (x) ≥ 0 and S′′

2 (x) ≥ 0, x ∈ [−1, 1].

Now, (A.3) implies that

S′′
1 (x) ≤

Cφ(ρ)

ρ2
, x ∈ [−1, 1],
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which, in turn, yields by Lemma 4.2, bk(S1, φ) ≤ C. Together with (7.1), we
obtain

(A.4) bk(S2, φ) ≤ bk(S1, φ) + bk(S, φ) ≤ C + 1 ≤ ⌈C + 1⌉ =: C4.

The set E is a union of disjoint intervals Fp = [ap, bp], between any two
of which, all intervals Eq are with q ∈ G. We may assume that n > C3C4,
and write p ∈ AG (for “Almost Good”), if Fp consists of no more than C4

intervals Eq , that is, it consists of no more than C3C4 intervals Ij . Hence,
by Lemma 7.1,

(A.5) S′′
2 (x) ≤

C φ(ρ)

ρ2
, x ∈ Fp, p ∈ AG.

One may think of intervals Fp, p �∈ AG, as “long” intervals where S′′ is
“large” on many subintervals Ii and rarely dips down to 0. Intervals Fp,
p ∈ AG, as well as all intervals Eq which are not contained in any Fp’s (i.e.,
all “good” intervals Eq) are where S′′ is “small’ in the sense that the in-
equality S′′(x) ≤ Cφ(ρ)/ρ2 is valid there.

Set F :=
⋃

p �∈AGFp, note that E =
⋃

p∈AGFp∪F , and decompose S again
by setting

s4 :=

{
S′′(x), if x ∈ F,

0, otherwise,

and

s3(x) := S′′(x)− s4(x) =

{
0, if x ∈ F,

S′′(x), otherwise,

and putting

S3(x) := S(−1) + (x+ 1)S′(−1) +

∫ x

−1
(x− u)s3(u) du ,(A.6)

S4(x) :=

∫ x

−1
(x− u)s4(u) du.

Then, evidently,

(A.7) S3, S4 ∈ Σ
(1)
k,n, S3 + S4 = S,

and

(A.8) S′′
3 (x) ≥ 0 and S′′

4 (x) ≥ 0, x ∈ [−1, 1].
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We remark that, if x  ∈ ⋃
p∈AG Fp, then s1(x) = s3(x) and s2(x) = s4(x).

If x ∈ ⋃
p∈AG Fp, then s1(x) = s4(x) = 0 and s2(x) = s3(x) = S′′(x).

For x ∈ ⋃
p∈AG Fp, (A.5) implies that

S′′
3 (x) = S′′

2 (x) ≤
C φ(ρ)

ρ2
.

For all other x’s,

S′′
3 (x) = S′′

1 (x) ≤
C φ(ρ)

ρ2
.

We conclude that

(A.9) S′′
3 (x) ≤

C5 φ(ρ)

ρ2
, x ∈ [−1, 1],

which by virtue of Lemma 4.2, yields that bk(S3, φ) ≤ C. As above, we
obtain

(A.10) bk(S4, φ) ≤ bk(S3, φ) + bk(S, φ) ≤ C + 1 ≤ ⌈C + 1⌉ =: C6.

We will approximate S3 and S4 by convex polynomials that achieve the
required degree of pointwise approximation.

A.1. Approximation of S3. If d+ > 0, then there exists N ∗ ∈ N,
N ∗ = N ∗(d+, ψ), such that, for n > N ∗,

φ(ρ)

ρ2
= ρr−2ψ(ρ) <

d+|I2|r−2

C5
≤ C−1

5 S′′(x), x ∈ I2,

where the first inequality follows since ψ(ρ) ≤ ψ(2/n) → 0 as n → ∞, and
the second inequality follows by (7.2). Hence, by (A.9), if n > N ∗, then
s3(x)  = S′′(x) for x ∈ I2. Therefore, since s3(x) = S′′(x), for all x  ∈ F , we
conclude that I2 ⊂ F , and so E1 ⊂ F , and s3(x) = 0, x ∈ E1. In particular,
s3(x) ≡ 0, x ∈ I1.

Similarly, if d− > 0, then using (7.4) we conclude that there exists N ∗∗

∈ N, N ∗∗ = N ∗∗(d−, ψ), such that, if n > N ∗∗, then s3(x) ≡ 0 for all x ∈ In.
Thus, we conclude that for n ≥ max{N ∗,N ∗∗}, we have

(A.11) s3(x) = 0, for all x ∈ I1 ∪ In.

Therefore, in view of (A.7) and (A.8), it follows by Lemma 5.1 com-
bined with (A.9) that, in the case d+ > 0 and d− > 0, there exists a convex
polynomial rn ∈ ΠCn such that

(A.12) |S3(x)− rn(x)| ≤ C δαφ(ρ), x ∈ [−1, 1].

Acta Mathematica Hungarica

K. A. KOPOTUN, D. LEVIATAN, I. L. PETROVA and I. A. SHEVCHUK24



Acta Mathematica Hungarica

CONVEX POLYNOMIAL APPROXIMATION 25

Suppose now that d+ = 0 and d− > 0. First, proceeding as above, we
conclude that s3 ≡ 0 on In. Additionally, if E1 ⊂ F , then, as above, s3 ≡ 0
on I1 as well. Hence, (A.11) holds which, in turn, implies (A.12).

If E1 �⊂ F , then s3(x) = S′′(x), x ∈ I1, and so it follows from (7.3) that,
for some constant A1 ≥ 0,

s3(x) = S′′(x) = A1(1− x)k−3, x ∈ I1.

Note that A1 may depend on n, but by (7.16) we conclude that,

A1 ≤ C5
φ(ρn(x1))

(1− x1)k−3ρ2(x1)
∼ n2k−2φ(n−2).

Hence, for x ∈ I1,

(A.13) S′′
3 (x) = s3(x) = A2n

2k−2φ(n−2)(1− x)k−3,

where A2 is a nonnegative constant that may depend on n but A2 ≤ C.

We now construct �S3 ∈ Σk,2n which satisfies all conditions of Lemma 5.1
(with 2n instead of n). Note that xj := xj,n = x2j,2n, denote ξ := x1,2n and
define

�S3(x) :=






S3(x), if x < x1,

S3(1) + (x− 1)S′
3(1) =: L(x), if ξ < x ≤ 1,

ℓ(x), if x ∈ [x1, ξ],

where ℓ(x) is the linear polynomial chosen so that �S3 is continuous on [−1,1],

i.e., ℓ(x1) = S3(x1) and ℓ(ξ) = S3(1) + (ξ − 1)S′
3(1) = L(ξ). Clearly, �S3 ∈

C[−1, 1] (and, in fact, is in C1[−1, x1)), �S′′
3 (x) ≤ Cρ−2φ(ρ), x �∈ {xj}n−1

j=1 ∪
{ξ}, and �S′′

3 ≡ 0 on I1,2n ∪ In. Note that �S′
3 may be discontinuous at x1 and

ξ, but, evidently, the slope of L is no less than the slope of ℓ, so that �S3 is
convex in [x1, 1].

Denote

SL := S3 − L, �SL := �S3 − L and ℓL := ℓ− L,

and note that

�SL(x) =

�
0, x ∈ [ξ, 1],

ℓL(x), x ∈ [x1, ξ].

Also, ℓL(x1) = SL(x1) and ℓL(ξ) = �SL(ξ) = 0, and in view of (A.13),

0 ≤ SL(x) = S3(x)− S3(1)− (x− 1)S′
3(1)(A.14)
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=

∫ 1

x
(u− x)s3(u) du = A3n

2k−2φ(n−2)(1− x)k−1, x ∈ I1,

where A3 ≤ C. Now, the tangent line to SL at x = x1 is

y(x) = SL(x1) + (x− x1)S
′
L(x1)

= A3n
2k−2φ(n−2)(1− x1)

k−2
(
1− x1 − (k − 1)(x− x1)

)
,

which intersects the x axis at

x1 +
1− x1
k − 1

≤ 1 + x1
2

< x1,2n = ξ.

Hence, the slope of ℓL is no less than the slope of that tangent and, in turn,

we conclude that the slope of ℓ is no less than S′
3(x1), so that S̃3 is convex

in [−1, 1].
Further, we have,

|S3(x)− S̃3(x)| = |SL(x)− S̃L(x)| ≤ SL(x) + S̃L(x)(A.15)

≤ SL(x1) + S̃L(x1) = 2SL(x1) ≤ Cφ(n−2), x ∈ [x1, ξ],

and

|S̃3(x)− S3(x)| = |L(x)− S3(x)| = SL(x)(A.16)

= A3φ(n
−2)n2k−2(1− x)k−1 ≤ Cδ2k−2φ(n−2), x ∈ [ξ, 1].

Note that S̃′
3 may have (nonnegative) jumps at x1 and ξ. However,

S̃′
3(ξ+)− S̃′

3(ξ−) + S̃′
3(x1+)− S̃′

3(x1−)(A.17)

= S′
3(1)− S′

3(x1) = −S′
L(x1) ≤ Cn2φ(n−2),

so that Lemma 5.1 implies that there exists a convex polynomial rn ∈ ΠCn

such that,

|S̃3(x)− rn(x)| ≤ C δαφ(ρ), x ∈ [−1, 1].

Observing that S̃3 ≡ S3 on [−1, x1], and combining with (A.15) and (A.16)
(recalling that n−2 ≤ ρ), we conclude that

|S̃3(x)− S3(x)| ≤ Cδ2k−2φ(ρ), x ∈ [−1, 1],

so that

(A.18) |S3(x)− rn(x)| ≤ C δmin{α,2k−2}φ(ρ), x ∈ [−1, 1].
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Finally, if d− = 0 and d+ > 0, then the considerations are completely

analogous and, if d− = 0 and d+ = 0, then S̃3 can be modified further on In
using (7.5) and the above argument.

Hence, we’ve constructed a convex polynomial rn ∈ ΠCn such that, in
the case when both d+ and d− are strictly positive, (A.12) holds, and (A.18)
is valid if at least one of these numbers is 0.

A.2. Approximation of S4. Given a set A ⊂ [−1, 1], denote

Ae :=
⋃

Ij∩A �=∅

Ij and A2e := (Ae)e,

where I0 = ∅ and In+1 = ∅. For example, [x7, x3]
e = [x8, x2], I

e
1 = I1 ∪ I2,

etc.
Also, given subinterval I ⊂ [−1, 1] with its endpoints at the Chebyshev

knots, we refer to the right-most and the left-most intervals Ii contained in I
as EP+(I) and EP−(I), respectively (for the “End Point” intervals). More
precisely, if 1 ≤ µ < ν ≤ n and

I =
ν⋃

i=µ

Ii,

then EP+(I) := Iµ, EP−(I) := Iν and EP (I) := EP+(I)∪EP−(I) = Iµ∪Iν .
For example, EP+[−1, 1] := I1, EP−[−1, 1] := In, EP+[x7, x3] = [x4, x3] =
I4, EP−[x7, x3] = [x7, x6] = I7, EP [x7, x3] = I4 ∪ I7, etc. Here, we simplified
the notation by using EP±[a, b] := EP±([a, b]) and EP [a, b] := EP ([a, b]).

In order to approximate S4, we observe that for p �∈ AG,

S′′
4 (x) = S′′

2 (x), x ∈ F 2e
p ,

so that by virtue of (A.4), we conclude that

(A.19) bk(S4, φ, F
2e
p ) = bk(S2, φ, F

2e
p ) ≤ bk(S2, φ) ≤ C4.

(Note that, for p ∈ AG, S4 is linear in F 2e
p and so bk(S4, φ, F

2e
p ) = 0.)

We will approximate S4 using the polynomial Dn1
(·, S4) ∈ ΠCn1

defined
in Lemma 4.3 (with n1 := C6n), and then we construct two “correcting”
polynomials Qn,Mn ∈ ΠCn (using Lemma 6.2) in order to make sure that
the resulting approximating polynomial is convex.

We begin with Qn. For each q for which Eq ⊂ F , let Jq be the union of
all intervals Ij ⊂ Eq with j ∈ UC with the union of both intervals Ij ⊂ Eq

at the endpoints of Eq. In other words,

Jq :=
⋃

j

{
Ij | j ∈ UC and Ij ⊂ Eq

}
∪EP (Eq).
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Since Eq ⊂ F , then q �∈ G and so the number of intervals Ij ⊂ Eq with
j ∈ UC is at most 2k − 6. Hence, by (A.1),

mJq
≤ 2k − 4 < 2k ≤ C1C3

4
≤ C3

4
,

Recalling that the total number mEq
of intervals Ij in Eq is C3 we conclude

that Lemma 6.2 can be used with E := Eq and J := Jq. Thus, set

Qn :=
�

q : Eq⊂F

Qn(·, Eq, Jq),

where Qn are polynomials from Lemma 6.2, and denote

J :=
�

q : Eq⊂F

Jq.

Then, (6.1) through (6.3) imply that Qn satisfies

(A.20)





(a) Q
′′
n(x) ≥ 0, x ∈ [−1, 1] \ F,

(b) Q
′′
n(x) ≥ −φ(ρ)

ρ2
x ∈ F \ J,

(c) Q
′′
n(x) ≥ 4

φ(ρ)

ρ2
δ8α, x ∈ J.

Note that the inequalities in (A.20) are valid since, for any given x, all rele-
vant Q′′

n(x,Eq, Jq), except perhaps one, are nonnegative, and

C1
mEq

mJq

≥ C1C3

2k
≥ 4.

Also, it follows from (6.3) that, for any x ∈ [−1, 1],

|Qn(x)| ≤ Cδαρφ(ρ)
�

q:Eq⊂F

�

j:Ij⊂Eq

hj

(|x− xj |+ ρ)2
(A.21)

≤ Cδαρφ(ρ)
n�

j=1

hj

(|x− xj|+ ρ)2
≤ Cδαρφ(ρ)

� ∞

0

du

(u+ ρ)2
= Cδαφ(ρ).

Next, we define the polynomial Mn. For each Fp with p �∈ AG, let J−
p

denote the union of the two intervals on the left side of F e
p (or just the in-
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terval In if −1 ∈ Fp), and let J+
p denote the union of the two intervals on

the right side of F e
p (or just one interval I1 if 1 ∈ Fp), i.e.,

J−
p = EP−(F

e
p ) ∪EP−(Fp) and J+

p = EP+(F
e
p ) ∪ EP+(Fp).

Also, let F−
p and F+

p be the closed intervals each consisting of mF±
p
:= C3C4

intervals Ij and such that J−
p ⊂ F−

p ⊂ F e
p and J+

p ⊂ F+
p ⊂ F e

p , and put

J∗
p := J−

p ∪ J+
p and J∗ :=

�

p �∈AG

J∗
p .

Now, we set

Mn :=
�

p �∈AG

�
Qn(·, F+

p , J+
p ) +Qn(·, F−

p , J−
p )

�
.

Since mF+
p
= mF−

p
= C3C4 and mJ+

p
,mJ−

p
≤ 2, it follows from (A.1) that

C1 min
�mF+

p

mJ+
p

,
mF−

p

mJ−
p

�
≥ C1C3C4

2
≥ 2C4.

Then Lemma 6.2 implies

(A.22) |Mn(x)| ≤ C δαφ(ρ)

(this follows from (6.3) using the same sequence of inequalities that was used
to prove (A.21) above), and

(A.23)






(a) M ′′
n(x) ≥ −2

φ(ρ)

ρ2
, x ∈ F \ J∗,

(b) M ′′
n(x) ≥ 2C4 δ

8αφ(ρ)

ρ2
, x ∈ J∗,

(c) M ′′
n(x) ≥ 2C4 δ

8αφ(ρ)

ρ2

� ρ

dist (x, F )

�γ+1
, x ∈ [−1, 1] \ F e,

where in the last inequality we used the fact that

max{ρ,dist (x, F e)} ≤ dist (x, F ), x ∈ [−1, 1] \ F e,

which follows from (2.5).
The third auxiliary polynomial is Dn1

:= Dn1
(·, S4) with n1 = C6n from

Lemma 4.3. By (A.10), (4.1) yields

(A.24) |S4(x)−Dn1
(x)| ≤ C δγφ(ρ) ≤ C δαφ(ρ), x ∈ [−1, 1],
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since γ > α, and (4.2) implies that, for any interval A ⊂ [−1, 1] having
Chebyshev knots as endpoints,

|S′′
4 (x)−D′′

n1
(x)| ≤ C2 δ

γ φ(ρ)

ρ2
bk(S4, φ,A)(A.25)

+ C2C6 δ
γ φ(ρ)

ρ2
n

n1

( ρ

dist(x, [−1, 1] \A)
)γ+1

, x ∈ A.

We now define

(A.26) Rn := Dn1
+ C2Qn + C2Mn.

By virtue of (A.21), (A.22), and (A.24) we obtain

|S4(x)−Rn(x)| ≤ C δαφ(ρ), x ∈ [−1, 1],

which combined with (A.12) and (A.18), proves (7.6) and (7.7) for P :=
Rn + rn.

Thus, in order to conclude the proof of Theorem 7.2, we should prove
that P is convex. We recall that rn is convex, so it is sufficient to show that
Rn is convex as well.

Note that (A.26) implies

R′′
n(x) ≥ C2Q

′′
n(x) + C2M

′′
n(x)− |S′′

4 (x)−D′′
n1
(x)|+ S′′

4 (x), x ∈ [−1, 1],

(this inequality is extensively used in the three cases below), and that (A.25)
holds for any interval A with Chebyshev knots as the endpoints, and so
we can use different intervals A for different points x ∈ [−1, 1]. We con-
sider three cases depending on whether (i) x ∈ F \ J∗, or (ii) x ∈ J∗, or
(iii) x ∈ [−1, 1] \ F e.

Case (i): x ∈ F \ J∗. In this case, for some p �∈ AG, x ∈ Fp \ J∗
p , and

so we take A := Fp. Then, the quotient inside the parentheses in (A.25) is
bounded above by 1 (this follows from (2.5)). Also, since s4(x) = S′′(x),
x ∈ F , it follows that bk(S4, φ, Fp) = bk(S, φ, Fp) ≤ 1. Hence,

|S′′
4 (x)−D′′

n1
(x)| ≤ C2

φ(ρ)

ρ2
bk(S4, φ, Fp) + C2C6

φ(ρ)

ρ2
n

n1
(A.27)

≤ 2C2
φ(ρ)

ρ2
, x ∈ F \ J∗.

Note that x �∈ I1 ∪ In (since F \J∗ does not contain any intervals in EP (Fp),
p �∈ AG), and so δ = 1.
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It now follows by (A.20)(c), (A.23)(a), (A.27) and (A.8), that

R′′
n(x) ≥ C2

φ(ρ)

ρ2
(4− 2− 2) = 0, x ∈ J \ J∗.

If x ∈ F \ (J ∪ J∗), then (A.2) is violated and so

S′′
4 (x) = S′′(x) >

5C2φ(ρ)

ρ2
.

Hence, by virtue of (A.20)(b), (A.23)(a) and (A.27), we get

R′′
n(x) ≥ C2

φ(ρ)

ρ2
(−1− 2− 2 + 5) = 0, x ∈ F \ (J ∪ J∗).

Case (ii): x ∈ J∗. In this case, x ∈ J∗
p , for some p �∈ AG, and we take

A := F 2e
p . Then, (A.19) and (A.25) imply (again, (2.5) is used to estimate

the quotient inside the parentheses in (A.25)),

|S′′
4 (x)−D′′

n1
(x)| ≤ C2 δ

γ φ(ρ)

ρ2
bk(S4, φ, F

2e
p ) + C2C6 δ

γ φ(ρ)

ρ2
n

n1
(A.28)

≤ 2C2C4 δ
γ φ(ρ)

ρ2
, x ∈ J∗.

Now, we note that EP (Fp) ⊂ J , for all p �∈ AG, and so F ∩ J∗ ⊂ J . Hence,
using (A.20)(a,c), (A.23)(b), (A.28) and (A.8), we obtain

R′′
n(x) ≥ 2C2C4 δ

8α φ(ρ)

ρ2
− 2C2C4 δ

γ φ(ρ)

ρ2
≥ 0,

since γ > 8α, and so δγ ≤ δ8α.
Case (iii): x ∈ [−1, 1] \ F e. In this case we take A to be the connected

component of [−1, 1] \ F that contains x. Then by (A.25),

|S′′
4 (x)−D′′

n1
(x)| ≤ C2 δ

γ φ(ρ)

ρ2
bk(S4, φ,A)(A.29)

+ C2C6 δ
γ φ(ρ)

ρ2
n

n1

( ρ

dist(x, [−1, 1] \A)
)γ+1

= C2 δ
γ φ(ρ)

ρ2

( ρ

dist(x, F )

)γ+1
, x ∈ [−1, 1] \ F e,

where we used the fact that S4 is linear in A, and so bk(S4, φ,A) = 0.
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Now, (A.20)(a), (A.23)(c), (A.29) and (A.8) imply

R′′
n(x) ≥

φ(ρ)

ρ2

( ρ

dist(x, F )

)γ+1
(2C2C4δ

8α − C2 δ
γ) ≥ 0,

since C4 ≥ 1 and γ > 8α.
Thus, R′′

n(x) ≥ 0 for all x ∈ [−1,1], and so we have constructed a convex
polynomial P , satisfying (7.6) and (7.7), for each n ≥ N . This completes
the proof of Theorem 7.2.
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