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Abstract

We establish best possible pointwise (up to a constant multiple) estimates for approximation, on
a finite interval, by polynomials that satisfy finitely many (Hermite) interpolation conditions, and
show that these estimates cannot be improved. In particular, we show that any algebraic polyno-
mial of degree n approximating a function f ∈ Cr(I), I = [−1, 1], at the classical pointwise rate
c(k, r)ρrn(x)ωk(f

(r), ρn(x)), where ρn(x) = n−1
√
1− x2 + n−2, and c(k, r) is a constant which depends

only on k and r, and is independent of f and n; and (Hermite) interpolating f and its derivatives up
to the order r at a point x0 ∈ I, has the best possible pointwise rate of (simultaneous) approximation
of f near x0. Several applications are given.
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1. Introduction and main results

The main theme of this paper is polynomial approximation of functions on a finite interval, where
we impose on the polynomials finitely many interpolation conditions (including Hermite interpolation).
Stated simply, the question we discuss is how well a continuous (or continuously differentiable) function
can be approximated by algebraic polynomials if it is required that the polynomials also interpolate
this function (and perhaps its derivatives) at a given set of points. We are especially interested in
the improvement of the rate of approximation near these interpolation points. Clearly, due to the
interpolation, this rate may be improved, but is there a limit to this improvement? The main purpose
of this paper is to provide exact answers, that is, to establish these types of estimates and to show that
they cannot be improved.

1.1. Motivation
We start by recalling some standard notation. As usual, Cr(J) denotes the space of r times

continuously differentiable functions on J , C0(J) := C(J) is the space of continuous functions on
J , equipped with the uniform norm which will be denoted by ∥·∥J . For k ∈ N and an interval J ,
∆k

u(f, x; J) :=
∑k

i=0(−1)i
(
k
i

)
f(x + (k/2 − i)u) if x ± ku/2 ∈ J and := 0, otherwise, and ωk(f, t; J) :=

sup0<u≤t ∥∆k
u(f, ·; J)∥J is the kth modulus of smoothness of f on J . When dealing with the interval

I := [−1, 1], we suppress referring to the interval and use the notation ∥·∥ := ∥·∥I , ωk(f, t) := ωk(f, t; I),
Cr := Cr(I), etc.

Also,
φ(x) :=

√
1− x2, ρn(x) := φ(x)n−1 + n−2, n ∈ N,
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ρ0(x) ≡ 1, and Πn denotes the space of algebraic polynomials of degree ≤ n. Note that φ(x)n−1 ∼ ρn(x)
for x ∈ I \ Sn, where Sn := [−1,−1 + n−2] ∪ [1− n−2, 1].

Recall the classical Timan-Dzyadyk-Freud-Brudnyi direct theorem for the approximation by alge-
braic polynomials (see [4, 15,18,37]): if k ∈ N, r ∈ N0 and f ∈ Cr, then for each n ≥ k + r − 1 there is
a polynomial Pn ∈ Πn satisfying

|f(x)− Pn(x)| ≤ c(k, r)ρrn(x)ωk(f
(r), ρn(x)), x ∈ I. (1.1)

As one can see in (1.1), the order of approximation becomes significantly better near the endpoints
of I than in the middle. One might think that if the approximating polynomials happen to interpolate f
at the endpoints, then, perhaps, the estimates become even better (sometimes, these types of estimates
are called interpolatory (pointwise) estimates). This turns out to be correct, however, there is a limit
to how much they can improve.

The following is a brief history of development of interpolatory estimates for polynomial approxi-
mation on I. There is also a parallel history of development of interpolatory estimates for simultaneous
approximation, but we do not discuss it here in order to avoid the possibility of confusing readers with
technical details and restrictions on parameters involved which, as will be seen later, are an artifact of
a specific form of the estimates and may be avoided. (Interested readers can refer to [27, pp. 68, 69]
for further discussions.)

In 1963, Lorentz [34] asked if quantity ρn(x) in (1.1) can be replaced by φ(x)n−1. He actually posed
the problem in the case k = 1 only, but it is understandable since Brudnyi [4] published his proof of
(1.1) for k > 1 in 1963, and so Lorentz may not have been aware of this new development when he
posed his problem in [34] (although (1.1) in the case k = 2 was known as early as 1958, see [15, 18]).
Hence, the following open problem was offered to the research community in 1963: determine all pairs
(k, r) ∈ N× N0, such that for any f ∈ Cr and n ≥ c(k, r) there is a polynomial Pn ∈ Πn satisfying

|f(x)− Pn(x)| ≤ c(k, r)φr(x)n−rωk(f
(r), φ(x)n−1), x ∈ I. (1.2)

In 1966, Teljakovskiĭ [36] proved (1.2) in the case k = 1 and, in 1967, Gopengauz [22] published
a stronger result on simultaneous approximation yielding Teljakovskiĭ’s theorem as a corollary. One
remark is in order here. Teljakovskiĭ’s paper [36] was submitted on 16 April 1965, and there is the fol-
lowing footnote in Gopengauz’s paper [22]: “Original article submitted September 30, 1966. This article
was received from the editorial staff of the journal Uspekhi matematicheskikh nauk (where it was submit-
ted October 30, 1964) in connection with the liquidation of this journal’s division Scientific reports and
problems.” Hence, it seems that Gopengauz’s paper was prepared for publication before Teljakovskiĭ’s.
Estimates similar to (1.2) are usually referred to as Teljakovskiĭ-Gopengauz type estimates. In 1975,
DeVore [9, 10] proved (1.2) in the case (k, r) = (2, 0) being the first to prove a Teljakovskiĭ-Gopengauz
estimate for k > 1. In 1983, Hinnemann and Gonska [23] extended DeVore’s result by establishing (1.2)
in the case k = 2 and r ∈ N. In 1985, they [20] also showed the validity of (1.2) for k ≤ r + 2. In 1985,
Yu [43] showed that (1.2) is not true if k ≥ r + 3, thus showing that there is a limit to improvement
(this was later strengthened in [21, Theorem 1]).

To summarize the above, (1.2) is valid if and only if
(k, r) ∈ Υ :=

{
(k, r)

∣∣ k ∈ N, r ∈ N0 and k ≤ r + 2
}
.

Ever since, there has been great interest in Teljakovskiĭ-Gopengauz–type estimates for problems
dealing with: simultaneous approximation of a function and its derivatives [1, 8, 27, 33], (generalized)
discrete linear polynomial operators satisfying this type of estimates [5, 26, 35], polynomial approx-
imation with extra interpolation conditions [41, 42], or with extra Hermite interpolation conditions
[1, 25,39,40].

We now note that, while (1.2) is perhaps aesthetically pleasing, there is no reason why the quantity
ρn(x) in (1.1) should be replaced by φ(x)n−1 and not something which approaches zero at ±1 faster
than with order 1/2 but is “the same as ρn(x) in the middle of I” (as it is well known that ρn(x) in
(1.1) cannot essentially be replaced by a smaller quantity away from the endpoints of I).

First, we have the following theorem which is an immediate consequence of [27, Corollary 2-3.4]
(proved for simultaneous approximation there).
Theorem 1.1 (see [27, Corollary 2-3.4]). Let r ∈ N0, k ∈ N and f ∈ Cr. Then for any n ≥ max{k +
r − 1, 2r + 1}, there is a polynomial Pn ∈ Πn such that (1.1) is valid and, moreover, for x ∈ Sn :=
[−1,−1 + n−2] ∪ [1− n−2, 1], the following improved estimate holds

|f(x)− Pn(x)| ≤ c(r, k)φ2r(x)ωk(f
(r), φ2/k(x)n−2+2/k). (1.3)

2



It follows from [27, Theorem 3] that, for any γ ∈ R and n ∈ N, the quantity φ2/k(x)n−2+2/k in (1.3)
cannot be replaced by φ2β(x)nγ with β > 1/k. In fact, for any γ1, γ2 ∈ R, if α + kβ > r + 1, then
one cannot replace the right-hand side of (1.3) by c(k, r)φ2α(x)nγ1ωk(f

(r), φ2β(x)nγ2). Hence, (1.3) is
exact in this sense (see also Corollary 1.8 below, with x0 = ±1, for a stronger negative result).

Since φ(x)n ≤
√
2, x ∈ Sn, and φ(x) = o(1), x→ ±1, then using the well know property of moduli

of smoothness ωk(g, λt) ≤ ⌈λ⌉kωk(g, t), λ > 0, one can immediately see that (1.3) is essentially better
than (except for a few particular cases when it is as good as) (1.2) if (k, r) ∈ Υ. At the same time, if
(k, r) ̸∈ Υ, then (1.3) is still valid while (1.2) is not.

Because of this, it seems to be clear that it is advantageous to always discuss interpolatory estimates
in the form similar to (1.3) instead of Teljakovskiĭ-Gopengauz type estimates of type (1.2).3

It follows from (1.3) that |f(x)− Pn(x)|φ−2r(x) → 0, x→ ±1, and hence Pn from the statement of
Theorem 1.1 has to be such that P (j)

n (±1) = f (j)(±1) for all 0 ≤ j ≤ r. It turns out (see Theorem 1.3
below) that any polynomial Pn satisfying these interpolation conditions as well as (1.1) also satisfies
(1.3) and, moreover, it satisfies (1.3) for all moduli of smoothness of lower order as well. (After we
prepared this paper for publication, we had discovered that Balázs and Kilgore [2] used a somewhat
similar idea to provide an alternative proof of Gopengauz’s result [22].) We emphasize that while it is
a classical property of the moduli of smoothness that ωk(g, t) ≤ 2k−ℓωℓ(g, t) for 1 ≤ ℓ ≤ k, it is not
true that ϕk(x, n) := ωk(f

(r), φ2/k(x)n−2+2/k) can be estimated above by ϕℓ(x, n) because there exist
functions f ∈ Cr for which limx→±1 ϕk(x, n)/ϕℓ(x, n) = ∞ (see [31, Remark 1.3]).

In several theorems below, we assume that a polynomial whose improved rate of approximation we
are discussing satisfies the classical estimate (1.1) with a certain constant A ≥ 1 instead of c. Instead
of restating this inequality every time it is needed, we will say that a polynomial is from the class
Kn(f,A, k, r):

Definition 1.2. Given k ∈ N, r, n ∈ N0, f ∈ Cr and A ≥ 1, we say that a polynomial Pn belongs to
the class Kn(f,A, k, r) if Pn ∈ Πn and

|f(x)− Pn(x)| ≤ Aρrn(x)ωk(f
(r), ρn(x)), x ∈ I. (1.4)

The following result on interpolatory pointwise estimates for simultaneous approximation is a con-
sequence of a more general Theorem 1.6 below and is the main application of our main results to the
type of problems that we discussed above.

Theorem 1.3. Let k ∈ N, r, n ∈ N0 and f ∈ Cr, and suppose that Pn ∈ Kn(f,A, k, r) is such that

P (j)
n (−1) = f (j)(−1), P (j)

n (1) = f (j)(1), for 0 ≤ j ≤ r.

Then, for all 0 ≤ ν ≤ r and 1 ≤ ℓ ≤ k,

|f (ν)(x)− P (ν)
n (x)| ≤ c(k, r)Aφ2(r−ν)(x)ωℓ(f

(r), φ2/ℓ(x)n−2+2/ℓ), (1.5)

if 1− n−2 ≤ |x| ≤ 1.

While Theorem 1.3 seems stronger than an analogous result in the non simultaneous case (i.e., the
case ν = 0 in (1.5)), it is actually an added benefit of our approach that results of interpolatory type for
simultaneous approximation of a function and its derivatives immediately follow from non-simultaneous
ones because of the following rather well known lemma (we provide its short proof in Section 2.2 for
completeness).

Lemma 1.4. Let k ∈ N, r, n ∈ N0 and f ∈ Cr. If Pn ∈ Kn(f,A, k, r), then, for all x ∈ I, we have

|f (ν)(x)− P (ν)
n (x)| ≤ c(k, r)Aρr−ν

n (x)ωk(f
(r), ρn(x)), 0 ≤ ν ≤ r, (1.6)

and
|P (k+r)

n (x)| ≤ c(k, r)Aρ−k
n (x)ωk(f

(r), ρn(x)). (1.7)

We are now ready to start discussing our main results which are much more general and, because
of that, a bit more technical.

3In 2002, Trigub [39, Theorem 1] published exactly the same theorem as [27, Corollary 2-3.4] that appeared in 1996.
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1.2. Main results
We begin with the following theorem which shows that any polynomial from Πn approximating a

function f ∈ Cr so that the classical direct estimate holds and interpolating f and its derivatives at
some point, has the best possible pointwise rate of approximation of f near that point.

Theorem 1.5. Let k ∈ N, x0 ∈ I, r, n ∈ N0, f ∈ Cr, and m ∈ N0 is such that m ≤ r. If
Pn ∈ Kn(f,A, k, r) satisfies

P (j)
n (x0) = f (j)(x0), for 0 ≤ j ≤ m, (1.8)

then, for x ∈ I,

|f(x)− Pn(x)|

≤ c(k, r)A

{
|x− x0|m+1ρr−m−1

n (x)ωk(f
(r), ρn(x)), if m ≤ r − 1,

|x− x0|rωk(f
(r), |x− x0|1/kρ1−1/k

n (x)), if m = r.
(1.9)

We remark that (1.9) is stronger than (1.4) if |x−x0| = o(ρn(x)), x→ x0, and is as good as or weaker
otherwise. Hence, (1.9) only becomes useful when x is sufficiently close to x0. Also, if |x− x0| ≤ ρn(x),
then ρn(x) ∼ ρn(x0), and so ρn(x) in (1.9) can be replaced by ρn(x0) for these x.

Using Lemma 1.4 and the inequality ωk(f
(r), t) ≤ 2k−ℓωℓ(f

(r), t), 1 ≤ ℓ ≤ k, we conclude that
Theorem 1.5 immediately implies the following result on simultaneous approximation.

Theorem 1.6. Let k ∈ N, x0 ∈ I, r, n ∈ N0, f ∈ Cr, and m ∈ N0 is such that m ≤ r. If
Pn ∈ Kn(f,A, k, r) satisfies (1.8) then, for all 0 ≤ ν ≤ r, 1 ≤ ℓ ≤ k and x ∈ I, we have

|f (ν)(x)− P (ν)
n (x)|

≤ c(k, r)A

{
|x− x0|σρr−ν−σ

n (x)ωℓ(f
(r), ρn(x)), if m ≤ r − 1,

|x− x0|r−νωℓ(f
(r), |x− x0|1/ℓρ1−1/ℓ

n (x)), if m = r,
(1.10)

where σ := max{m− ν + 1, 0}.

Clearly, estimates (1.9) and (1.10) in Theorems 1.5 and 1.6 cannot be improved if m ≤ r − 1.
Indeed, if |f (ν)(x) − P

(ν)
n (x)| = o(|x − x0|σ), x → x0, then f (ν+σ)(x0) = P

(ν+σ)
n (x0) with ν + σ =

max{m+ 1, ν} ≥ m+ 1, which does not have to be the case by (1.8). The fact that no improvements
can be made in the case m = r either follows from the following theorem (see also simpler but weaker
Theorem 5.3 below as well as discussions in Section 5.2).

Theorem 1.7 (negative theorem). Let k ∈ N, r ∈ N0, x0 ∈ I, and let a positive function ε ∈ C(0, 1] be
such that limx→0+ ε(x) = 0. Then, there is a function F ∈ Cr, such that for any algebraic polynomial
P we have

lim sup
x→x0

|F (x)− P (x)|
ωk

(
F (r), ε(|x− x0|)|x− x0|(r+1)/k

) = ∞.

Using ωk(F
(r), λt) ≤ 2kλkωk(F

(r), t), λ ≥ 1, which implies, for β ≤ (r + 1)/k,

ωk

(
F (r), ε(|x− x0|)|x− x0|β

)
≤ c|x− x0|kβ−r−1ωk

(
F (r), ε(|x− x0|)|x− x0|(r+1)/k

)
,

we immediately get the following corollary.

Corollary 1.8. Let k ∈ N, r ∈ N0, x0 ∈ I, and let a positive function ε ∈ C(0, 1] be such that
limx→0+ ε(x) = 0. Then, there is a function F ∈ Cr, such that for any algebraic polynomial P and any
α ≥ 0 and β ∈ R such that α+ kβ = r + 1 we have

lim sup
x→x0

|F (x)− P (x)|
|x− x0|αωk

(
F (r), ε(|x− x0|)|x− x0|β

) = ∞.

In order to discuss the general results that yield somewhat more general estimates than those in
Theorems 1.5 and 1.6, we need to recall some definitions. Given a collection of s points Y = {yj}s−1

j=0

with possible repetitions, y0 ≤ y1 ≤ · · · ≤ ys−1, we recall that, for each j, the multiplicity mj of yj is
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the number of yi such that yi = yj . Also, we let lj be the number of yi = yj with i ≤ j. Suppose that a
function f is defined at all points in Y and, moreover, for each yj ∈ Y , f (lj−1)(yj) is defined as well. In
other words, f has mj − 1 derivatives at each point that has multiplicity mj . Then, there is a unique
Lagrange-Hermite polynomial Ls−1(·; f, Y ) of degree ≤ s− 1 that satisfies

L
(lj−1)
s−1 (yj ; f, Y ) = f (lj−1)(yj), for all 0 ≤ j ≤ s− 1. (1.11)

It will also be convenient for us to think about Y as a set of distinct points z0 < z1 < · · · < zµ−1

with multiplicities m0, . . . ,mµ−1, i.e.,

Y =

z0, . . . , z0︸ ︷︷ ︸
m0

, z1, . . . , z1︸ ︷︷ ︸
m1

, . . . , zµ−1, . . . , zµ−1︸ ︷︷ ︸
mµ−1

 .

Then, s = m0 + · · ·+mµ−1,

yi = zj , for
j−1∑
l=0

ml ≤ i <

j∑
l=0

ml, 0 ≤ j ≤ µ− 1,

where
∑−1

l=0ml := 0, and the polynomial Ls−1 satisfies

L
(j)
s−1(zi; f, Y ) = f (j)(zi), for all 0 ≤ i ≤ µ− 1 and 0 ≤ j ≤ mi − 1.

From now on, Z(Y ) = {zi}µ−1
i=0 will always denote the subset of all distinct points in Y . We also often

use the notation
Λr(Y ) := min

0≤j≤s−r−2
(yj+r+1 − yj), if s ≥ r + 2, (1.12)

and
δ(Y ) := δ(Z(Y )) := min

0≤i≤µ−2
(zi+1 − zi), if µ ≥ 2. (1.13)

Some explanations are needed in order to understand what these constants represent and conditions
that are put on the set Y if it is assumed that they are bounded away from zero. Condition Λr(Y ) > 0
means that at most r + 1 consecutive points from Y are allowed to coalesce and so, in particular, the
Lagrange-Hermite polynomial Ls−1(·; f, Y ) is well defined if f is assumed to have r derivatives on I. If
Λr(Y ) ≥ λ, then the diameter of any set of r+2 consecutive points from Y is at least λ or, equivalently,
points zi, . . . , zi+ℓ can all lie inside an interval of length λ only if mi + · · · + mi+ℓ ≤ r + 1. This
guarantees that the rate of approximation of f by Ls−1(·; f, Y ) will not get out of control. To give a
simple example, suppose that Y consists of two distinct points y0 = 0 and y1 = ϵ, f(x) = xγ+, γ > 0,
and let L1(·; f, Y ) be the linear polynomial interpolating f at y0 and y1. Then, ∥f∥ = 1 and

lim
ϵ→0+

∥f − L1(·; f, Y )∥ =

{
1, if γ ≥ 1,

∞, if 0 < γ < 1.

In other words, while it is acceptable for y0 and y1 to be close to each other if ∥f ′∥L∞(I) <∞ (the case
corresponding to r = 1), it may cause problems if ∥f ′∥L∞(I) = ∞ (the case corresponding to r = 0).

We also note that, for any Y with at least r + 2 points, Λr(Y ) ≥ δ(Y ) and, in general, δ(Y ) can be
much smaller than Λr(Y ).

If s ≤ r+ 1 or µ ≤ 1 (i.e., conditions on s and µ in (1.12) and (1.13) are not satisfied), then we will
not need to put any restrictions on the sets Y or Z(Y ), and so they can be arbitrary subsets of I with
s or µ points, respectively.

We will also need to refer to various subsets of points from Y which are closest to a point x ∈ I,
and so we introduce the following notation. Given Y = {yj}s−1

j=0 (recall that points yj ’s are allowed to
coalesce) and x ∈ I, we renumber the points yj so that the distance from these points to x becomes
nondecreasing, i.e., we let σ = (σ0, . . . , σs−1) be a (in general, non-unique) permutation of (0, . . . , s−1)
such that

|x− yσj−1 | ≤ |x− yσj |, for all 1 ≤ j ≤ s− 1.

5



Clearly, σ as well as all σj ’s depend on x, and we use the notation “σ(x)” and “σj(x)” to emphasize
this fact. We also denote

Dm(x, Y ) :=

m∏
j=0

|x− yσj(x)|, 0 ≤ m ≤ s− 1.

Thus, for example, D0(x, Y ) = dist(x, Y ), Ds−1(x, Y ) =
∏s−1

j=0 |x−yj | and, if a point yj has multiplicity
mj , then Dν(x, Y ) = |x− yj |ν+1, 0 ≤ ν ≤ mj − 1, if x is sufficiently close to yj .

Theorem 1.9. Let k, s ∈ N, r, n ∈ N0, f ∈ Cr, and let Y = {yj}s−1
j=0 ⊂ I be such that, if s ≥ r + 2,

then Λr(Y ) is strictly positive. If Pn ∈ Kn(f,A, k, r) satisfies

P (lj−1)
n (yj) = f (lj−1)(yj), for all 0 ≤ j ≤ s− 1, (1.14)

then, for any x ∈ I, we have

|f(x)− Pn(x)|

≤ c(k, r)A

{
Ds−1(x, Y )ρr−s

n (x)ωk(f
(r), ρn(x)), if s ≤ r,

Dr−1(x, Y )ωk(f
(r), |x− yσr(x)|1/kρ

1−1/k
n (x)), if s ≥ r + 1.

(1.15)

Note that Theorem 1.5 is a simpler restatement of Theorem 1.9 in the case s = m+ 1 ≤ r + 1 and
y0 = · · · = ys−1 = x0. At the same time, Theorem 1.5 is almost (but not quite) as general as Theorem 1.9
because, if a point zi ∈ Z(Y ) has multiplicity mi in Y , n ∈ N is so large that 2ρn(zi) ≤ δ(Y ), and x
is sufficiently close to zi, i.e., |x− zi| ≤ ρn(zi), then Dj(x, Y ) ≥ |x− zi|miρj+1−mi

n (zi) for j ≥ mi, and
yσr(x) = zi if mi = r+1, or |x− yσr(x)| ≥ ρn(zi) if mi ≤ r. Hence, for each 0 ≤ i ≤ µ− 1, Theorem 1.5
with x0 = zi and m = mi − 1 yields the estimate (1.15) for all x ∈ [zi − ρn(zi), zi + ρn(zi)] ∩ I, and, of
course, if dist(x,Z) = |x− zi| ≥ ρn(zi), then (1.15) is weaker than (1.4).

In other words, if n is sufficiently large depending on δ(Y ) (for example, if n ≥ 4/δ(Y )), then there
is no difference between Theorems 1.5 and 1.9. However, if n is “small’ then Theorem 1.9 is stronger.

All (positive) results above assume that we work with a polynomial from the class Kn(f,A, k, r) that
also satisfies Hermite interpolation conditions of type (1.14), and we will show that such polynomials
exist with some constant A depending only on k, r and s. The following theorem is proved in Section 4.

Theorem 1.10. Let k, s ∈ N, r ∈ N0, and suppose that a set Y = {yj}s−1
j=0 ⊂ I is such that, if s ≥ r+2,

then Λr(Y ) ≥ λ > 0. If f ∈ Cr then, for every n ≥ N(k, r, s, λ), there exists a polynomial Pn ∈ Πn

such that
P (lj−1)
n (yj ; f, Y ) = f (lj−1)(yj), for all 0 ≤ j ≤ s− 1,

and
|f(x)− Pn(x)| ≤ c(k, r, s)ρrn(x)ωk(f

(r), ρn(x)), x ∈ I. (1.16)

Combining Theorems 1.10 and 1.9 we arrive at the following general result on Hermite interpolation.

Theorem 1.11. Let k, s ∈ N, r ∈ N0, and suppose that a set Y = {yj}s−1
j=0 ⊂ I is such that, if s ≥ r+2,

then Λr(Y ) ≥ λ > 0. If f ∈ Cr then, for every n ≥ N(k, r, s, λ), there exists a polynomial Pn ∈ Πn

such that, for all x ∈ I,

|f(x)− Pn(x)| ≤ c(k, r, s)ρrn(x)ωk(f
(r), ρn(x)),

and, moreover,

|f(x)− Pn(x)|

≤ c(k, r, s)

{
Ds−1(x, Y )ρr−s

n (x)ωk(f
(r), ρn(x)), if s ≤ r,

Dr−1(x, Y )ωk(f
(r), |x− yσr(x)|1/kρ

1−1/k
n (x)), if s ≥ r + 1.

(1.17)

The following lemma follows from, e.g., [30, Theorem 5.2 and Lemma 3.1].

Lemma 1.12. Let r ∈ N0 and s ∈ N be such that s ≥ r+1, and suppose that a set Y = {yj}s−1
j=0 ⊂ [a, b]

is such that, if s ≥ r + 2, then Λr(Y ) ≥ λ(b − a), where 0 < λ ≤ 1 (if s = r + 1, this condition is not
needed). If f ∈ Cr[a, b] then, for all x ∈ [a, b],

|f(x)− Ls−1(x; f, Y )| ≤ c(s, λ)(b− a)rωs−r(f
(r), b− a, [a, b]). (1.18)
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Remark 1.13. It immediately follows from Lemma 1.12 that Theorems 1.10 and 1.11 are valid for all
n ≥ max{s− 1, k + r − 1} if the constants c in (1.16) and (1.17) are also allowed to depend on λ.

Using Theorem 1.10, Lemma 1.4 and Theorem 1.9 one immediately arrives at a similar result for
simultaneous approximation. However, its statement in the form of Theorem 1.11 would be rather
technical (to estimate the rate of approximation of f (ν) by the ν-th derivative of Pn we would need
to work with a set Y ν obtained from Y by removing all points whose multiplicity is at most ν and
reducing multiplicities of all other points by ν). So, instead, we state this result in a simpler (but not
as general) form similar to that of Theorem 1.6.

Corollary 1.14. Let k, s ∈ N, r ∈ N0, and let Y = {yj}s−1
j=0 ⊂ I be such that 1 ≤ mj ≤ r + 1,

0 ≤ j ≤ s − 1. If f ∈ Cr then, for every n ≥ N(k, r, s, δ(Y )), there exists a polynomial Pn ∈ Πn such
that, for all 0 ≤ ν ≤ r and x ∈ I,

|f (ν)(x)− P (ν)
n (x)| ≤ c(k, r, s)ρr−ν

n (x)ωk(f
(r), ρn(x)),

and, moreover, for all 0 ≤ ν ≤ r, 1 ≤ ℓ ≤ k and 0 ≤ j ≤ s− 1, if |x− yj | ≤ ρn(yj), then

|f (ν)(x)− P (ν)
n (x)|

≤ c(k, r, s)

{
|x− yj |σjρ

r−ν−σj
n (yj)ωℓ(f

(r), ρn(yj)), if mj ≤ r,

|x− yj |r−νωℓ(f
(r), |x− yj |1/ℓρ1−1/ℓ

n (yj)), if mj = r + 1,

where σj := max{mj − ν, 0}.

Remark 1.15. It follows from Lemma 1.12 that Corollary 1.14 is valid for all n ≥ max{s−1, k+r−1}
if all constants c are allowed to depend on δ(Y ). Also, by allowing all constants in Corollary 1.14 to
depend on Y and setting ℓ = k and mj = r + 1, for all 0 ≤ j ≤ s− 1, we get [39, Theorem 2].

It is easy to see that the dependence of the constants c and N on λ in Lemma 1.12 and Theorem 1.10
(and so in Theorem 1.11), respectively, cannot be removed. For example, if [a, b] = I, f is such that
f (r)(x) = ϵ−1(x − 1 + ϵ)+, and Y consists of s = 2r + 2 points z0 = 1 − ϵ and z1 = 1, each with
multiplicities r + 1, then the first modulus of f (r) is bounded above by 1 and, at the same time, any
polynomial Pn whose r-th derivative interpolates f (r) at z0 and z1, has to satisfy

∥∥∥P (r+1)
n

∥∥∥ ≥ ϵ−1, and
so, by Markov’s inequality, ∥Pn∥ ≥ ϵ−1n−2r−2. Hence, Pn cannot satisfy (1.18) or (1.16) if constants c
and N there do not depend on ϵ. In particular, this implies that the statement of [39, Lemma 3] (even
after a correction of a few obvious misprints) is wrong (γ2 there cannot be independent of X1).

The outline of the remaining sections of this paper is as follows. After discussing the history and
several versions of the Dzyadyk-Lebed’-Brudnyi theorem in Section 2.1 we use it to provide a simple
proof of Lemma 1.4 in Section 2.2. Theorems 1.9 and 1.10 are proved in Sections 3 and 4, respectively.
Section 5 is devoted to negative theorems: after proving the negative result, Theorem 1.7, we discuss a
much simpler but not as powerful weak version of this theorem. Finally, several applications are given
in Section 6.

2. Auxiliary statements and proof of Lemma 1.4

2.1. Dzyadyk-Lebed’-Brudnyi theorem
For each α > 0 and M ≥ 1, we denote

Φ̃α(M) :=
{
ϕ : (0,∞) → (0,∞)

∣∣ ϕ(t)  and t−αϕ(t)
 }
,

where

ψ  ⇐⇒ ψ(t1) ≤Mψ(t2), 0 < t1 ≤ t2, and
ψ
 
⇐⇒ ψ(t1) ≥ ψ(t2)/M, 0 < t1 ≤ t2.

We also let Φα := Φ̃α(1), i.e.,

Φα :=
{
ϕ : (0,∞) → (0,∞)

∣∣ ϕ(t) ↑ and t−αϕ(t) ↓
}
,
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where we use the notation g ↑ (g ↓) to indicate that g is nondecreasing (nonincreasing). It is not
difficult to see that Φα ⊂ C(0,∞) and Φ̃α(M) ̸⊂ C(0,∞) if M > 1. At the same time, any function
from Φ̃α(M) has the same order of magnitude as a function from Φα. More precisely, the following
lemma is valid.
Lemma 2.1. For any α > 0, M ≥ 1 and ω ∈ Φ̃α(M), there exists ω∗ ∈ Φα such that ω(t) ≤ ω∗(t) ≤
M2ω(t), t > 0.

Proof. Given ω ∈ Φ̃α(M), we first define ω̃(t) := sup0<u≤t ω(u) and note that ω̃(t) ↑. Also, ω̃ ∈ Φ̃(M).
Indeed, suppose that 0 < t1 < t2. If ω̃(t1) = ω̃(t2), then t−α

1 ω̃(t1) ≥ t−α
2 ω̃(t2). Otherwise, ω̃(t1) < ω̃(t2),

and so for each ϵ > 0, there is t∗ ∈ (t1, t2] such that ω(t∗) ≥ ω̃(t2)− ϵ, which implies

t−α
1 ω̃(t1) ≥ t−α

1 ω(t1) ≥ t−α
∗ ω(t∗)/M ≥ t−α

2 (ω̃(t2)− ϵ)/M,

and it remains to take ϵ → 0 to conclude that ω̃ ∈ Φ̃(M). Note also that ω(t) ≤ ω̃(t) ≤ Mω(t), t > 0.
Now, by Stechkin’s theorem (see, e.g., [17, p. 202]), if ω∗(t) := tα supu>t ω̃(u)/u

α, then ω∗ ∈ Φα and
ω̃(t) ≤ ω∗(t) ≤Mω̃(t), t > 0, and the lemma is proved.

In particular, it immediately follows from Lemma 2.1 that, if f ∈ Cr, then ϕ(t) := trωk(f
(r), t) ∼

ϕ∗(t) ∈ Φk+r.
While it is clear that, if ϕ(t) ∈ Φα, then tsϕ(t) ∈ Φα+s, for any s ≥ 0, this statement is no longer

true if s < 0. In fact, the following stronger result holds.
Lemma 2.2. For any α > 0, there exists ϕ ∈ Φα such that, for any 0 < β < α, s ∈ R and M ≥ 1,
tsϕ(t) ̸∈ Φ̃β(M).
Proof. Let u(t) := 2/(2 − α ln t) and l0(t) := tα/2. Note that both u and l0 are increasing on [0, 1]
and l0(t) < u(t), 0 < t < 1. We define the sequence {(tj , ϕj)}∞j=0 of points as follows. Starting
with (t0, ϕ0) := (1/2, l0(1/2)), if a point (t2j , ϕ2j) has been defined, we pick t2j+1 to be such that
u(t2j+1) = ϕ2j , and ϕ2j+1 := ϕ2j . Then, we let (t2j+2, ϕ2j+2) be the point of intersection of the curves
y = λjt

α and y = lj(t) := t(j+1)α/(j+2), where λj is chosen so that λjtα2j+1 = u(t2j+1) = ϕ2j . It is clear
from the construction that {tj}∞j=0 is a strictly decreasing sequence approaching 0, and we now define
ϕ so that

ϕ(t) :=

{
u(t2j+1), if t2j+1 ≤ t < t2j ,

λjt
α, if t2j+2 ≤ t ≤ t2j+1,

and ϕ(t) := ϕ(t0), t ≥ t0. Evidently, ϕ ∈ Φα and ϕ(tj) = ϕj , j ≥ 0. Suppose now that, for some
0 < β < α, s ∈ R and some M ≥ 1, ψ(t) = tsϕ(t) is in Φ̃β(M). Since ψ(t2j+1) = ts2j+1u(t2j+1), j ∈ N,
and ψ(t)  , we must have s ≥ 0. At the same time, since ϕ2j = lj−1(t2j) = t

jα/(j+1)
2j , j ≥ 1, we have

ψ(t2j) = t
s+jα/(j+1)
2j , and so, since t−βψ(t)

 
, we must have ts+jα/(j+1)−β

2j ≥ t
s+j0α/(j0+1)−β
2j0

/M , for all
j ≥ j0 ≥ 0. Since t2j → 0, j → ∞, this yields s + α − β ≤ 0. Therefore, β − α ≥ s ≥ 0 which is a
contradiction.

We are now ready to state the following well known inequality which is often called in the literature
Dzyadyk-Lebed’-Brudnyi inequality.
Lemma 2.3 (Dzyadyk-Lebed’-Brudnyi inequality). For any α > 0, ϕ ∈ Φα, s ∈ R, n, ν ∈ N and
Pn ∈ Πn, we have ∥∥∥ρs+ν

n P (ν)
n ϕ−1(ρn)

∥∥∥ ≤ c(ν, s, α)
∥∥ρsnPnϕ

−1(ρn)
∥∥ ,

where the constant c may depend only on ν, s, and α, and is independent of n and Pn.
We now give a brief history of Lemma 2.3 which is rather interesting. In 1956, Dzyadyk [14, Theorem

2′] proved Lemma 2.3 with ϕ ≡ 1. In 1957, Lebed’ [32, Theorem 4] (with an obvious misprint: “2a/(b−
a)” in the statement of this theorem should be replaced by “2n/(b− a)”) established Lemma 2.3 for all
norms Lp, 1 ≤ p ≤ ∞, but only in the case 0 < α ≤ 1, and it follows from Lemma 2.2 that the general
case for all α > 0 cannot be reduced to 0 < α ≤ 1. In 1959, Brudnyi [3, Theorem 3∗] stated Lemma 2.3
for the first modulus of continuity (i.e., in the case 0 < α ≤ 1) and (−s) ∈ N0. It seems that he was
not aware of the work of Lebed’ despite the fact that, at that time, both were living and working in
Dnipropetrovs’k (currently Dnipro), Ukraine.

In 1959, Dzyadyk [16] established the following result which, for the interval I, can be restated as
follows.
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Theorem 2.4 (see [16, Theorem 3.3]). Suppose that a positive continuous function A is defined at all
points of I, and suppose that a polynomial Pn ∈ Πn satisfies

|Pn(x)| ≤ A(x), x ∈ I.

Then, for all x ∈ I,
|P (k)

n (x)| ≤ (1 + ε)ek!
A(x)

ρkn(x)
, (2.1)

where ε uniformly tends to 0 as n→ ∞.

We emphasize that ε in (2.1) is only guaranteed to be bounded by an absolute constant for sufficiently
large n (depending on the function A), and, for any E > 0, one may find n ∈ N and a function A such
that ε in (2.1) is not smaller than E. Indeed, if Tn(x) = cos(n arccosx) is a Chebyshev polynomial and
n ∈ N is odd, then the polynomial Pn(x) := Tn(nx) satisfies |Pn(x)| ≤ A(x) := max{1, |Tn(x)|}. At the
same time, |P ′

n(0)| = n2 > nρ−1
n (0)A(0), and so ε > n/e− 1.

Hence, one may not apply Theorem 2.4 if A is allowed to depend on n. Nevertheless, the same idea
as was used in the proof of this theorem in [16] yields the following result. (For its alternative proof see
[29, Lemma 5.2].)

Lemma 2.5 (Dzyadyk inequality, see [17, p. 386]). Suppose that m ∈ N and x0 ∈ I. If

|Pn(x)| ≤ (|x− x0|+ ρn(x))
m, x ∈ I,

then
|P ′

n(x0)| ≤ c(m)ρm−1
n (x0).

Lemma 2.5 is rather powerful and can be used to establish various general results involving uniform
norms of polynomials and their derivatives. In particular, it can be used to almost immediately obtain
Lemma 2.3 as stated (see [17, pp. 383, 387]).

We remark that Lemma 2.3 immediately implies what seems to be a stronger result.

Corollary 2.6. For any α, ϑ > 0, ϕ ∈ Φα, s, µ ∈ R, n, ν ∈ N and Pn ∈ Πn, we have∥∥∥ρs+ν
n P (ν)

n ϕ−1(ϑρµn)
∥∥∥ ≤ c(ν, s, α, µ)

∥∥ρsnPnϕ
−1(ϑρµn)

∥∥ , (2.2)

where the constant c may depend only on ν, s, α and µ, and is independent of n, Pn and ϑ.

Proof. First, note that if µ = 0, then (2.2) is the classical Dzyadyk inequality [14, Theorem 2′]. If
µ ̸= 0, we define

ψ(t) :=

{
ϕ(ϑtµ), if µ > 0,

t−αµϕ(ϑtµ), if µ < 0,

and it is straightforward to check that ψ ∈ Φα|µ|. It remains to use Lemma 2.3 with ϕ replaced by
ψ.

We note that Corollary 2.6 (with ϑ = n−λ and µ = 1− λ) is an improvement of the following result
by Ditzian and Jiang [13, Theorem 4.1]

Lemma 2.7 ( [13, Theorem 4.1]). Let α > 0, n ∈ N and ϕ ∈ Φα. Then, for every Pn ∈ Πn, s ∈ R,
0 ≤ λ ≤ 1 and ν ≥ −s+ α(1− λ), we have∥∥∥ρs+ν

n P (ν)
n ϕ−1

(
n−λρ1−λ

n

)∥∥∥ ≤ c(l, s, α, λ)
∥∥ρsnPnϕ

−1
(
n−λρ1−λ

n

)∥∥ .
2.2. Proof of Lemma 1.4

It is well known (see, e.g., [38] and [17, Theorem 7.3.3]) that, for any n ≥ k + r − 1, there exists a
polynomial Qn ∈ Πn such that estimates (1.6) and (1.7) (with A = 1 and Pn replaced by Qn) are both
satisfied for all x ∈ I. Suppose now that Pn ∈ Πn satisfies (1.4) and denote Rn := Qn − Pn. Then,

|Rn(x)| ≤ cAρrn(x)ωk(f
(r), ρn(x)), x ∈ I,
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and applying Lemma 2.3 with s = 0, α = k + r and trωk(f
(r), t) ∼ ϕ(t) ∈ Φk+r, we conclude that, for

any ν ∈ N,
|R(ν)

n (x)| ≤ cAρr−ν
n (x)ωk(f

(r), ρn(x)), x ∈ I.

Hence, for x ∈ I,

|f (ν)(x)− P (ν)
n (x)| ≤ |f (ν)(x)−Q(ν)

n (x)|+ |R(ν)
n (x)|

≤ cAρr−ν
n (x)ωk(f

(r), ρn(x)), 0 ≤ ν ≤ r,

and
|P (k+r)

n (x)| ≤ |Q(k+r)
n (x)|+ |R(k+r)

n (x)| ≤ cAρ−k
n (x)ωk(f

(r), ρn(x)),

and the lemma is proved.

3. Proof of Theorem 1.9

We start by recalling the definition of the Lagrange-Hermite divided difference of f of order m at
the knots Y = {yj}mj=0 for which we use the notation [y0, . . . , ym; f ] (see, e.g., [11, Section 4.7] or
[17, Section 3.8.3]). Given m ∈ N0, if y0 = · · · = ym, then [y0, . . . , ym; f ] = f (m)(y0)/m!. Otherwise,
y0 ̸= yj∗ , for some j∗, and

[y0, . . . , ym; f ] :=
1

yj∗ − y0
([y1, . . . , ym; f ]− [y0, . . . , yj∗−1, yj∗+1, . . . , ym; f ]) .

Recall that [y0, . . . , ym; f ] is symmetric in y0, . . . , ym (i.e., it does not depend on how the points from
Y are numbered). Then the Lagrange-Hermite polynomial Lm(·; f, Y ) of degree ≤ m that satisfies

L(lj−1)
m (yj ; f, Y ) = f (lj−1)(yj), for all 0 ≤ j ≤ m,

may be written as

Lm(x; f, Y ) := f(y0) +

m∑
j=1

[y0, . . . , yj ; f ](x− y0) . . . (x− yj−1).

In particular, this implies

f(x)− Lm(x; f, Y ) = [x, y0, . . . , ym; f ]

m∏
j=0

(x− yj), for x ̸∈ Y. (3.1)

The main property of divided differences that we need in this section is that, if all yj ’s lie inside some
interval J and f ∈ Cm(J), then [y0, . . . , ym; f ] = f (m)(θ)/m!, for some θ ∈ J .

We now prove the following lemma and then show that Theorem 1.9 immediately follows from it.

Lemma 3.1. Let k ∈ N, r,m, n ∈ N0, m ≤ r, f ∈ Cr, Pn ∈ Kn(f,A, k, r), Y = {yj}mj=0 ⊂ I and x ∈ I
be given. If, for all 0 ≤ j ≤ m,

P (lj−1)
n (yj) = f (lj−1)(yj), (3.2)

and
|x− yj | ≤ |x− ym| ≤ ρn(x),

then

|f(x)− Pn(x)|

≤ c(k, r)A

{
|pm(x)|ρr−m−1

n (x)ωk(f
(r), ρn(x)), if m ≤ r − 1,

|pr−1(x)|ωk(f
(r), |x− yr|1/kρ1−1/k

n (x)), if m = r,
(3.3)

where
pm(x) :=

m∏
j=0

(x− yj).
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Proof. Throughout the proof, it is convenient to denote ρ := ρn(x), w(t) := ωk(f
(r), t) and Jn :=

[x− ρ, x+ ρ] ∩ I. Note that ρ ∼ ρn(θ), for every θ ∈ Jn.
If x ∈ Y , there is nothing to prove, so we assume that x /∈ Y . Put g := f − Pn and note that (3.1)

implies
g(x) = [x, y0 . . . , ym; g]pm(x), (3.4)

since (3.2) implies that Lm(·; g, Y ) ≡ 0.
If m ≤ r − 1, then g ∈ Cm+1, and so there is a point θ ∈ Jn, such that [x, y0 . . . , ym; g] =

g(m+1)(θ)/(m+ 1)!, and it follows from (3.4) and (1.6) with ν = m+ 1 that

|g(x)| = |g(m+1)(θ)|
(m+ 1)!

|pm(x)| ≤ cA|pm(x)|ρr−m−1
n (θ)w(ρn(θ))

≤ cA|pm(x)|ρr−m−1w(ρ).

Hence, (3.3) is proved for m ≤ r − 1.
If m = r, denoting by J the smallest interval containing x and all yj ’s and using the fact that

g ∈ Cr, we conclude that there are θ1, θ2 ∈ J such that

[x, y0, . . . , yr; g] =
[x, y0, . . . , yr−1; g]− [y0, . . . , yr; g]

x− yr
=

1

r!

g(r)(θ1)− g(r)(θ2)

x− yr
.

Since |θ1 − θ2| ≤ |J | ≤ 2|x− yr|, together with (3.4), this implies

|f(x)− Pn(x)| =
1

r!
|g(r)(θ1)− g(r)(θ2)|

|pr(x)|
|x− yr|

≤ c|pr−1(x)|ω1(g
(r), |x− yr|; Jn). (3.5)

Now, estimate (1.7) yields, for any 0 < t ≤ 2ρ and some θ ∈ Jn,

ωk(P
(r)
n , t; Jn) ≤ ctk|P (r+k)

n (θ)| ≤ cAtk
ωk(f

(r), ρn(θ))

ρkn(θ)
≤ cAw(t).

Hence,
ωk(g

(r), t; Jn) ≤ w(t) + ωk(P
(r)
n , t; Jn) ≤ cAw(t), 0 < t ≤ 2ρ, (3.6)

and letting t := |x− yr| and using (3.5), we obtain (3.3) in the case k = 1 and m = r.
If m = r and k ≥ 2, we use the well known Marchaud inequality (see, e.g., [11, Theorem 2.8.1])

ω1(g
(r), t; Jn) ≤ ct

∫ |Jn|

t

ωk(g
(r), u; Jn)

u2
du+ ct|Jn|−1

∥∥∥g(r)∥∥∥
Jn

, 0 < t ≤ ρ.

Estimate (1.6) with ν = r implies that
∥∥g(r)∥∥

Jn
≤ cA ∥w(ρn(·))∥Jn

≤ cAw(ρ). Hence, if 0 < t < ρ

and η ∈ [t, ρ], then applying (3.6) and the inequality u−k
2 w(u2) ≤ 2ku−k

1 w(u1), 0 < u1 < u2, and using
ρ ≤ |Jn| ≤ 2ρ, we get

A−1ω1(g
(r), t; Jn) ≤ ct

∫ 2ρ

t

w(u)

u2
du+ ctρ−1w(ρ)

≤ ct

(∫ η

t

+

∫ ρ

η

)
w(u)

u2
du+ ctρ−1w(ρ)

≤ ctw(η)

∫ ∞

t

u−2 du+ ctη−kw(η)

∫ ρ

0

uk−2 du+ ctρk−1η−kw(η)

≤ cw(η)
(
1 + tρk−1η−k

)
.

Hence, for t = |x− yr| and η = |x− yr|1/kρ1−1/k, we have

ω1(f
(r) − P (r)

n , |x− yr|; Jn) ≤ cAw
(
|x− yr|1/kρ1−1/k

)
,

which combined with (3.5) implies (3.3) in the case k ≥ 2 and m = r.

11



Proof of Theorem 1.9. First, since the estimate (1.15) in the case s ≥ r+1 depends only on r+1 points
from Y which are closest to x, without loss of generality, we may assume that s ≤ r+1. Now, let n ∈ N0,
1 ≤ s ≤ r+1, Y = {yj}s−1

j=0 and x ∈ I be given. If [x−ρn(x), x+ρn(x)]∩Y = ∅, then (1.15) follows from
(1.4). Otherwise, let m ∈ N0 be the largest number ≤ s−1 such that |x−yσm(x)| ≤ ρn(x). Then, either
(i) m = s−1 and Y ⊂ [x−ρn(x), x+ρn(x)], or (ii) m ≤ s−2 and |x−yσm+1(x)| > ρn(x). In the case (i),
estimates (1.15) and (3.3) are identical (with an obvious change if y0 is the farthest point from x instead
of ym). In the case (ii), m ≤ r−1 and Ds−1(x, Y ) ≥ Dm(x, Y )ρs−m−1

n (x). Therefore, (1.15) follows from
(3.3) with m ≤ r−1 taking into account that, if s = r+1, then |x−yσr(x)| ≥ |x−yσm+1(x)| > ρn(x).

4. Proof of Theorem 1.10

Given f ∈ Cr and a set Y = {yj}s−1
j=0 ⊂ I, we first use Lemma 1.12 to construct a piecewise

polynomial function S having the right local order of approximation and Hermite interpolating f at
the points in Y . We then approximate S by a polynomial satisfying all conditions of Theorem 1.10.

Let xj := xj,n := cos(jπ/n), 0 ≤ j ≤ n, denote the Chebyshev nodes, and let Ij := Ij,n := [xj , xj−1],

ψj(x) := ψj,n(x) :=
|Ij |

|x− xj |+ |Ij |
and χj(x) := χj,n(x) :=

{
1, if x ≥ xj ,

0, otherwise.

where 1 ≤ j ≤ n.
We start with the following lemma which is an immediate consequence of [24, Corollary 17].

Lemma 4.1. Let n, µ ∈ N, 1 ≤ j ≤ n − 1, and let the numbers a and b be such that −1 ≤ a ≤ xj+1

and xj−1 ≤ b ≤ 1. Then, there exists a polynomial Tj(x) := Tj(x; a, b) of degree ≤ c(µ)n such that

Tj(a) = χj(a) = 0, Tj(b) = χj(b) = 1,

and
|χj(x)− Tj(x)| ≤ c(µ)ψµ

j (x), x ∈ I.

Corollary 4.2. Let n, s, µ ∈ N, r ∈ N0, Y = {yj}s−1
j=0 ⊂ I, and let index 1 ≤ j ≤ n − 1 be such that

(xj+1, xj) does not contain any points from Y . Then, there exists a polynomial Rj(x) := Rj,n(x) :=
Rj(x;Y ) of degree ≤ c(µ, r, s)n such that

Rj(yi) = χj(yi), R
(ν)
j (yi) = 0, 1 ≤ ν ≤ r, 0 ≤ i ≤ s− 1, (4.1)

and
|χj(x)−Rj(x)| ≤ c(r, s, µ)ψµ

j (x), x ∈ I. (4.2)

Proof. First, we may assume that the interval (xj+1, xj−1) does not contain any points from Y .
To see this, it is sufficient to replace n by 2n and, denoting z := 2j + 1, notice that (xj+1, xj) =
(xz+1,2n, xz−1,2n), |χj(x) − χz,2n(x)| ≤ cψµ

j (x) and ψz,2n(x) ∼ ψj(x), 1 ≤ j ≤ n − 1, and so if Rz,2n

satisfies (4.1) and (4.2) with j and n replaced by z and 2n, respectively, then it also satisfies these
inequalities as stated.

Also, it is clear that, without loss of generality, we may assume that ±1 ∈ Y . Now, for convenience,
we denote A = {a1, . . . , aℓ} := Y ∩ [−1, xj+1] and B = {b1, . . . , bm} := Y ∩ [xj−1, 1], where ℓ,m ≥ 1
and ℓ+m = s. Let

Qj(x;A, bk) :=

ℓ∏
i=1

T r+1
j (x; ai, bk), 1 ≤ k ≤ m,

where Tj are polynomials from Lemma 4.1. It is clear that Qj(bk;A, bk) = 1, Q(ν)
j (ai;A, bk) = 0, for

0 ≤ i ≤ ℓ and 0 ≤ ν ≤ r, and Qj approximates χj with the right order (i.e., (4.2) holds with Qj instead
of Rj). Now, let

Rj(x;Y ) := 1−
m∏

k=1

(1−Qj(x;A, bk))
r+1

.

Then Rj(ai;Y ) = 0, 1 ≤ i ≤ ℓ, Rj(bi;Y ) = 1, 1 ≤ i ≤ m, and R
(ν)
j (y;Y ) = 0, for all y ∈ Y and

1 ≤ ν ≤ r. Also, it is not difficult to check that (4.2) holds.
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Remark 4.3. We note that Corollary 4.2 can also be proved using the method from [19].

We are now ready to prove Theorem 1.10. It is clear that, by increasing k if necessary, we may
assume that k + r ≥ s, and by replacing f with g = f − Ls−1(·; f, Y ) (Ls−1 ∈ Πs−1 is the polynomial
satisfying (1.11)) and noting that ωk(g

(r), t) = ωk(f
(r), t), we may assume that

f (lj−1)(yj) = 0, for all 0 ≤ j ≤ s− 1.

Suppose now that n ∈ N is so large that any set consisting of 2r + 3 adjacent intervals Ii contains
at most r + 1 points from Y . (This is achieved if the total length of these intervals is less than λ, and
so n ≥ 50(r + 1)/λ will do). Since each point yj from Y can belong to at most two intervals Ii, this
also means that this set contains at least one interval Ii that does not contain any points from Y .

For each 0 ≤ j ≤ s− 1, let Oj be the smallest interval J = [xi2 , xi1 ] such that yj ∈ J and (i) either
xi2 = −1 or [xi2+1, xi2 ] does not contain any points from Y , and (ii) either xi1 = 1 or [xi1 , xi1−1] does
not contain any points from Y . Some observations are in order: (i) each interval Oj consists of not
more than 2r + 2 intervals Ii and contains at most r + 1 points from Y , (ii) a point from Y cannot be
an endpoint of Oj unless it is the endpoint of I, (iii) it is possible for Qi and Qj to be the same even
when i ̸= j (and, in fact, even in the case yi ̸= yj).

We now denote O := ∪s−1
j=0Oj and construct a piecewise polynomial function S as follows. On the

intervals Ii that are not contained in O, we let S to be any polynomial of degree ≤ k+ r− 1 satisfying

∥f(x)− S|Ii∥Ii ≤ c(k, r)|Ii|rωk(f
(r), |Ii|, Ii). (4.3)

Such a polynomial is guaranteed by Whitney’s theorem.
For all i such that Ii ⊂ Oj , for some 0 ≤ j ≤ s− 1, we let S be the polynomial Lk+r−1(·; f, Ỹ ) from

Lemma 1.12 where [a, b] := Oj , and Ỹ consists of all points in Y ∩Oj supplemented by however many
extra points in Oj are needed so that the cardinality of Ỹ becomes k + r (while keeping λ from the
statement of Lemma 1.12 bounded below by a positive constant that depends only on k and r). Then
S|Oj

∈ Πk+r−1 satisfies (4.3) with Ii replaced by Oj , and (S|Oj
)(li−1)(yi) = 0, for all yi ∈ Oj .

We note that S does not have to be continuous, and so our definition is inaccurate at the endpoints
of Ii’s since, potentially, S|Ii+1(xi) is not the same as S|Ii(xi). Even though it has no influence on
our estimates, to be precise, we now redefine S at all points xi so that it becomes right continuous
everywhere in I.

For convenience, denote pi := S|Ii and note that

S(x) = pn(x) +

n−1∑
i=1

(pi(x)− pi+1(x))χi(x) = pn(x) +
∑
i∈Λ

(pi(x)− pi+1(x))χi(x),

where Λ :=
{
i
∣∣ 1 ≤ i ≤ n− 1, and xi ̸∈ O◦}. Finally, we let

Pn(x) := pn(x) +
∑
i∈Λ

(pi(x)− pi+1(x))Ri(x;Y ).

Now, using a rather standard approach (see, e.g., [19, 24]), one can show that (1.16) holds, and it only
remains to verify that

P (lj−1)
n (yj) = 0, for all 0 ≤ j ≤ s− 1. (4.4)

Indeed, for any 0 ≤ ν ≤ r, we have

P (ν)
n (yj) = p(ν)n (yj) +

∑
i∈Λ

ν∑
ℓ=0

(
ν

ℓ

)(
p
(ν−ℓ)
i (yj)− p

(ν−ℓ)
i+1 (yj)

)
R

(ℓ)
i (yj ;Y )

= p(ν)n (yj) +
∑
i∈Λ

(
p
(ν)
i (yj)− p

(ν)
i+1(yj)

)
χi(yj) = S(ν)(yj),

and so (4.4) follows.
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5. Negative theorems

5.1. Strong negative theorem: proof of Theorem 1.7
Without loss of generality, we can assume that x0 in the statement of Theorem 1.7 is 0. Moreover,

as is well known (see, e.g., [17, Chapter 4]), any function can be extended from [0, 1] to [−1, 1] without
essentially changing its modulus of smoothness or modulus of smoothness of its derivative. Hence, it is
sufficient to prove the following lemma.

Lemma 5.1. Let k ∈ N, r ∈ N0, and let a positive function ε ∈ C(0, 1] be such that limx→0+ ε(x) = 0.
Then, there is a function F ∈ Cr[0, 1], such that for any algebraic polynomial P we have

lim sup
x→0+

|F (x)− P (x)|
ωk

(
F (r), ε(x)x(r+1)/k; [0, 1]

) = ∞. (5.1)

Lemma 5.1 will be proved in three cases: (i) k = 1, (ii) k ≥ max{2, r + 1}, and (iii) 2 ≤ k ≤ r.

Case (i): k = 1.
Let F (x) := xr+1 cos(2π lnx). Then, F ∈ Cr[0, 1],

∥∥F (r+1)
∥∥
L∞[0,1]

≤ c(r), and so ω1(F
(r), t; [0, 1]) ≤

c(r)t. If P is an arbitrary polynomial from Πn, then it is either identically zero or has at most n zeros,
and so there exists δ > 0 such that P is either nonnegative or nonpositive on [0, δ]. Without loss of
generality, suppose that P (x) ≤ 0, 0 ≤ x ≤ δ. Then

|F (xm)− P (xm)| ≥ F (xm) = xr+1
m , for all xm := e−m,

where m ∈ N, m ≥ | ln δ|. Hence,

|F (xm)− P (xm)|
ω1

(
F (r), ε(xm)xr+1

m ; [0, 1]
) ≥ c(r)

ε(xm)
→ ∞, m→ ∞.

Case (ii): k ≥ max{2, r + 1}.
By replacing ε by ε̂(x) := max{ε(x), 2x1/k} if necessary, we may assume that

ε(x) ≥ 2x1/k ≥ 2x. (5.2)

We define the sequence {xj}∞j=0 of points in (0, 1] as follows. Starting with x0 := 1, if a point x2j
has been defined, then we pick x2j+1 to be the smallest number such that ε(x2j+1) = x2j , and let

x̃2j+1 := x2j+1ε(x2j+1) = x2jx2j+1 and x2j+2 := x1−k
2j x̃k2j+1 = x2jx

k
2j+1.

Note that 2x2j+2 ≤ x̃2j+1 ≤ x2j+1 ≤ x2j/2 and define

ω(x) :=

{
x2j+2, if x2j+2 ≤ x < x̃2j+1,

x1−k
2j xk, if x̃2j+1 ≤ x ≤ x2j .

Clearly, 0 < ω(x) ≤ x, 0 < x ≤ 1, and ω ∈ Φk. Therefore, setting

f(x) :=
1

(k − 2)!

∫ 1

x

x(u− x)k−2ω(u)

uk
du, x ∈ [0, 1],

it follows from [17, Theorem 3.4.2] that

ω(t) ≤ ωk(F
(r), t; [0, 1]) = ωk(f, t; [0, 1]) ≤ kω(t), t ∈ [0, 1], (5.3)

where

F (x) :=

{
1

(r−1)!

∫ x

0
(x− t)r−1f(t) dt, if r ≥ 1,

f(x), if r = 0.

14



It is not difficult to show (see also [17, Lemma 3.4.2(i)]) that limx→0+ f(x) = f(0) = 0. Hence,
f ∈ C[0, 1] and so, in particular, for r ≥ 1,

F (x)

xr
≤
(
max
t∈[0,x]

f(t)
) 1

(r − 1)!xr

∫ x

0

(x− t)r−1 dt

=
1

r!
max
t∈[0,x]

f(t) → 0, x→ 0. (5.4)

Also, since for j ∈ N,∫ 2x2j

x2j

(u− x2j)
k−2ω(u)

uk
du = x2j

∫ 2x2j

x2j

(u− x2j)
k−2

uk
du =

∫ 2

1

(u− 1)k−2

uk
du =: ck,

we have

f(x)

x
≥ 1

(k − 2)!

∑
j∈N,x2j≥x

∫ 2x2j

x2j

(u− x)k−2ω(u)

uk
du

≥ ck
(k − 2)!

∑
j∈N,x2j≥x

1 → ∞, x→ 0.

Hence, since f(x)/x ↓ on (0, 1], we have, for r ≥ 1,

F (x)

xr+1
=

1

(r − 1)!xr+1

∫ x

0

(x− t)r−1t
f(t)

t
dt ≥ f(x)

(r − 1)!xr+2

∫ x

0

(x− t)r−1t dt

=
1

(r + 1)!

f(x)

x
→ ∞, x→ 0. (5.5)

Also, since by (5.2), x̃2j+1 ≤ x
(r+1)/k
2j+1 ≤ x2j , we have

ω
(
x
(r+1)/k
2j+1

)
= x1−k

2j xr+1
2j+1 ≤ x

(1−k)/k
2j+1 xr+1

2j+1 = x
r+1/k
2j+1 = o(xr2j+1), j → ∞. (5.6)

Now, we fix a polynomial P . If
lim sup

x→0

|F (x)− P (x)|
ω(x(r+1)/k)

= ∞,

then (5.3) implies (5.1). Otherwise, there is a constant C, such that

|F (x)− P (x)| ≤ Cω(x(r+1)/k), x ∈ [0, 1].

Since, by (5.6) and (5.4), ω(x(r+1)/k
2j+1 ) = o(xr2j+1) and F (x2j+1) = o(xr2j+1) as j → ∞, we conclude

that P (x2j+1) = o(xr2j+1) as well. This means, that P (x) = xr+1Q(x), where Q is also an algebraic
polynomial. By (5.5), there is δ > 0, such that ∥Q∥[0,δ] <

1
2x

−r−1F (x), x ∈ (0, δ], which, in turn,
implies

|P (x)| ≤ 1

2
F (x), x ∈ [0, δ].

Denoting, for convenience, y := x2j+1, it follows from (5.5) that, for sufficiently large j,

F (y)− P (y) ≥ 1

2
F (y) ≥ yr+1.

On the other hand, since x̃2j+1 = yε(y) ≤ y(r+1)/kε(y) ≤ ε(y) = x2j , we have ω(y(r+1)/kε(y)) =
x1−k
2j yr+1εk(y) = ε(y)yr+1, and therefore

F (y)− P (y)

ω(y(r+1)/kε(y))
≥ 1

ε(y)
,

which together with (5.3) implies (5.1).

Case (iii): 2 ≤ k ≤ r.
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We will show that, in this case, the statement of the lemma follows from the case k = r + 1 that was
proved above and the Marchaud inequality. Let

ε̃ (x) := εk/(r+1)(x).

Then, it follows from Case (ii) that there exists a function F ∈ Cr[0, 1] such that

lim sup
x→0

|F (x)− P (x)|
ωr+1

(
F (r), xε̃ (x); [0, 1]

) = ∞, (5.7)

for every polynomial P . It follows from the Marchaud inequality (recall that it can be found in [11,
Theorem 2.8.1], for example) that, for k ≤ r and f := F (r), we have, for sufficiently small x > 0,

ωk

(
f, ε(x)x(r+1)/k; [0, 1]

)
≤ cεk(x)xr+1

∫ 1

ε(x)x(r+1)/k

ωr+1(f, u; [0, 1])

uk+1
du

+ cεk(x)xr+1 ∥f∥[0,1] .

Denoting w(x) := ωr+1 (f, xε̃ (x); [0, 1]), we have∫ 1

ε(x)x(r+1)/k

ωr+1(f, u; [0, 1])

uk+1
du =

(∫ xε̃ (x)

ε(x)x(r+1)/k

+

∫ 1

xε̃ (x)

)
ωr+1(f, u; [0, 1])

uk+1
du

≤
(

1

kεk(x)
+

c

ε̃ r+1(x)

)
w(x)

xr+1
≤ c

w(x)

εk(x)xr+1
,

and so

ωk

(
f, ε(x)x(r+1)/k; [0, 1]

)
≤ cw(x) + cε̃ r+1(x)xr+1∥f∥

≤ c(1 + w−1(1) ∥f∥[0,1])w(x),

which, together with (5.7), yields (5.1).
Lemma 5.1 is now proved in all cases.

Remark 5.2. Note that the proof in Case (iii) works for k = 1 and r ≥ 1 as well. Hence, except for
(k, r) = (1, 0), Case (i) is covered by Case (iii).

5.2. Weak negative theorem
The following negative theorem has a much simpler proof than Theorem 1.7, but it is not as powerful.

Theorem 5.3 (weak negative theorem). Let k ∈ N, r ∈ N0, x0 ∈ I, and let a positive function
ε ∈ C(0, 1] be such that limx→0+ ε(x) = 0. Then, for any n ∈ N, M > 0 and δ > 0, there exists
F = Fn,M,δ ∈ Cr such that, for any Pn ∈ Πn, we have

sup
x∈[x0−δ,x0+δ]∩I

|F (x)− Pn(x)|
ωk

(
F (r), ε(|x− x0|)|x− x0|(r+1)/k

) ≥M. (5.8)

The main shortcoming of this theorem is that it does not exclude a possibility that the left-hand side
of (5.8) is uniformly bounded above for all functions F ∈ Cr if the degree of approximating polynomials
is allowed to be sufficiently large depending on F (i.e., if n ≥ N(f), for some natural number N that is
allowed to depend on f). Of course, Theorem 1.7 shows that this is impossible.

Proof. The idea of the proof is essentially the same as in [43] (see also [27, Theorem 3]).
As in the proof of Theorem 1.7, without loss of generality, one can assume that x0 = 0 and I is

replaced by [0, 1]. Thus, we will show that, for any n ∈ N, M > 0 and δ > 0, there exists sufficiently
small ϵ > 0 such that, for F (x) := (ϵ− x)k+r

+ and any any Pn ∈ Πn, we have

sup
x∈[0,δ]

|F (x)− Pn(x)|
ωk

(
F (r), ε(x)x(r+1)/k; [0, 1]

) ≥M. (5.9)
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Clearly, F ∈ Ck+r−1[0, 1],
∥∥F (k+r)

∥∥
L∞[0,1]

≤ c(k, r), and
∥∥F (ν)

∥∥
[0,1]

∼ ϵk+r−ν , 0 ≤ ν ≤ k + r − 1.
Hence, ωk(F

(r), t; [0, 1]) ≤ cmin{tk, ϵk}.
Suppose that, for some Pn ∈ Πn, (5.9) is not true. Then, we must have

|F (x)− Pn(x)| ≤Mωk

(
F (r), ε(x)x(r+1)/k; [0, 1]

)
, x ∈ [0, δ].

Hence,
|F (x)− Pn(x)| ≤ cεk(x)xr+1,

and so P (r+1)
n (0) = F (r+1)(0) ∼ ϵk−1. Also,

|Pn(x)| ≤ |F (x)|+ |F (x)− Pn(x)| ≤ cϵk, x ∈ [0, δ].

Hence, by Markov’s inequality
∥∥∥P (r+1)

n

∥∥∥
[0,δ]

≤ c(k, r,M, n, δ)ϵk, and we get a contradiction by picking
ϵ to be sufficiently small.

6. Applications

6.1. One estimate for q-monotone functions
It is clear that, given a function f and a polynomial Pn approximating it on I, one can achieve

interpolation of f at ±1 by adding a linear polynomial to Pn. This is a particular (and trivial) instance
of a more general standard approach involving so-called Boolean sums that is often used in the literature
(see, e.g., [6,7,9,10]). The proof of the following lemma is trivial, and we only state it here for the sake
of reader convenience. At the same time, this lemma immediately implies Corollary 6.2 which is new
and quite far from being obvious, and would be rather difficult to prove directly without employing
Theorem 1.3.

Lemma 6.1. Let k, n ∈ N and f ∈ C, and suppose that Pn ∈ Πn is such that |f(x) − Pn(x)| ≤
Aωk(f, ρn(x)), x ∈ I, where A ≥ 1 is some constant. Then, there exists a polynomial Qn ∈ Πn such
that, Q′′

n ≡ P ′′
n and, for each 1 ≤ ℓ ≤ k,

|f(x)−Qn(x)| ≤ c(k)Aωℓ(f, φ
2/ℓ(x)n−2+2/ℓ), if 1− n−2 ≤ |x| ≤ 1.

Proof. Let L(g, ·) be the linear polynomial interpolating g at ±1, i.e., L(g, x) = (1 + x)g(1)/2 + (1 −
x)g(−1)/2, and define Qn(x) := Pn(x) + L(f − Pn, x). Then, Q′′

n ≡ P ′′
n , Qn(±1) = f(±1) and

|f(x)−Qn(x)| ≤ |f(x)− Pn(x)|+ |f(1)− Pn(1)|+ |f(−1)− Pn(−1)|
≤ Aωk(f, ρn(x)) + 2Aωk(f, n

−2) ≤ 3Aωk(f, ρn(x)).

It remains to apply Theorem 1.3 with r = 0 in order to finish the proof.

We say that a function f ∈ C is q-monotone on I if ∆q
u(f, x) ≥ 0 for all u > 0 and x ∈ I, and denote

the set of all q-monotone (continuous) functions by ∆(q). In particular, ∆(1) and ∆(2) are, respectively,
the classes of all nondecreasing and convex functions from C.

Lemma 6.1 implies that non-interpolatory pointwise estimates for q-monotone polynomial approx-
imation (see, e.g., [28] for discussions) imply interpolatory ones if q ≥ 2. In particular, the following
result holds. (In the case q = 1, we use [12] and Theorem 1.3.)

Corollary 6.2. Let q ∈ N and f ∈ C ∩ ∆(q). Then, for every n ∈ N, there exists a polynomial
Pn ∈ Πn ∩∆(q) such that

|f(x)− Pn(x)| ≤ c(q)ω1

(
f,min{φ2(x), n−1φ(x)}

)
.
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6.2. Polynomial approximation with Hermite interpolation of Sobolev and Lipschitz classes
Throughout this section, we assume that Y consists of distinct points in I with the multiplicity r+1

each, and recall that Z = Z(Y ) = {zj}µ−1
j=0 is the subset of all distinct points in Y , and δ(Z) denotes

the smallest distance among the points in Z, i.e., δ(Z) := min0≤i≤µ−2(zi+1 − zi).
Recall that W r denotes the space of functions on [−1, 1] for which f (r−1) is absolutely continuous

and
∥∥f (r)∥∥∞ <∞, where ∥·∥∞ is the essential supremum on I.

We have the following theorem on best interpolatory estimates of functions from W r by polynomials
that immediately follows from Corollary 1.14.

Theorem 6.3. Let r, µ ∈ N, and let Z = {zj}µ−1
j=0 ⊂ I be a set of µ distinct points. Then, for every

f ∈W r and n ≥ N(r, µ, δ(Z)),

inf
Pn∈Πn

∥∥∥∥ f − Pn

(min{ρn(x),dist(x,Z)})r

∥∥∥∥
∞

≤ c(r, µ)
∥∥∥f (r)∥∥∥

∞
. (6.1)

Remark 6.4. It follows from Lemma 1.12 that (6.1) is also true for all n ≥ µr− 1 if the constant c is
allowed to depend on δ(Z).

The following lemma shows that the quantity min{ρn(x),dist(x,Z)} in (6.1) is exact in the sense
that one cannot improve the rate of approximation near any of the points in Z.

Lemma 6.5. For any r ∈ N and z ∈ I there exist a function f ∈W r and a positive constant c0 = c0(r)
such that, for any n ∈ N and any Pn ∈ Πn,

lim sup
x→z

|f(x)− Pn(x)|
|x− z|r

≥ c0

∥∥∥f (r)∥∥∥
∞
. (6.2)

Proof. Without loss of generality, we can assume that z ≤ 0. If f(x) := (x − z)r+ cos(2π ln |x − z|),
then f ∈ W r and

∥∥f (r)∥∥∞ ∼ 1. We will show that (6.2) holds with c0 :=
∥∥f (r)∥∥−1

∞ . Let Pn be an
arbitrary polynomial from Πn, and since Pn has at most n zeros, there exists ϵ > 0 such that Pn(x)
is either nonnegative or nonpositive on [z, z + ϵ]. Without loss of generality suppose that Pn(x) ≤ 0,
z ≤ x ≤ z + ϵ. Then

|f(xm)− Pn(xm)| ≥ f(xm) = (xm − z)r, for all xm := z + e−m,

where m ∈ N, m ≥ | ln ϵ|, and (6.2) follows.

We now recall that Lip∗ α denotes the space of all functions f on I such that the seminorm |f |Lip∗ α :=
supt>0

(
tν−αω2(f

(ν), t)
)
< ∞, where ν := ⌈α⌉ − 1. Together with the classical inverse theorems (see,

e.g., [11, Theorem 8.6.1]), (1.1) implies that, if α > 0, then a function f is in Lip∗ α if and only if

inf
Pn∈Πn

∥∥ρ−α
n (f − Pn)

∥∥ = O(1).

Given α > 0, for f ∈ Lip∗ α, we define g := f − L, where L is a polynomial from Πν+1 such that
L(ν) interpolates f (ν) at the endpoints of I. Then, by the Marchaud inequality, if α ̸∈ N, we have

ω1(g
(ν), t) ≤ c(α)

(
tα−ν |f |Lip∗ α + t

∥∥∥g(ν)∥∥∥)
≤ c(α)tα−ν |f |Lip∗ α + c(α)tω2(f

(ν), 1) ≤ c(α)tα−ν |f |Lip∗ α,

and, if α ∈ N (and so ν = α− 1),

ω1(g
(ν), t) ≤ c(α)t| ln t| |f |Lip∗ α.

The following estimate for functions from Lip∗ α classes immediately follows from Corollary 1.14.

Corollary 6.6. Let Z = {zj}µ−1
j=0 ⊂ I be a set of µ distinct points. If α > 0 and f ∈ Lip∗ α, then for

any n ≥ N(α, µ, δ(Z)), there exists Pn ∈ Πn such that, for all x ∈ I,

|f(x)− Pn(x)| ≤ c(α, µ)|f |Lip∗ α ·

{
(min{dist(x,Z), ρn(x)})α , if α ̸∈ N,
(min{d(x), ρn(x)})α , if α ∈ N,

(6.3)

where d(x) := dist(x,Z)
∣∣ln ( dist(x,Z)/3)∣∣1/α.
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Remark 6.7. It follows from Lemma 1.12 that (6.3) is also true for all n ≥ µ⌈α⌉ − 1 if the constant c
is allowed to depend on δ(Z).

The following lemma shows that the estimate (6.3) is exact in the sense that one cannot expect a
better rate of approximation near points in Z.

Lemma 6.8. For any α > 0 and z ∈ I, there exist a function f ∈ Lip∗ α and a positive constant
c0 = c0(α) such that, for any n ∈ N and any Pn ∈ Πn,

lim sup
x→z

|f(x)− Pn(x)|
|x− z|α|ψα(x)|

≥ c0|f |Lip∗ α,

where ψα(x) := ln |x− z| if α ∈ N, and ψα(x) := 1 if α ̸∈ N.

Proof. Without loss of generality, we can assume that z ≤ 0. If f(x) := (x− z)α+ψα(x), then |f |Lip∗ α ≤
c(α), and set c0 := |f |−1

Lip∗ α/2. If the claim of the lemma is not true, then there exists a polynomial
Pn ∈ Πn and ϵ > 0 such that

|f(x)− Pn(x)| ≤
1

2
(x− z)α|ψα(x)|, x ∈ [z, z + ϵ]. (6.4)

Then, (6.4) implies that f (i)(z) = P
(i)
n (z) = 0, for all 0 ≤ i ≤ ν := ⌈α⌉−1. Now, by Markov’s inequality,

we have
∥∥∥P (ν+1)

n

∥∥∥ ≤ c(n, ν) ∥Pn∥ =: A, and so

|Pn(x)| =
1

ν!

∣∣∣∣∫ x

z

(x− t)νP (ν+1)
n (t) dt

∣∣∣∣ ≤ A

(ν + 1)!
(x− z)ν+1, x ∈ I.

Hence, for x > z,

|f(x)− Pn(x)|
(x− z)α|ψα(x)|

≥ 1− |Pn(x)|
(x− z)α|ψα(x)|

≥ 1− A

(ν + 1)!
· (x− z)⌈α⌉−α

|ψα(x)|
→ 1

as x→ z+, which contradicts (6.4).
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