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Abstract. This paper deals with approximation of smooth convex func-
tions f on an interval by convex algebraic polynomials which interpolate f and
its derivatives at the endpoints of this interval. We call such estimates “in-
terpolatory”. One important corollary of our main theorem is the following
result on approximation of f & A® | the set of convex functions, from W7,
the space of functions on [—1,1] for which f (*=1) is absolutely continuous and
177 loo := esssup,er_1,17 | f T (2)] < oo:

For any f € W™ NA® 1 e N, there exists a number N’ = N(f,r), such that
for every n > N/, there is an algebraic polynomial of degree < n which is in A®
and such that

clr .
< Do),

175
(pT

where ¢(z) = /1 — z2.
For r = 1 and r = 2, the above result holds with A" =1 and is well known.
For r > 3, it is not true, in general, with A independent of f.

1. Introduction and main results

We start by recalling some standard notation. As usual, C"(I) denotes
the space of r times continuously differentiable functions on a closed inter-

* Corresponding author.

f Supported by NSERC of Canada Discovery Grant RGPIN 04215-15.

Key words and phrases: convex approximation by polynomials, degree of approximation,
Jackson-type interpolatory estimate.

Mathematics Subject Classification: 41A29, 41A10, 41A25.

0236-5294/$20.00 © 2020 Akadémiai Kiad6, Budapest, Hungary



http://crossmark.crossref.org/dialog/?doi=10.1007/s10474-020-01063-0&domain=pdf

K. A. KOPOTUN, D. LEVIATAN, I. L. PETROVA and I. A. SHEVCHUK

val I, CO(I) := C(I) is the space of continuous functions on I, equipped with
the uniform norm which will be denoted by || - ||7. For k € N and an interval I,
AF(f, ) = Zfzo(—l)i(lz)f(a:—i— (k/2—i)u) if t+ku/2 € I and := 0, other-
wise, and wy (f, ;1) := supgcy<t |AE(f, -5 1)||1 is the kth modulus of smooth-
ness of f on I. When dealing with I = [—1, 1], we suppress referring to the
interval and use the notation || - || := || - |[=1,1), wk(f,?) := wi(f,;[-1,1]),
C" = C"[-1,1], etc. We denote by A@ the class of all g-monotone func-
tions on [—1,1], i.e., continuous functions such that A(f,z) >0 for all
x € [-1,1] and u > 0. In particular, AD and A are the classes of all
monotone and convex functions on [—1, 1], respectively. Also,

(1.1) o(z) = V1—22 and pn(z) = p(x)n 4+ n72 neN,

po(x) =1, and II,, denotes the space of algebraic polynomials of degree < n.

The following classical Timan-Dzyadyk-Freud-Brudnyi direct theorem
for the approximation by algebraic polynomials (see e.g. [3, Theorem 8.5.3])
shows that the order of approximation becomes significantly better near the
endpoints of [-1,1]: if k € N, r € Ny and f € C", then for eachn > k+r—1
there is a polynomial P, € 11, satisfying

(1.2) |f(@) = Pu(@)| < c(k, ) (@)ar(f7), pu(2)), @€ [-1,1].

Clearly, if we require that the approximating polynomials interpolate f
as well as its derivatives at the endpoints, and we are successful, then the
estimates should become even better.

Indeed, the following Telyakovskii-Gopengauz—type (i.e., “interpolatory”-
type) theorem is an immediate consequence of [8, Corollary 2-3.4] (see e.g.
[8] for the history of this problem).

THEOREM 1.1 [8, Corollary 2-3.4]. Letr € No, k € N and f € C". Then
for any n > max{k +r —1,2r 4+ 1}, there is a polynomial P, € I1,, such that
(1.2) is valid and, moreover,

(13)  |f(@) — Pale)] < clr. )™ (2)eon(FO, ¥ (a)n 2 1/%),

if 1 —n=2 <|z| < 1.

It follows from [8, Theorem 3| that, for any 7 € R, the quantity
@?/F(2)n=2k=1/k in (1.3) cannot be replaced by ¢*?(z)n? with 8 > 1/k.
Hence, the estimate (1.3) provides the optimal rate of approximation near
the endpoints of [—1, 1].

It is a natural question if these estimates are valid if we approximate
g-monotone functions by g-monotone polynomials. Of course, as is rather
well known, (1.2) may not be valid in the g-monotone case for certain r and k
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even if n is allowed to depend on the function f that is being approximated.
For example, this is the caseif (1) 1< ¢<3,0<r<qg—landr+k>q+2
([16]if g =1, [21] if g =2 or ¢ = 3), and (ii) ¢ >4 and 7+ k > 3 ([1]).

Moreover, for any q,r,k,n € N, there exists a function f, € C" N A®@
such that (1.3) is not valid for any polynomial P, € II, N A (the construc-
tion of such an f,, is the same as in [14], see also [7,13,18]). This means that,
in the case r > 1, (1.3) cannot be true for all functions f € C" N A@ and all
n > N(k,r,q). We emphasize that this does not mean that, for each fixed
feC AW, (1.3)is invalid for sufficiently large n, i.e., (1.3) may still be
valid if n > N(f) (in fact, the proof of this fact in the case ¢ = k = 2 is the
main result of this paper).

If r =0 and k is “small”, then the situation is different: for any ¢,n € N,
if r=0and 1 <k <2, then (1.2) and (1.3) are both valid for g-monotone
approximation (it is possible to show that the case for k =1 follows from
that for k = 2). Indeed, the following interpolatory estimate follows from [4]
(g=1), [15,20] (¢ =2) and [2] (¢ > 3): for any ¢,n € N and f € C N AW,
there exists a polynomial P, € II,, N A@ guch that

(1.4) [f(z) = Pu(2)| < clg)wa(f,o(x)/n), @ €[-1,1],

where ¢(q) is an absolute constant. Additionally, (1.2) and (1.3) with n > 2
are valid for convex approximation (i.e., ¢ =2) if r = 0 and k£ = 3 ([8]), and
the case ¢ =3, r =0 and k = 3 or k = 4 is still unresolved (in fact, it is not
even known if (1.2) holds if (¢, r, k) = (3,0,4)).

Recently, we were able to show (see [13]) that (1.2) and (1.3) hold for
monotone approximation (¢ =1) if r € N, k =2 and n > N(f,r), and the
main purpose of this paper is to prove an analogous result for convex ap-
proximation (¢ = 2). In fact, we follow similar ideas and apply some of the
construction in [13], but there are some additional rather significant tech-
nical difficulties that we have to overcome in this case (for example, proofs
in the cases for r =1 and r > 2 turn out to be completely different). Also,
one of the important tools that we are using is our recent result [14] on con-
vex approximation of f € C" N AP, by convex piecewise polynomials (see
Theorem 8.1 below).

The following theorem is the main result in this manuscript.

THEOREM 1.2. Given r € N, there is a constant ¢ = c(r) with the prop-
erty that if f € C"NA®) | then there exists a number N = N(f,r), depending
on f and r, such that for every n > N, there is P, € II,, N A@) satisfying

(1.5)  |f(2) = Pa(@)] < er) (p(a)/n)" wao(f ) p(a) /n), =z € [-1,1].
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Moreover, for x € [-1,—1+n"2JU[l —n~21] the following stronger esti-
mates are valid:

(1.6) |f(z) = Pa(@)] < e(r)@ (z)wa (£, () /)
and
(1.7) £ (z) = Pa(x)] < c(r)e™ (@)wr (f7), 0*(x)).

REMARK 1.3. [14, Theorem 2.3] implies that Theorem 1.2 is not valid
with N independent of f.

We now discuss some corollaries and applications of Theorem 1.2.
Recall that, given a number o > 0, Lip* a denotes the class of all func-
tions f on [—1,1] such that wo(f{*1=Y ¢) = O (t*~Te1+1). Together with
the classical inverse theorems (see e.g. [12, Theorem 5 and Corollary 6)),
(1.2) implies that, if @ > 0, then a function f is in Lip* « if and only if
. —a -
(19) Jnt [l (7 = P = 0(0).

COROLLARY 1.4. Ifa >0 and f € Lip* aNA®), then there exists a con-
stant C = C(«) such that, for all sufficiently large n, there are polynomials

P, € II,, N A® satisfying

(1.9) [f(z) = Pa(2)] < C(p(x)/n)",  we[-1,1].

For 0 < a < 2, (1.9) follows from (1.4) (and was stated in [15]).
In order to state another consequence of Theorem 1.2 we recall that
W7 denotes the space of functions on [—1, 1] for which =1 is absolutely

continuous and || f(" | = ess SUDge[—1,1] £ (z)| < oo.

COROLLARY 1.5. For any f € W™ NA® | r e N, there exists a number
N =N(f,r), such that

f_Pn

()1 F™| oo
orminf1/m, ) oo = I e

[e.e]

1.10 su inf
( ) nZJI\)/ P,ell,NA®

In particular,

f—P, c(r .
Fall )y g
QO n

1.11 su inf
( ) nz,/lz/’ P, €Il,NA®)

It follows from [14, Theorem 2.3] that, if » > 2 and r > 3, then, re-
spectively, inequalities (1.10) and (1.11) are not true, in general, with N
independent of f. For all other r € N, these inequalities hold with A/ =1
which is a corollary of (1.4) with ¢ = 2.

Acta Mathematica Hungarica



CONVEX POLYNOMIAL APPROXIMATION

2. Notations and some inequalities for the Chebyshev partition

Most symbols used in this paper were introduced and discussed in [13].
For convenience, we list them in the following table which also includes sym-
bols introduced in the previous section. Note that, in the proofs below (but
not in definitions and statements), we often omit writing index “n” if it does

[P [43 7

not create any confusion (thus, we write “p” instead of “p,”, “x;” instead
of “x;,”, etc.).

Chebyshev knots and Chebyshev partition

xj:=2xj, =cos(jr/n), 0<j<n; 1for j <0 and —1 for j >n
(Chebyshev knots)
Ty := (2;)7_y (Chebyshev partition)
Ij = Ij,n = [a;j,xj_l]
hj = hj,n = |I]n| =Tj-1— T4
I; Uzlaxmﬁzj{zj} k= [Tmax{ij} Tmin{ij}—1)> 1 < 4,7 < n (the
smallest interval containing both I; and I;)
hij = Ll = St 3 B = Tmingi -1 — Tamaxding)
¥j = () = |/ (Jo — 25] + [ ;])
() =1 — 22
pn(T) =p(@)n t+n"2 neN, and po(z) =1
on(2) := min{1, ny(z)}
k-majorants
Pk = {1 € Cl0,00) [ ¥ 1, $(0)=0, and 15 (t2) <t (1)

for 0 < t; <t»}. Note: if f € O, then ¢(t) := t"wy,( (), 1)
is equivalent to a function from ®*+"
Piecewise polynomials on Chebyshev partition
Y =X, the set of continuous piecewise polynomials of degree <
k —1 with knots at z;, 1 <j<n—1

E,(i,l) = 21(617)1 the set of continuously differentiable piecewise polynomi-
als of degree < k — 1 with knots at z;, 1 <j<n -1

pj :=pj(S) =S5, 1 <j<n (polynomial piece of S on the interval
Ij)
_ lpi=pillz ( By \* k
bij(S,0) =P (mﬂ-) . where ¢ € ®*, ¢ £ 0 and S €
bp(S, ¢, A)  =maxi<;j<n{bi;(S,0)|l; C Aand I; C A}, where an in-
terval A C [—1,1] contains at least one interval I,
bk(S, ¢) = bk(S, ¢, [—1, 1]) = maxlgi,jgn b@j(S, ¢)
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Constants
C(v1,...,v.) positive constants depending only on parameters
7, ---,7, that may be different on different occurences
c positive constants that are either absolute or may only
depend on the parameters k£ and r (if present)
C; positive constants that are fixed throughout this paper
A" B iff CTIB< A< CB, for some positive con-
stant C' = C(71,...,7)

Indicator functions and truncated powers
X;j(z) = X[, 1)(z) =1, if z; <2 < 1, and := 0, otherwise
D;(x) = (2 —2j)4 = (2 — )y () = [2, x5 (8) dt

We now collect all facts and inequalities for the Chebyshev partition that
we need throughout this paper. Many of them are checked by straightfor-
ward calculations (also, see e.g. [5,13,19] for references). Unless specified
otherwise, it is assumed that 1 < j < n, z,y € [-1,1].

(2.1) n"to(z) < pu(x) < hj < bpu(x), =€ I;
(2.2) hjil < 3hj
(2:3) Pn(y) < 4pn(a)(jz =yl + pu(2))
(2.4) (lz =yl + pu(2))/2 < (|2 =yl + pn(y)) < 2(]z =yl + pn(2))
(2.5) pn(z) < |z —z;|, forany 0<j<nandz¢ (xjr1,z;-1)
on(z) <np(z) < o, (z), ifze[-1,x,-1)U][x1,1],
(2.6) {5n(:z) =1, if v € [xp_1,71]
(2.7) pi() < 8hy(|lz — 25| + pu(x))
pn () 2
28) (o 1o —ayt) <)
(2.9) pn(x) + |z — 25| ~ pn(z) + dist(z, I;)

(2.10) PRACHRE
j=1

n

pn() 1
(2.11) Z(pn(az) + dist(z, Ij)) =¢

j=1
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1 — 22 _
(212) @RS (L S @)
(2.13) i} () pn(x) < hj < eyt (x) pu()
(2.14) 3" (@)p(pn(@)) < ¢(hy) < ctb; ()P (pn ().

3. Auxiliary results on polynomial approximation of indicator
functions and truncated powers

Recall the notation

(3.1) ti(x) := (

cos 2n arccosx ) 2 ( sin 2n arccos x) 2
b

0 _ .
."L‘—ZI?]- T €

where Z; := cos((j —1/2)m/n) for 1 < j <n, :E? :=cos((j—1/4)m/n) for 1 <
j <n/2, 2% :=cos((j —3/4)m/n) for n/2 < j < n, and note that t; € Iy, o
and, for all7 1 <5 <n,

(3.2) tj(x) ~ (Jo —a;| + hy) 2, ze[-1,1],

(see e.g. [19] or [10, (22), Proposition 5]).
For 71,7 € Ng, §,p e Ny and 1 < j < n, we let

7;(517) = 7;771(!13) = 7},n($§71772757/ﬁ)

—d! / (5 — )™ (o1 — 9)* (1~ )5t (y) dy,
-1

where d; := dj(v1,72,&, ) is the normalizing constant such that 7;(1) = 1.
Then, it is possible to show (see e.g. [9, Proposition 4]) that, for sufficiently
large p, the function 7; is well defined and is a polynomial of degree < cun
(with some absolute constant c), and

dy ~ (L 2m) (L =y b 3,

Also,
1

(3.3) 1—xj_1</ T()dt<1—a;, 1<j<n.
-1

Indeed, denoting for convenience ¥(y) := (y— ;)" (xj_1 —y)"* (1 — y2)5t7(y),
we have

1 1 t 1
/_1frj(t)dt<1—xj = /_1/_119(y)dydt<(1—xj)/_ () dt

1
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1
— / (t—z;)0(t)dt =dj(n+1,7,& 1) >0
-1

(the other inequality is proved similarly).
Now, for the polynomials

T](‘T) = 7;,11('7'.; 070757/1’) and 7’:](1.) = 7;,n(x7 17 1757#)7

the following lemma was proved in [13].

LEMMA 3.1 [13, Lemmas 4.1 and 4.2]. If a,f > 1, then for sufficiently
large & and p depending only on « and B and for each 1 < j <n—1, the
polynomials 7; and 7; of degree < C(a, B)n satisfy

(34)  Tj(x) = Cla BT 8 (@) @), @ e [-1,1],

(3.5) 7i(z) <0, for x € [-1,2;]U [x;1,1],

and for all x € [—1,1],

(3.6) max{ |7} ()|, [7(z)|} < Cla, B)| ;|70 ()¢ (x)

and

(37 max{|x;(z) - (@), x;i(z) - F @)} < Cla, B)OG ()0 ().

REMARK 3.2. The statement of this lemma is not valid if j = n since
Xn =1, 7(—1) =0 and J,(—1) = 0.

Inequalities (3.3) imply that, for each 1 < j < n — 1, there exists a con-
stant 0 < A; < 1 such that the polynomial

(3.8) Qj(x) :== Qjn() == Qjn(;71,72, 8§, 1t)
= [T+ (1= X) Ty (e d

-1

satisfies Q;(1) = 1 — ;. This implies that, if 7; is such that (3.7) is satisfied,
then Q; provides a “good” approximation of ®;, 1 < j < n — 2. The proof
of this fact is rather standard. Indeed, first note that, for 1 < j <n —2 and
x € [-1,1],

(@) = x1(@)] < [xa ()] < COR(a)) (x) and (@) ~ Wy ().

Now, if < z;, then (assume that 5 > 1)

(2) — ()] < \/j(xjma) O]+ (L= AT (0) — (1))
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<c / 52 (602 (1) di < €62 (x) / L8 (ay — £+ 1)) dt
1 00

< C|L; |55 @)y ()

and, if > z;, then, similarly,

1
|j(2) — Qj(x)| = / (x;(1) — Q;(1)) dt‘

<

1
/ (MIT3(8) = x5 ()] + (1= 2)[Tja(t) — x;(1)]) dt‘

< C|L; 55 (@) 7 (x).

Now, for 1 < j <n — 1, defining
{ ]:](SB) = ]:j,n(l') = Q2j,2n(m§ anagmu)a
Fi(x) = Fjn(z) = Qaj12n(x;1,1,€, 1),

and noting that x;, =x2j2n, hjn~hojon~h2j—12n, Vjn~V2j2n~V25-12n,
On ~ 02, we have the following result which follows from Lemma 3.1.

(3.9)

LEMMA 3.3. If o, > 1, then for sufficiently large & and p_depending

only on a and B and for each 1 < j < n—1, polynomials F; and F; of degree
< C(a, B)n defined in (3.9) satisfy

(3.10) F(@) > Clo, B85 (2)0] " (@), 2 e [-1,1],
(3.11) Fl(x) <0, for x € [~1,2;]U [z;_1,1],

and for all x € [—1,1],

(3.12) max{ |F} ()], |7/ (2)|} < C(a, B)|I;| 7165 ()0 (x)

(313)  max{|x;(z) - Fj(@)l,|x;(x) — Fj@)|} < Clo B)35(2)¢] (w)
and

(3.14) max{[®;(z) — F;(2)],1@;(z) — Fj(2)|} < C(a, B)|L18; (e~ ().

4. Auxiliary results on properties of piecewise polynomials

LEMMA 4.1 [13, Lemma 5.1]. Let k€N, ¢ € ®*, f<c C[-1,1] and
S € Xy If wp(f,t) < o(t) and [f(z) — S(@)| < ¢(pn(x)), x € [-1,1], then
bi(S, ¢) < c(k).
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LemMA 4.2 [6, Lemma 2.1). Let k>3, ¢ € ®* and S € B\). Then
bi(S, 9) < c(B)llppd ™" (pn)S" [lo-

The following lemma on simultaneous polynomial approximation of
piecewise polynomials and their derivatives is an immediate corollary of [13,
Lemma 8.1] (with ¢ =r =2 and k > 2).

LEMMA 4.3 [13, Lemma 8.1]. Lety >0,k €N, ¢ € ®* and let n,n; € N
be such that ny is divisible by n. If S € Xy, ,,, then there exists a polynomial
D, (-, 5) of degree < Cny such that

(4.1) 5() = Da, (z,5)] < C03(2)d(pn())br (S, 6).

Moreover, if S € C! and A := [x,-,2,.], 0 < po < p* < n, then for all x €

A\ A{z; ;L:_ll, we have

(12 5 (a) = Dl (2. 8)] < Capfa) ")

X (bk(S, ¢, A) + b (S, ¢) 7?1 <dist(:1:,p[i(i)1] \A))Wl)'

All constants C may depend only on k and v and are independent of the
ratio mi/n.

5. Convex polynomial approximation of piecewise polynomials
with “small” derivatives

LEMMA 5.1. Let a >0, k € N and ¢ € ®*, be given. If S € Ty, N AR
s such that

(5.1) s@l < 0w e o)\
(52)  0<8(aj4) — §'(a;-) < ‘z’if’ ’}f,’ﬁ)) L l<j<n-1,
and

(5.3) S"(z)=0, z€[-1,2p-1)U (21,1],

then there is a polynomial P € A® N1lg,, C = C(k,a) such that

(5.4) 1S(z) = P(z)| < C(k, ), (x) ¢ (pn(2)), 2 € [-1,1].
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PROOF. Denote by S; the piecewise linear continuous function interpo-
lating S at the points z;, 0 < j <n, and let [; := 5 Then S; € A(z),

1,

(5.5) Si(x)=S(z), zelLUI,,

and, for z € I;, 1 < j < n, we have by Whitney’s inequality and (2.1)
1S(2) ~ S1(2)] < ewa(8, s ;) < A28 .ty < eolhy),

which can be rewritten as

(5.6) 1S(x) = S1(z)| < cd(pn(x)), x€[-1,1].

We now write S; as
Si(x) = S1(=1)+ 54 (— x+1+§:% ), ;=S (xj+) — S (xj—),

and note that, by Markov and Whitney inequalities,
0 <y = U(x;) — Uy (25) < ehi Il = Liallnun,,
< chtwa (S, by I U Iia) < chi (115" ey + 1" e ry00))
+ (' (zj+) = §'(x5—)) <ch;'o(hy), 1<j<n—L1
Now, if

P(z) = S1(-1)+ S{(-1)(z+ 1) —i—Za]

then P is a convex polynomial of degree < Cn and, in view of (5.5) and
(5.6), we only need to estimate |S1(z) — P(z)|. Note that (2.13) implies, for
all1 <j<nandzel[-1,1],

d(hy) < dlevy (@)pa(@)) < CyH (@) @(pn(2))-
Hence, by Lemma 3.3 and (2.10), we have

n—1
Ene: z)| < Z aj|®;(x) — Fi(@)] < C Y dhy)oa ()] ()
j=1
n—1
< C85(x)d(pn(2)) D0 (@) < CO5(2)d(pn(x)),
j=1

provided 8 > k+2. O
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6. One particular polynomial with controlled second derivative

All constants C' in this section may depend on k, o and S3.
We start with the following auxiliary lemma.

LEMMA 6.1 [17, Lemma 9]. Let A := {jo,...,jo+lo} and let A1, Ay C A
be such that #A1 = 2y and #As =ly. Then, there exist 211 constants a;,
i € Ay, such that |a;| < (lo/l1)? and

1 Z(m_$j)+lll > aj(x— )

l
2 jea, jEA;

0.

LEMMA 6.2. Let a >0, k€N, k>2 >0 be sufficiently large (5 >
k+7 will do) and let ¢ € ®F be of the form ¢(t) := tp(t), ¢ € ®F~1. Also,
let E C [—1,1] be a closed interval which is the union of mpg > 100 of the
intervals I;, and let a set J C E consist of my intervals I, where 1 <mj <
mp/4. Then there exists a polynomial Qn(x) = Qn(z, E,J) of degree < Cn,
satisfying

" ME o, \ P(Pn(x pn(z B
(6.1) @nlw) 2 C my o' (@) (p%((x))) (max{pn(x),(di)st(x,E)}) ’
where x € JU ([-1,1] \ E),
(6.2) Q)= -5 ae g
and
(6.3)
Qu(@)] < Cmba@pnoton) 3 (M re L)

jZIjCE

where a1 = 8, f1 =60(a+ P)+k+1 and ky =k + 6.

PROOF. As in the proof of [13, Lemma 9.1], we may assume that I,, ¢ E
provided that the condition mj < mpg/4 is replaced by mjy < mpg/4. Also,
we use the same notation that was used in [13]: p:= pp(x), 0 := 0,(x), ¥; :=

¥;(),
E={1<j<n|LcE}, TJ:={1<j<n|I;cJ},
jer=min{j|jec}, j=max{j|jec},
A:=TJU{j,j*} and B:=E&\ A
Now, let E C E be the subinterval of E such that
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(i) E is a union of [mg/3] intervals I, and
(ii) E is centered at 0 as much as F allows it, i.e., among all subintervals

of E consisting of |mp/3] intervals I;, the center of E is closest to 0.
Then (see [13]),

(6.4) if [ Cc Eand I; C E\ E, then |Ij|>|I],
E -

(6.5) |I;]| ~ 1] , forallI; C E,
mpg

and,withgzz{lgjgn\fjcﬁ} andg::Bﬂg:g\A,
(6.6) #B > mp/20.

Note that index j = n is in none of the sets A, B and B.
It follows from Lemma 6.1 (lo ~mpg, Iy ~ |#B/2] ~mg, ly ~ my) that
there exist constants \;, i € B, such that |\;| < ¢, i € B, and

(6.7) :iE Z(x—xj)—i-Z)\i(x—xj) = 0.
7 jeA jeB

We now let i, be such that I;- is the largest interval in E and hy == hy =
|IZ* |7 and

ZAjfj@c)),

jeB

¢(hs) (mE
Qn(z) =k n \m, ij(x) +
JeEA
where k is a sufficiently small absolute constant to be prescribed and

5 F ity <o,
PO F, ifA >0,

It follows from (6.4) that
hj <h., je€&,
and so p < hy, and ¢(p)/p = ¥(p) < Y(hi) = ¢(hi)/hy, for all z € E as well

as all z € E such that h, > p. If z ¢ E and h, < p, then by (2.1), (2.3) and
(2.4)

ohe)
he — p

S(p)hi™ _ o(p)

k=1 k-1
EZ max{h; ", hj.
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00 ph2
o (min{lo—aj |, |z -z} + )t
k—2
P
> co(p) :

(max{p, dist(z, E)})k-1

Hence,

¢(he) o o(p) p kol
(6.8) h >c ) <max{p, dist(x,E)}) , forall z € [-1,1].

We now note that )\Z']:;-/(SL‘) >0ifjeBandz e JU([-1,1]\ E) (as well
as for any « € I;, U I;+). Hence, for these z, using Lemma 3.3, (2.13), (2.8)
and (6.8) we have

Qg(x) > ﬂ@b(h*) . mg Z“Fjﬁ(x) > C:‘i(58a(x) ¢(hh* mg Zh wSO (a+8)

h m
* T jeA * T jeA

> Crte() P T Syt
Pl ]EA

60(a+B)+2
> CK5804($)¢(Z*) . mg 2 : ( P >
phe My = p+ |z —
> Cré®*(x)

9

mp o(p) o 60(a+8)+k+1
my  p> \max{p,dist(z, E)}

since, for x ¢ E, max{p,dist(z, E)} ~ min {|z — z;-|, |x — z;,|} + p, and if
x € J, then € I; for some j € A, so that p/(Jx — z;| + p) ~ 1 for that j.
Ifx € E\J and z € I, UIj-, then there exists jo € B such that « € I;;.

If jo & B, or if jy € B and Nj, > 0, then, clearly, Q//(z) > 0. Otherwise, since
hs ~ hj, by (6.5), we have using (3.12)
Qi(x) > KXjyp(h)h Fil () > —Cr(hj,)h; 20,

> _Cx ¢(§) 5> _¢>(§) 5,
p p
for sufficiently small k.
We now estimate |Q,(z)|. Let

L(z) = ¢§1* (ZEZ@ +Z>\j<1>j(a:)>,

]E.A ]Gg
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It follows from [13, (9.8)] that, for any j € &, cmp < |E|/hj < m%.
This implies that h. < ¢|E|/mg < emgh;, j € £, and so ¢(h.) < emho(h;),
j € €. Hence, using (3.14) as well as the estimate (see [13, pp. 1282-1283])

S ol <con) S P

. 2
jee jee (|2 %H‘P)

which is true if § > k 4+ 7, we have

D (Fila) = @) + > N(Fi(x) — ()

Qula) — L()| = 52

he M3 S jeB
< CmEéo‘ Zh wﬁ 1 < ka+15a2¢ 1/}5 1
Je& JjEE
hip
< ka+15a¢ D J )
CR D DY PRI

It remains to estimate |L(x)|. First assume that z ¢ E. If z <z, then
Qi(x)=0,j€ AU g, and L(xz) = 0. If, on the other hand, x > z;_, then
Qi(z)=x—=z;, j€ AU B, so that (6.7) implies that L(z) = 0. Hence, in
particular, L(z) = 0 for x € I U I,.

Suppose now that x € E'\ I; (recall that we already assumed that F
does not contain I,,). Then, as above, h, < ¢|E|/mg < comp and so ¢(hs)
< emho(p). Also, hy > \E|/m% Hence, since 6 = 1 on [x,—1, 1],

I ()|<c (mEZp; xj\+cZ|:1;—x]|>

JEB

< Cmh (Tiﬂ) Z |z — z;| < Omkt? QTEH) Z |E| < Cmi6%9(p).
JjeE JjeE

It remains to note that

LB 2 SAFLD AT D DI B

jee& je&
and the proof is complete. [
7. Convex polynomial approximation of piecewise polynomials

LEMMA 7.1 [6, Lemma 4.3]. Letk >3, ¢ € ®* and S € E,(glzl be such that
bi(S,¢) < 1. If 1 < p,v < n are such that the interval I,,,, contains at least
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2k — 5 intervals I; and points x} € (x;,xi—1) so that
pr (@) (pn(a))S" (=) < 1,
then, for every 1 < j <n, we have
e~ (pn)S" iy < c(R)[G =)™ + (G —v)*™].

THEOREM 7.2. Let k,r € N, r>2, k>r+1, and let ¢ € O be of the
form ¢(t) == t"y(t), ¥ € ®F". Also, let dy >0, d_ >0 and o > 0 be given.
Then there is a number N' = N(k,r,¢,d+,d_,a) satisfying the following as-

sertion. If n >N and S € Z,(Cli NA® s such that

(7.1) br(S,¢) <1,
and, additionally,
(7.2) if dy >0, then do |l < miIn S"(z),
x€ls
(7.3) if dpe =0, then SY(1)=0, forall2<i<k—2,
(7.4) if d_ >0, then d_|I, |2 < H}in S"(x),
ASY P
(7.5) if d_ =0, then SO(=1)=0, forall2<i<k—2,

then there exists a polynomial P € A® NIlg,, C = C(k, ), satisfying, for
all x € [-1,1],
(7.6)  [S(x) = P(x)| < C(k, @) 65 (x)p(pn(x)), if dy >0 and d_ >0,
(7.7)
|S(z) — P(x)| < C(k, @) 572 (2)¢(pn()),  if min{dy,d-}=0.
The proof of Theorem 7.2 is quite long and technical and is similar (with

some rather significant changes) to that of [13, Theorem 10.2]. It is given in
the last section of this paper.

8. Convex approximation by smooth piecewise polynomials

THEOREM 8.1 [14, Theorem 2.1]. Given r € N, there is a constant ¢ =
c(r) such that if f € C"[—1,1] is convez, then there is a number N = N (f,r),
depending on f and r, such that for n > N, there are convex piecewise poly-
nomials S of degree 4+ 1 with knots at the Chebyshev partition T, (i.e.,

S e onN AR satisfying

(81)  |f(2) = S(x)| < e(r)(p(@)/n) wa(f1), p(z)/n), @€ [-1,1],
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and, moreover, for x € [—1,—1+n"?JU[1 —n~21],

(8:2) |f(z) = S(2)| < e(r) @™ (@)wa(F), 0 (x) /)
and
(8.3) f(z) = S(2)] < e(r) ™ (2)wr (7, 0% (x)).

As was shown in [14], N in the statement of Theorem 8.1, in general,
cannot be independent of f.

We will now show that the following “smooth analog” of this result also
holds.

THEOREM 8.2. Given r € N, there is a constant ¢ = c(r) such that if
f € C"[—1,1] is convez, then there is a number N'= N (f,r), depending on f
and r, such that for n > N, there are continuously differentiable convex piece-
wise polynomials S of degree r + 1 with knots at the Chebyshev partition T,

(i.e., S € 27(“227” NA®), satisfying (8.1), (8.2) and (8.3).

Let S, (z,,) denote the space of all piecewise polynomial functions (ppf)
of degree r — 1 (order r) with the knots z,, := (2;)[g, a =1 20 < 21 < -+ <
Zm—1 < zZm = b. Also, the scale of the partition z,, is denoted by

| Jjz1]
A4 =
(8.4) U(am) = max |
where J; := [z}, 2j41].
In order to prove Theorem 8.2 we need the following lemma which is an
immediate corollary of a more general result in [11].

LEMMA 8.3 [11, Lemma 3.8]. Let r € N, z,, 1= (%)%, a =: 20 < 21 <
o< Zmo1 < Zm = b be a partition of [a,b], and let s € AP NS, 9(2m).

Then, there exists 5 € A® NS, y2(2m) N Ca,b] such that, for any 1< j
<m-—1,

(85) I8 = 38ll[z;_12500) < (1, (Zm) ) wrra(s, 2j42 — 2j-2; [2j-2, Zj+2]) ,
where zj == 2z, j <0 and zj 1= 2z, j > m. Moreover,
(8.6) §(a) = s (a) and V() =s"(), v=0,1.

PROOF OF THEOREM 8.2. Let n be a sufficiently large fixed number,
and let Sp € ¥y 40, N A® be a piecewise polynomial from the statement
of Theorem 8.1 for which estimates (8.1)—(8.3) hold. Let a := z2,_12n,
b:= x1 9, and let z,, := (2;)]_, be such that 2z := a, 2, := b and z; := z,,_;,
1 <i<n-—1 (note that z, C T,). Clearly, Sy € Sy12(zn), ¥(z,) ~ 1, and
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Lemma 8.3 implies that there exists So € A@ NS, 4 5(z,) NC? [a, b] such that,
forany 1 <j <mn,

(8.7) 150 = Soll7, < e(r)wr+a(So, hys Tj)

where I; := I; N [a,b] and J; := [xj12,7;_2] N [a,b], and

(8.8) S a) =S (a) and S () =8"®), v=0,1.
We now define

- SO(:L‘)? if x e [_L 1] \ [CL, b],
Sle) = {go(w), if x € [a,b].

T
by 2n), and (8.1) also holds (clearly, it does not matter if we use n or 2n
there) since ¢(z)/n ~ hj, for any v € Jj, 1 < j <n. Thus, forz € [;, 1 < j
<n,

Clearly, S € 2(22’% N A®) | estimates (8.2) and (8.3) hold (with n replaced

|f(z) = S(a)] < |f(2) = So(a)] + 150 — Sollz,
< cllf = Sollg, + cwryalf, hyjs T3) < ehfwa(F7), hy)

< e(p(x)/n) wa(f7), p(x) /m). O

REMARK 8.4. It follows from [11, Corollary 3.7] that Theorem 8.2 is, in
fact, valid for splines of minimal defect, i.e., for S € 3,15, NC" N A®),

9. Proof of Theorem 1.2

9.1. The case for r > 2. Let S be the piecewise polynomial from the
statement of Theorem 8.2. Without loss of generality, we can assume that .S
does not have knots at 1 and x,_1 (it is sufficient to treat S as a piecewise
polynomial with knots at the Chebyshev partition T5,). Then,

li(z) := S(ac)‘hul2

/ (r)
=+ TPV T ey e e -y
and
ln(z) = S(x)|1nu1n,1
e+ Y e+ O ey a1,

1! !
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where a (n, f) and a_(n, f) are some constants that depend only on n and f.
We will now show that

(9.1) n~2max{|ay (n, f)|,la_(n, f)|} = 0 asn — oo.

Indeed, it follows from (8.3) that, for all x € I; U I,

o 1 =) < 115~ T
! (r)
@@= Py W ey
1
San(fO1-a)+ 1)!1(1_3;)7« / (f7 ) —f(T)(l))(t—m)T_ldt‘

é Cwl(f(r)v 1- J")v

and, in particular, n=2|ay(n, f)| < cwi(f"),n"2) = 0 as n — co. Analo-
gously, one draws a similar conclusion for |a_(n, f)|.

For f € C", r > 2, let i, > 2, be the smallest integer 2 < i <r, if it
exists, such that f((1) # 0, and denote

(2r) 7 fEO(D)], if iy exists,
0, otherwise.

D+(T7f) = {

Similarly, let i— > 2, be the smallest integer 2 <14 < r, if it exists, such that
f@(=1) # 0, and denote

2r) 7L FE)(—1), if i exd
D-(r.f) = {((),T) S otileri/issj.s,
Hence, if n is sufficiently large, then
(9.2) S§"(x) > Dy(r, YA —2)"72, z € (x9,1],
and
(9.3) S"(x) = D_(r,f)(z+1)"7% =z €[-1,2,2).

PrOOF OF THEOREM 1.2 IN THE CASE r > 2. Given r € N, r > 2, and
a convex f € C", let ¢ € ®2 be such that wy(f) t) ~ (), denote ¢(t) :=
t"1)(t), and note that ¢ € ®™+2.

Acta Mathematica Hungarica



K. A. KOPOTUN, D. LEVIATAN, I. L. PETROVA and I. A. SHEVCHUK

For a sufficiently large N’ € N and each n > N, we take the piecewise
polynomial S € 3,4, of Theorem 8.2 satisfying (9.2) and (9.3), and observe
that

wria(f,1) < wn(FO, 1) ~ (1),
so that by Lemma 4.1 with £ = r 4+ 2, we conclude that
bri2(S5, ) < c.
Now, it follows from (9.2) and (2.2) that
min §”(x) > Dy (r, f)I L[ > 372D (r, f)| 12|

z€ls
and, similarly, (9.3) yields
min S”(x) > 372D _(r, f)|L,_1|">.

z€l, 1

Hence, using Theorem 7.2 with k=742, dy :=37"T2D,(r,f), d_ =
372D _(r,f) and a =2k —2=2r+2, we conclude that there exists a
polynomial P € Il., N A®) such that

(9-4) |S(2) = P(2)| < c0y (@) (2)(pn(@), @ € [-1,1].

In particular, for x € I; U I,,  # —1, 1, using the fact that p,(z) ~ n~
for these , and t~2¢)(t) is nonincreasing we have

2

(9-5) |S(z) = P(a)] < e(np(x))* 2 pl, ()1 (pn(@))
I npn(x) 2 QD((L') T r QD(.Q’,')
< g ("2 () e 10, 70),

In turn, this implies for x € I1 U I,,, that
p(z)\" (r) o(z)
$@) = P@)| < (77 ) w0, 7)),
which combined with (9.4) implies
_ p(z)\" ) () _
(9.6) 8@ —P@)|<e(¥7) w077, ael-11)

Now, (9.6) together with (8.1) yield (1.5), and (9.5) together with (8.2) yield
(1.6). In order to prove (1.7), using the fact that t'w;(f("),¢) is nonincreas-
ing we have, forx € [ UIL,, v # —1,1,

(9.7) |S(x) = P(x)] < e(np(@))” 2}, (x)wr (£, pu())
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< a2 42(0) (10, 2 (0) < e (DDn( S0, (),

which together with (8.3) completes the proof of Theorem 1.2. [

9.2. The case for r = 1. It is possible to show that, in order to prove
Theorem 1.2 in the case r = 1, it is sufficient to construct a convex polyno-
mial P, that approximates the quadratic spline S from Theorem 8.1 (with
r = 1) so that

1S(2) = Pa(2)] < cws(f, pn(2)),

and
(9.8) P,(£1) = 8S(£1) and P, (&1)=5'(+£1).

In order to construct such a polynomial, one can use exactly the same method
as in [8] (using S instead of f and 2n instead of n) with the only difference
that extra factors (1 — y?) should appear inside integrals in the definitions
of @j, Q; and Tj (see [8, p. 158]). All estimates are then still valid and ei-
ther follow from the statements in Section 3 or are proved similarly. This
change is needed in order to guarantee that (9.8) holds because addition of
these factors implies that the first derivatives of these modified polynomials
Qj, Q; and Tj are 0 at +1 which, in turn, implies that the first derivatives

of other auxiliary polynomials o;, R; and R; at £1 are “correct”. We omit
details.

Appendix A. Proof of Theorem 7.2

Throughout the proof, we fix f:= k+7and v := 5 — 1 =60(a+3) + k.
Hence, the constants C1,...,Cs (defined below) as well as the constants C,
may depend only on k and a. We also note that S does not have to be twice
differentiable at the Chebyshev knots z;. Hence, when we write S”(x) (or
S!(x),1 <1 <4) everywhere in this proof, we implicitly assume that = # z;,
1<j<n—1.

Let Cy := C, where the constant C' is taken from (6.1) (without loss of
generality we assume that C; < 1), and let Cy := C with C taken from (4.2).
We also fix an integer C'3 such that

(A.1) C3 > 8k/Ch.
Without loss of generality, we may assume that n is divisible by Cs, and put
ng :=n/Cs.

We divide [—1, 1] into ng intervals

Eq = (2404, T(g-1)cs] = Lo U~ Ul g no, 11, 1< g < no,
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consisting of C3 intervals I; each (i.e., mp, = C3, for all 1 < g < ng).
We write “j € UC” (where “UC” stands for “Under Control”) if there
is 7 € (zj,2;-1) such that

5CY ?b(pn (17; ) )

(42 TEDE )

We say that ¢ € G (for “Good”), if the interval E, contains at least
2k — 5 intervals I; with j € UC.
Then, (A.2) and Lemma 7.1 imply that,

Co(p)

(A.3) §"(z) < 2

re by, ged.

Set E = Ung E,, and decompose S into a “small” part and a “big” one,
by setting

0, otherwise,

&@%:{ywm ifo ¢ E,

and

0, ifz ¢ E,
S"(x), otherwise,

so(z) := S"(x) — s1(x) = {

and putting

T

Sﬂ@;:&}D+%x+DS%4)+/)@—uﬁﬂwdw

-1

So(x) := /r (z — u)s2(u) du.

-1

(Note that s; and sy are well defined for z # z;, 1 < j <n —1, so that S;
and Sy are well defined everywhere and possess second derivatives for x # x;,
1<j<n-1)

Evidently, 51,52 € Z,(j?)l, and

S7(z) >0 and SY(z) >0, =xe[-1,1].
Now, (A.3) implies that

Co(p)

S1(z) < 2

x € [—-1,1],
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which, in turn, yields by Lemma 4.2, b (51, ¢) < C. Together with (7.1), we
obtain

The set E is a union of disjoint intervals F}, = [a;, by], between any two
of which, all intervals £, are with ¢ € G. We may assume that n > C3C}4,
and write p € AG (for “Almost Good”), if F}, consists of no more than Cjy
intervals E,, that is, it consists of no more than C3C} intervals I;. Hence,
by Lemma 7.1,

C
(A.5) Sy (z) < ¢2(,0)’ z e F,, pe AG.
P

One may think of intervals Fy,, p ¢ AG, as “long” intervals where 5" is
“large” on many subintervals I; and rarely dips down to 0. Intervals Fj,
p € AG, as well as all intervals £, which are not contained in any F),’s (i.e.,
all “good” intervals E,) are where S” is “small’ in the sense that the in-
equality S”(z) < C¢(p)/p? is valid there.

Set F:= g Fp, note that £ = e o Fp UF', and decompose S again
by setting

0, otherwise,

{S”(w), ifx € F,
S4 1=

and

0, ifzeF,
s3(7) := §7(2) = sa() = {S”(:p) otherwise
and putting

(A.6) Ss3(z) = S(-1)+ (z +1)5'(-1) + / (x —u)s3(u) du,

-1

Sa(x) := /x (x — u)sq(u) du.

-1

Then, evidently,

(A.7) 3,81 € S}, S3+81=35,
and
(A.8) S5(z) >0 and Sy(z) >0, =ze€[-1,1].
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We remark that, if z & U, ca¢ Fp, then s1(z) = s3(z) and sz(z) = sa(x).
If 2 € Upeag Fp, then s1(x) = sa(z) = 0 and sz(z) = s3(x) = S"(2).
For z € Upe ag Fp, (A.5) implies that

s4(x) = () < C 0.

p
For all other z’s,
8j(z) = S < %)
We conclude that
(A.9) sl < P00 e,

p

which by virtue of Lemma 4.2, yields that bg(Ss,¢) < C. As above, we
obtain

(A.10) bi(S1, @) < bp(S3,0) +br(S,0) <C+1< [C+1] =: Cs.

We will approximate S3 and Sy by convex polynomials that achieve the
required degree of pointwise approximation.

A.1. Approximation of S3. If d, >0, then there exists N* € N,
N* = N*(dy, ), such that, for n > N*,

o(p)

- d T r—2
5 =P ) < +I22

Cs <0t S"(x), wely,

where the first inequality follows since 1(p) < ¢(2/n) — 0 as n — oo, and
the second inequality follows by (7.2). Hence, by (A.9), if n > N*, then
sg(x) # S"(z) for x € Iy. Therefore, since s3(z) = S"(x), for all z &€ F, we
conclude that I C F, and so F; C F, and s3(x) =0, x € Ey. In particular,
sg(z) =0, z € 1.

Similarly, if d_ > 0, then using (7.4) we conclude that there exists N**
e N, N** = N**(d_, ), such that, if n > N**, then s3(z) =0 for all x € I,,.

Thus, we conclude that for n > max{N*, N**}, we have

(A.11) sg(z) =0, forallzel,UlL,.

Therefore, in view of (A.7) and (A.8), it follows by Lemma 5.1 com-
bined with (A.9) that, in the case d; > 0 and d_ > 0, there exists a convex
polynomial r,, € Ilg,, such that

(A.12) |S3(x) —rp(z)] < C6%(p), =€ [-1,1].
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Suppose now that d; =0 and d_ > 0. First, proceeding as above, we
conclude that s3 =0 on [,,. Additionally, if F4 C F, then, as above, s3 =0
on I; as well. Hence, (A.11) holds which, in turn, implies (A.12).

If By ¢ F, then s3(z) = S"(z), x € I, and so it follows from (7.3) that,
for some constant A; > 0,

s3(x) =8"(x) = A (1 —2)F 3, zel.

Note that A; may depend on n, but by (7.16) we conclude that,

¢(pn (1)) o
A < Cs (1= 21)*3p2(z1) ~ 2k 2(25(7% 2).

Hence, for x € Iy,
(A.13) SY(2) = s3(z) = Aen®*2p(n=2)(1 — )k 3,

where Ag is a nonnegative constant that may depend on n but Ay < C.

We now construct S3 € Xy, o, which satisfies all conditions of Lemma 5.1
(with 2n instead of n). Note that z; := x;, = 22y, denote § := 1 2, and
define

_ S3(x), if v <,
Sg(x) := ¢ S3(1) + (z —1)54(1) =: L(z), if&<a<1,
(), if x € [z1,€],

where £(z) is the linear polynomial chosen so that Ss is continuous on [—1,1],

ie., l(z1) = S3(z1) and £(¢) = S3(1) + (£ — 1)55(1) = L(§). Clearly, S5 €

C[-1,1] (and, in fact, is in C1[—1,11)), S§(x) < Cp~2¢(p), x & {a:]};bz_ll U
{¢}, and §§’ =0 on I; 2, UI,. Note that §§ may be discontinuous at x1 and
&, but, evidently, the slope of L is no less than the slope of ¢, so that §3 is
convex in [z, 1].
Denote
Sp:=83—L, Sp:=83—L and fy:=(—1L,

and note that

~ _Jo, x € [¢,1],
o) = {m:c), v € fo,€].

Also, 01 (z1) = Sp(z1) and £1(§) = §L(§) = 0, and in view of (A.13),
(A.14) 0 < SL(.T) = Sg(x) - Sg(l) - ((L‘ - 1)3{;(1)
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1
= / (u — x)s3(u) du = Asn®**2p(n~"2)(1 — )k, z eI,
xT

where A3 < C. Now, the tangent line to S;, at x = 1 is

y(x) = Sp(x1) + (z — 1) ST, (21)
= A3n*2p(n" (1 — :El)k_2(1 —z1 — (k=1)(z — 1)),
which intersects the z axis at

-z  1+m:
< = £.
T+ E—1 = 9 < Tion =¢
Hence, the slope of £, is no less than the slope of that tangent and, in turn,
we conclude that the slope of ¢ is no less than S5(z1), so that Ss is convex
in [-1,1].
Further, we have,

(A.15) |S5(z) — S3(2)| = |Sp(z) — Sp(x)| < Sp(x) + Si(z)
< Sp(z1) 4 Sp(x1) = 25 (x1) < Cod(n™2), x € [x1,£],

and

(A.16) |S5(z) — S3(x)| = |L(z) — Ss(x)| = Sr(2)

= Asp(n 2?21 —a)F 7t < C6*2(n ), we €]
Note that S’vg may have (nonnegative) jumps at z; and . However,
(A.17) SH(E+) = S3(6-) + Si(a1+) — Sy(a1-)
= S5(1) = S3(21) = =S (1) < Cnp(n~?),

so that Lemma 5.1 implies that there exists a convex polynomial r,, € Il
such that,

|S3(x) = (@) < C5%¢(p), € [-1,1].

Observing that S3 = S5 on [—1,21], and combining with (A.15) and (A.16)
(recalling that n=2 < p), we conclude that

|S5(z) — S3(x)| < CO*2¢(p), = €[-1,1],
so that

(A.18) 1S5(2) — rp(x)| < ComMa2k=2bg ) 2 e [—1,1].
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Finally, if d_ =0 and d4 > 0, then the considerations are completely

analogous and, if d_ = 0 and dy = 0, then S5 can be modified further on I,
using (7.5) and the above argument.

Hence, we’ve constructed a convex polynomial 7, € Ilg, such that, in
the case when both d; and d_ are strictly positive, (A.12) holds, and (A.18)
is valid if at least one of these numbers is 0.

A.2. Approximation of S;. Given a set A C [—1, 1], denote

A° = U I; and A% .= (A%,
LNAZ£D

where [y =0 and I,,41 = (. For example, [z7,z3]¢ = [xg,22], If = I U I,
etc.

Also, given subinterval I C [—1,1] with its endpoints at the Chebyshev
knots, we refer to the right-most and the left-most intervals I; contained in
as EP,(I) and EP_(I), respectively (for the “End Point” intervals). More
precisely, if 1 <y <v <n and

v
1=,
i=p

then EP, (I) := I, EP_(I) := I, and EP(I) := EP,(I)UEP_(I) = I,U1,,.

For example, EP[-1,1] := 1, EP_[-1,1] :=I,,, EP{[x7,x3] = [x4, 73] =

Iy, EP_[x7,x3] = [v7,26] = I7, EP[x7, 23] = I4 U I, etc. Here, we simplified

the notation by using EPy[a,b] :== EP+(|a,b]) and EPla,b] := EP([a,b]).
In order to approximate Sy, we observe that for p € AG,

Si(x) = 83(x), =€ E",
so that by virtue of (A.4), we conclude that
(A.19) bi(S1, 6, Fy©) = br(S2, 6, ) < bi(S2, ) < Ci.

(Note that, for p € AG, Sy is linear in Fge and so by (Sy, ¢, Fge) =0.)

We will approximate Sy using the polynomial D, (-, S4) € ¢y, defined
in Lemma 4.3 (with n; := Cgn), and then we construct two “correcting”
polynomials @,,, M,, € I, (using Lemma 6.2) in order to make sure that
the resulting approximating polynomial is convex.

We begin with @,,. For each ¢ for which E, C F', let J; be the union of
all intervals I; C E, with j € UC with the union of both intervals I; C K,
at the endpoints of E,. In other words,

Jo=|J{Lj|j €UC and I; C E;} UEP(E,).
J
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Since E; C F', then ¢ ¢ G' and so the number of intervals I; C E, with
j € UC is at most 2k — 6. Hence, by (A.1),

qugzk—4<2kgcl4c3 §C43,

Recalling that the total number mg, of intervals I; in E; is C3 we conclude
that Lemma 6.2 can be used with £ := E, and J := J;. Thus, set

Z Qn("Eq’ JQ)v

q: E,CF

where @, are polynomials from Lemma 6.2, and denote

U 7
q: E,CF
Then, (6.1) through (6.3) imply that @, satisfies

1

(a) Qn(z) =20, ze[-1L1\F,

(A.20) (b) Qp(z) > —¢/()§) zeF\J,

() Ql(z)> 4¢/S§) 5 xel

Note that the inequalities in (A.20) are valid since, for any given z, all rele-
vant Q) (z, Ey, J,), except perhaps one, are nonnegative, and

‘s C10C3 >4
my, 2k

mg

Gy
Also, it follows from (6.3) that, for any x € [—1, 1],

(A.21) Qn(@)| < C8%(p) Y Z

¢E,CF j:I,CE, x—x3|—|—p)

" du

<O ) o aly e <€) [ = caote)

Next, we define the polynomial M,. For each F, with p ¢ AG, let J;
denote the union of the two intervals on the left side of F) (or just the in-
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terval I, if —1 € F}), and let J,/ denote the union of the two intervals on
the right side of F}; (or just one interval I if 1 € Fy), i.e.,

Jo = EP_(FS)UEP_(F,) and J} = EP,(F)UEP(F,).

Also, let F;” and FpJr be the closed intervals each consisting of m pE = C3Cy
intervals I; and such that J, C F,” C Fj and Jf C Ff C FS, and put

Jy = Jp_UJ; and J*:= U gy
pgAG
Now, we set
Mn = Z (Qn(7F;7J;) + Qn('an_7Jp_)) .
p¢AG

Since mp+ = mp- = C3Cy and m 4, m ;- < 2, it follows from (A.1) that

> 20Cy.

Mp+ Mp-
Ch min{ F’j, By } > CiCsCy
mJ;— me—
Then Lemma 6.2 implies
(A.22) [ My (2)| < C'6%6(p)
(this follows from (6.3) using the same sequence of inequalities that was used
to prove (A.21) above), and

(a) MZ(:U)Z—QQS[()?), z e F\J*,

(A23) { (b) M"(x) 220458a¢(§), v € J,

B

" Sa ¢(p) P
() My(x) 2 2C40 p? (dist (z,F

41
)> . we[-1,1]\ F,
where in the last inequality we used the fact that
max{p, dist (z, F°)} <dist (z, F), z€[-1,1]\F¢,

which follows from (2.5).
The third auxiliary polynomial is D,,, := Dy, (-, S4) with n; = Cgn from
Lemma 4.3. By (A.10), (4.1) yields

(A.24) 1S4(2) = Dn, (2)] < C67¢(p) < C6%(p), € [-1,1],
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since v > «, and (4.2) implies that, for any interval A C [—1,1] having
Chebyshev knots as endpoints,

(A.25) S(x) — D (2)] < Co.8 ﬁﬂ? be(Si, 6, A)
d(p) n p g
+ G20 P> m <dist(:1;, [—1,1] \A)) , zed

We now define
(A.26) R, := D,, +C2Q,, + CoM,,.
By virtue of (A.21), (A.22), and (A.24) we obtain
|S4(z) — Rn(2)| < C6%(p), = €[-1,1],

which combined with (A.12) and (A.18), proves (7.6) and (7.7) for P :=
R, +7,.

Thus, in order to conclude the proof of Theorem 7.2, we should prove
that P is convex. We recall that 7, is convex, so it is sufficient to show that

R, is convex as well.
Note that (A.26) implies

Ri(z) > CoQ)(z) + CoM(z) — |S{(x) — Dy (2)| + S§(z), =z € [-1,1],

(this inequality is extensively used in the three cases below), and that (A.25)
holds for any interval A with Chebyshev knots as the endpoints, and so
we can use different intervals A for different points x € [—1,1]. We con-
sider three cases depending on whether (i) z € F'\ J*, or (ii) € J*, or
(iii) z € [-1,1] \ F*.

Case (i): x € F'\ J*. In this case, for some p ¢ AG, x € F,\ J,, and
so we take A := Fj,. Then, the quotient inside the parentheses in (A.25) is
bounded above by 1 (this follows from (2.5)). Also, since s4(x) = 5" (z),
x € F, it follows that by(S4, ¢, F,) = bi(S, ¢, F,) < 1. Hence,

(A.27) 1S (x) — D! (z)| < Cy ¢/§§) b (S4, b, Fy) + CoC ¢/()§ ) :1
<20y ‘ﬁ;g), ze F\J".

Note that « ¢ I; U, (since F'\ J* does not contain any intervals in EP(F,),
p & AG), and so § = 1.
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It now follows by (A.20)(c), (A.23)(a), (A.27) and (A.8), that

¢(p)
2
If x € F\ (JUJ*), then (A.2) is violated and so

5C2¢(p)
P2

R!(z) > Cy 4-2-2)=0, zeJ\J"

Si(z) =8"(x) >

Hence, by virtue of (A.20)(b), (A.23)(a) and (A.27), we get

o(p)
2

R;{x > C
() 2,

(-1—-2—-245)=0, zeF\(JUJ".

Case (ii): x € J*. In this case, x € Jy,, for some p ¢ AG, and we take
A:= F2°. Then, (A.19) and (A.25) imply (again, (2.5) is used to estimate
the quotient inside the parentheses in (A.25)),

o(p ¢ d(p) n
(A.28) [S{(z) — D (z)| < Cy 8" /()2) bi(Su, ¢, F) + C2C 67 152) o
<2050y 8 ﬁg) , weJn

Now, we note that EP(F,) C J, for all p ¢ AG, and so FF'NJ* C J. Hence,
using (A.20)(a,c), (A.23)(b), (A.28) and (A.8), we obtain

o(p)
2

R(2) > 20,0y 0% PP a0y, 50 >0
" P P

2 )
since v > 8a, and so §7 < §8%.

Case (iii): = € [-1,1]\ F°. In this case we take A to be the connected
component of [—1,1] \ F' that contains x. Then by (A.25),

(A.29) S(x) - D (2)] < Co8 ¢/§§) (St 6, A)

+C,C5 8 ¢/§§> "

+1
¢/(;§) (dia(ﬁ:,F))7 » EELINF,

ny (dist(x, [—pl, 1] \A))Wr1

=87

where we used the fact that Sy is linear in A, and so by (S4, ¢, A) = 0.
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Now, (A.20)(a), (A.23)(c), (A.29) and (A.8) imply

o(p) P

/!
>
R (@) 2 P> (dist(x,F)

v+1
) (205 C485%% — Cy87) > 0,

since Cy > 1 and v > 8a.

Thus, R/ (z) > 0 for all z € [—1, 1], and so we have constructed a convex
polynomial P, satisfying (7.6) and (7.7), for each n > N. This completes
the proof of Theorem 7.2.
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