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Preface 
 

We wrote the notes basically for students attending the course on continuum mechanics 
at the Faculty of Mathematics, Physics and Informatics, Comenius University in 
Bratislava. The notes are intended as a companion text to continuum mechanics and 
rheology. This version is far from a complete coverage of the topic and will be a subject 
of further extension, modification, and improvement. 

Due to a short time available for preparation of the notes, the material partly reflects 
the fact that our research topic is theory and numerical modeling of elastic and seismic 
wave propagation. 

In addition to the literature explicitly referred to in this version of the text we also 
included books by Ranalli (1995) and Dahlen & Tromp (1998) in the list of references 
as references relevant for the topic. The text of the lecture notes is mainly based on 
material given in the books by Moczo, Kristek & Halada (2004), Carcione (2001) and 
Dahlen & Tromp (1998). 
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Anelastic Materials 

 
Elastic media do not have losses of internal energy. Real materials do not behave in 
this way. Materials that behave differently from the elastic media are called anelastic. 
The deviation from the elastic behavior of materials is anelasticity. 

The simplest rheological model of an anelastic material is a linear viscoelastic body 
which combines two extreme behaviors – linear elasticity and linear viscosity. 
A material is linearly viscoelastic if the stress tensor is linearly related to the strain 
tensor, and the strain response to a linear combination of applied stresses is the same 
linear combination of strain responses to individual applied stresses. 

A sudden application of a constant stress (Heaviside unit step function in stress) 
causes creep – a slow continuous increase of strain. A sudden removal of stress 
possibly yields recovery of material. A simple classification of creep and recovery is 
given in Table 1.  

 
 
 

application 
of constant 

stress 
→ 

creep – slow 
continuous 
increase of 

strain 

 

 

complete elastic 
creep   

partial elastic 
flow   

linear 
strain 
rate 

viscous 
flow 

removal of 
the stress → 

recovery – 
gradual 

decrease of 
strain 

no flow 
nonlinear 

strain 
rate 

plastic 
flow 

 
creep with increasing rate can terminate in rupture 

 

Table 1.   Classification of creep  ( adapted from Ben-Menahem & Singh 1981 ) 

 
 
 
A sudden application of a constant strain (Heaviside unit step function in strain) causes 
relaxation – a gradual decrease of stress. A simple classification of relaxation is given 
in Table 2. 
 



Moczo, Kristek, Franek:  Lecture Notes on Rheological Models. DAPEM FMPI CU  2006 
 

 5

 
in material 

characterized 
by 

elastic flow 

relaxation to 
nonzero stress application 

of constant 
strain 

→ 

relaxation – 
gradual 

decrease of 
stress 

in material 
characterized 

by 
elastic creep 

relaxation to 
zero stress 

 

Table 2.   Classification of relaxation  ( adapted from Ben-Menahem & Singh 1981 ) 

 
 

 
Linear Elastic Body 

 
Linear elastic body, Hooke body (Hooke model, Hooke element, elastic spring), 
represents behavior of a perfectly elastic (lossless) solid material. Stress is proportional 
to strain: 
 
   ( ) ( )t M tσ ε= ⋅ . (1) 
 
Here ( )tσ  is the stress as a function of time t , ( )tε  strain, and M  the time-
independent elastic modulus. An application of a load yields an instantaneous 
deformation. A removal of the load yields instantaneous and total recovery. Hooke 
body does not have a memory: stress at a given time only depends on the deformation 
at the same time. Hooke body is shown in Fig. 1. The strain-time diagram for a constant 
stress applied at time 0t  and removed at time 1t  is shown in Fig. 2, left, the stress-
strain diagram in Fig. 2, right. 
 
 

 
 

Fig. 1.   Hooke body 
 
 
 

HB
,σ ε  

M
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Fig. 2.   Left: The strain-time diagram for a constant stress applied at time 0t  and 

removed at time 1t . Right: The stress-strain diagram. 
 
 
 
 

Hereafter we will use symbol F for the direct and F -1 for the inverse Fourier 
transforms 
 

 F ( ){ } ( ) ( )expx t x t i t dtω
∞

−∞

= −∫  ,   F  -1 ( ){ } ( ) ( )1 exp
2

X X i t dω ω ω ω
π

∞

−∞

= ∫  . 

 
ω  is the angular frequency. An application of the Fourier transform to equation (1) 
gives 
 
 ( ) ( )Mσ ω ε ω= ⋅  . (2) 
 
An equivalent to eq. (1) is 
 
  ( ) ( )t C tε σ= ⋅  , (3) 
 
where 1C M=  is the compliance. 
 
 
 

 

ε

σ

σ  

1t  0t  t  

ε M  

t  

ε  

σ M  
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Linear Viscous Body 

 
Linear viscous body, Stokes body (Stokes model, Stokes element, Stokes dashpot; also 
Newton model, Newton element, viscous dashpot) represents the other extreme 
behavior in the variety of linear rheological bodies, the behavior of the viscous fluid. 
Stress is proportional to strain rate: 
 
  ( ) ( )t tσ η ε= ⋅  . (4) 
 
Here η  is the time-independent viscosity. An application of a load yields non-
instantaneous linearly increasing deformation. A removal of the load does not yield 
removal of deformation – there is no recovery. Stokes body has extreme memory. 
Stokes body is shown in Fig. 3. The strain-time diagram for a constant stress applied at 
time 0t  and removed at time 1t  is shown in Fig. 4 (left), the stress – strain-rate diagram 

in Fig. 4 (right). 

 
Fig. 3.   Stokes body 

 

 
 

Fig. 4.   Left: The strain-time diagram for a constant stress applied at time 0t  and 

removed at time 1t . Right: The stress – strain-rate diagram. 

η  

SB
,σ ε  

ε  

σ

ε  

( )1 0
σ
η −t t  

t  
σ  

0t  t  

ηε  

1t  
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An application of the Fourier transform to equation (4) gives 

 
 ( ) ( )iσ ω ωη ε ω= ⋅  . (5) 
 
 

Stress-Strain Relation in Viscoelastic Medium 
 
Many real materials combine behaviors of both, elastic solids and viscous fluids. As a 
consequence, these materials remember their past, that is, the stress-strain relation also 
depends on time. We can approximate such a behavior using viscoelastic models of 
medium. 

For a linear isotropic viscoelastic material the stress-strain relation is given by 
Boltzmann superposition and causality principle. In a simple scalar notation it is 

 

  ( ) ( ) ( )
t

t t dσ ψ τ ε τ τ
−∞

= −∫ , (6) 

 
where ( )tσ  is stress, ( )tε  time derivative of strain, and ( )tψ  stress relaxation 
function - a stress response to Heaviside unit step function in strain. According to 
equation (6), the stress at a given time t  is determined by the entire history of the strain 
until time t . The upper integration limit ensures the causality. Mathematically, the 
integral in equation (6), also called the hereditary integral, represents a time 
convolution of the relaxation function and strain rate. We can use symbol ∗  for the 
convolution. Equation (6) then can be written as 
 
 ( ) ( ) ( )t t tσ ψ ε= ∗  . (7) 
 
Due to properties of convolution, 
 
 ( ) ( ) ( )t t tσ ψ ε= ∗  . (8) 
 
Since ( )tψ  is the stress response to a unit step function in strain, its time derivative, 
 
 ( ) ( )M t tψ=  (9) 
 
is the stress response to the Dirac δ -function in strain. Equation (8) can be written as 
 
 ( ) ( ) ( )t M t tσ ε= ∗  . (10) 
 
We can compare eq. (10) with eq. (1): whereas the stress-strain relation for the elastic 
body is a simple linear relation with a constant elastic modulus, the stress-strain relation  
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for the viscoelastic body has a convolutory form as a consequence of the time-
dependent modulus ( )M t . 

An application of the Fourier transform to equation (10) gives 
 
 ( ) ( ) ( )Mσ ω ω ε ω= ⋅  , (11) 
where 
 ( )M ω = F  ( ){ }M t = F  ( ){ }tψ  (12) 
 
is the complex, frequency-dependent viscoelastic modulus. An application of the 
inverse Fourier transform to eq. (12) gives 
 
 ( )tψ = F  -1 ( ){ }M ω  (13) 
 
and, due to properties of the Fourier transform, 
 

 ( )tψ = F  -1 
( )M

i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
 . (14) 

 
Equation (11) indicates that the incorporation of the linear viscoelasticity and 
consequently attenuation into the frequency-domain computations is much easier than 
those in the time-domain computations – real frequency-independent moduli are simply 
replaced by complex, frequency-dependent quantities (the correspondence principle 
in the linear theory of viscoelasticity). 

The time derivative of the stress is, see equation (8), 
 
 ( ) ( ) ( )t t tσ ψ ε= ∗  (15) 
 
or, due to equation  (9), 
   ( ) ( ) ( )t M t tσ ε= ∗  . (16) 

 
Consider eq. (12): 
 

  ( )M ω = F  ( ){ } ( ) exp( )t t i t dtψ ψ ω
∞

−∞

= −∫  . (17) 

 
Because ( )tψ  is the stress response to Heaviside unit step function in strain, 
 
 ( ) ( ) ( ) : (0) (0 ) , ( ) ( ) ; 0t t H t t t tψ ψ ψ ψ ψ ψ+= = = >  . (18) 
 
Equivalently, ( ) ( ); 0t t tψ ψ= ≥ . Then 
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 ( ) ( ) ( ) ( ) ( )t t H t t tψ ψ ψ δ= +  (19) 
 
and 
 

[ ]

[ ] [ ]

0

0

0

( ) ( ) ( ) ( ) ( ) exp( )

(0) ( ) exp( )

( ) (0) ( ) ( ) exp( )

( ) (0) ( ) exp( 0) ( ) exp( )

( ) ( ) ( ) exp( ) (0) ( ) exp( 0)

( ) e

M t H t t t i t dt

t i t dt

t i t dt

i t i t dt

i i

t

ω ψ ψ δ ω

ψ ψ ω

ψ ψ ψ ψ ω

ψ ψ ψ ω ψ ω

ψ ψ ψ ω ψ ψ ω

ψ

∞

−∞
∞

∞

∞

⎡ ⎤= + −⎢ ⎥⎣ ⎦

= + −

= ∞ + − ∞ + −

= ∞ + − ∞ − + −

= ∞ − ∞ − ∞ − ∞ + − ∞ −

+

∫

∫

∫

∫

0

xp( )i t dtω
∞

−∫

 

[ ]

[ ]

[ ]

0
0

0

0

( ) ( ) ( ) exp( ) ( ) exp( )

( ) ( ) ( ) exp( )

( ) ( ) ( ) exp( ) .

t i t t i t dt

dt i t dt
dt

i t i t dt

ψ ψ ψ ω ψ ω

ψ ψ ψ ω

ψ ω ψ ψ ω

∞
∞

∞

∞

= ∞ − − ∞ − + −

= ∞ − − ∞ −

= ∞ + − ∞ −

∫

∫

∫

 

  
We found that 

  [ ]
0

( ) ( ) ( ) ( ) exp( )M i t i t dtω ψ ω ψ ψ ω
∞

= ∞ + − ∞ −∫  . (20) 

It follows from eq. (20) that 
 
  ( 0) ( )M tω ψ= = =∞  . (21) 
 
Because iωF { }( ) ( 0)t tϕ ϕ= =  for ω→∞ , 
 
  ( ) ( 0)M tω ψ=∞ = =  . (22) 
 
Having found relations (21) and (22), we can define the following characteristics: An 
instantaneous elastic response of the viscoelastic material is given by the so-called 
unrelaxed modulus UM , a long-term equilibrium response is given by the relaxed 
modulus RM  
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 ( ) ( )

0
lim , limU Rt t

M t M tψ ψ
→ →∞

= =  . (23) 

 
In the frequency domain 
 
 ( ) ( )

0
lim , limU RM M M M
ω ω

ω ω
→∞ →

= =  . (24) 

 
The modulus defect or relaxation of modulus is 
 
 U RM M Mδ = −  . (25) 
 
An application of a unit-step strain, ( ) ( )t H tε = , causes decrease of ( )tψ , that is, 
relaxation, from the unrelaxed state with (0) UMψ =  to the relaxed state with 

( ) RMψ ∞ = . 
Given the viscoelastic modulus, the quality factor ( )Q ω  is 

 
 ( ) ( ) ( )Re / ImQ M Mω ω ω=  . (26) 
 
It can be shown that ( )1 Q ω  is a measure of internal friction in a linear viscoelastic 
body. 

It is obvious that a numerical integration of the stress-strain relation (6) is 
practically intractable due to the large computer time and memory requirements. This 
led many modelers to incorporate only oversimplified ( )Q ω  laws in the time-domain 
computations. 

An alternative to the stress-strain relation (6) is the strain-stress relation. The strain 
at a given time t  is determined by the entire history of the stress until time t :  
 

  ( ) ( ) ( )
t

t t dε χ τ σ τ τ
−∞

= −∫   (27) 

or 
  
  ( ) ( ) ( )t t tε χ σ= ∗  . (28) 
 
Here ( )tχ  is the creep function  - a strain response to Heaviside unit step function in 
stress. Due to properties of the convolution, eq. (28) can be rewritten as 
   
 ( ) ( ) ( )t t tε χ σ= ∗  . (29) 
 
Since ( )tχ  is the strain response to a unit step function in stress, its time derivative, 
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 ( ) ( )C t tχ=  (30) 
 
is the strain response to the Dirac δ -function in stress. Equation (29) can be written as 
 
 ( ) ( ) ( )t C t tε σ= ∗  . (31) 
 
An application of the Fourier transform to eq. (31) yields 
 
 ( ) ( ) ( )Cε ω ω σ ω=  , (32) 
where 
 ( )C ω = F  ( ){ }C t = F  ( ){ }tχ  (33) 
 
is the complex, frequency-dependent creep compliance. An application of the inverse 
Fourier transform to eq. (33) gives 
 
 ( )tχ = F  -1 ( ){ }C ω  (34) 
 
and, due to properties of the Fourier transform, 
 

 ( )tχ = F  -1 
( )C
i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
 . (35) 

 
Relations 
 
 ( ) ( )

0
lim , limU Rt t

C t C tχ χ
→ →∞

= =  (36) 

 
define the unrelaxed compliance UC  and relaxed compliance RC . Relaxation of 
compliance is defined as 
 
  R UC C Cδ = −  . (37) 
 
An application of a unit-step stress, ( ) ( )t H tσ = , causes increase of ( )tχ , that is, 
creep, from the unrelaxed state with (0) UCχ =  to the relaxed state with 

( ) RCχ ∞ = . 
Using eqs. (8) and (29), and properties of convolution we can write 

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) .

t t t

t t t

t t t

σ ψ ε

ψ χ σ

ψ χ σ

= ∗
⎡ ⎤= ∗ ∗⎣ ⎦

⎡ ⎤= ∗ ∗⎣ ⎦

 (38) 

 
It follows from eq. (38) that 
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 ( ) ( ) ( )t t tψ χ δ∗ =  (39) 
and, consequently, 
 
  ( ) ( ) 1M Cω ω =  . (40) 
 
For the unrelaxed and relaxed states it follows that 
 

  1 1,U R
U R

C C
M M

= =  . (41) 

 
 
 

Conversion of the Convolutory Stress-Strain Relation 
into a Differential Form 

 
Consider ( )M ω  as a rational function 
 

 ( ) ( )
( )

m

n

P i
M

Q i
ω

ω
ω

=  (42) 

with 
 

 ( ) ( ) ( ) ( )
1 1

,
m n

l l
m l n l

l l
P i p i Q i q iω ω ω ω

= =
= =∑ ∑  . (43) 

 
An application of the inverse Fourier transform to equation (11) with ( )M ω  given by 
equation (42) leads to 

 
( ) ( )

1 1

l ln m

l ll l
l l

d t d t
q p

dt dt
σ ε

= =
=∑ ∑  , (44) 

 
the nth-order differential equation for ( )tσ , which can be eventually numerically solved 
much more easily than the convolution integral. In other words, the convolution integral 
in equation (6) can be converted into a differential form if ( )M ω  is a rational function 
of iω . 

Day and Minster (1984) assumed that, in general, the viscoelastic modulus is not a 
rational function. Therefore they suggested approximating a viscoelastic modulus by an 
nth-order rational function and determining its coefficients by the Padé approximant 
method.  They obtained n ordinary differential equations for n additional internal 
variables, which replace the convolution integral. The sum of the internal variables 
multiplied by the unrelaxed modulus gives an additional viscoelastic term to the elastic 
stress. The revolutionary work of Day and Minster not only developed one particular  
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approach but, in fact, indirectly suggested the future evolution – a direct use of the 
rheological models whose ( )M ω  is a rational function of iω . 

Emmerich and Korn (1987) realized that an acceptable relaxation function 
corresponds to rheology of what they defined as the generalized Maxwell body – n 
Maxwell bodies and one Hooke element (elastic spring) connected in parallel; see 
Figure 8. Note that the generalized Maxwell body in the literature on rheology is 
defined without the additional single Hooke element. Therefore, we denote the model 
considered by Emmerich and Korn (1987) by GMB-EK. 

Because, in fact, any model consisting of linear springs and dashpots (Stokes 
elements) connected in series or parallel has its viscoelastic modulus in form of a 
rational function of iω , the GMB-EK allowed replacing the convolution integral by a  
differential form. Emmerich and Korn (1987) obtained for the new variables similar 
differential equations as Day and Minster (1984). In order to fit an arbitrary ( )Q ω  law 
they chose the relaxation frequencies logarithmically equidistant over a desired 
frequency range and used the least-square method to determine weight factors of the 
relaxation mechanisms (classical Maxwell bodies). Emmerich and Korn (1987) 
demonstrated that their approach is better than the approach based on the Padé 
approximant method in both accuracy and computational efficiency. 

Independently, Carcione et al. (1988a,b), in accordance with the approach of Liu et 
al. (1976), assumed the generalized Zener body (GZB) - n Zener bodies, that is, n 
standard linear bodies, connected in parallel; see Figure 9. Carcione et al. developed 
a theory for the GZB and introduced term memory variables for the obtained additional 
variables. 

We will briefly review the GMB-EK and GZB presented in papers by Emmerich 
and Korn (1987) and Carcione et al. (1988a,b), respectively. It is, however, useful first 
to remind basics of the simple rheological models. 
 
 
 

Rules for Linear Rheological Models 
 

Models which quite well approximate rheological properties and behavior of the real 
Earth’s material can be constructed by connecting the simplest rheological elements, 
Hooke and Stokes elements, in parallel or series. The properties of the models can be 
analyzed in the time and frequency domains. There are relatively simple rules in both 
domains that allow obtaining mathematical representations of the models. The time-
domain and frequency-domain rules for linear rheological models are given in 
Table 3. 
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element stress-strain relation 

time domain 

Hooke (spring) ( ) ( )t M tσ ε= ⋅ ,   M  - elastic modulus 

Stokes (dashpot) ( ) ( )t tσ η ε= ⋅ ,    η  - viscosity 

frequency domain 

Hooke (spring) ( ) ( )Mσ ω ε ω= ⋅ ,   M  - elastic modulus 

Stokes (dashpot) ( ) ( )iσ ω ωη ε ω= ⋅ ,    η  - viscosity 

 
connection σ  ε  

in series equal additive 
in parallel additive equal 

 

Table 3.  Time-domain and frequency-domain rules for linear rheological models 

 
 
 

Maxwell Body 
 
One of the simplest viscoelastic models is Maxwell body (Fig. 5, top panel). We can 
easily derive the basic characteristics of this rheological model. An application of the 
frequency-domain rules leads to: 
 
HB: 
 ( ) ( )HB HBMσ ω ε ω=  (45) 
SB: 
 ( ) ( )SB SBiσ ω ωη ε ω=  (46) 
 
MB = HB – s – SB (here – s – means connection in series): 
 
 ,HB SB HB SBσ σ σ ε ε ε= = = +  (47) 
 

 ( ) ( )( )
M i

σ ω σ ωε ω
ωη

= +  (48) 

 

 ( ) ( )i M
M i
ωησ ω ε ω

ωη

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 (49) 
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 ( ) ( ) ( ) ; ( )
r

i MM M
i

ωσ ω ω ε ω ω
ω ω

= =
+

 (50) 

Here, 

  r
Mω
η

= . (51) 

 
From the frequency-dependent modulus we easily obtain the relaxed and unrelaxed 
moduli 
 
  

0
lim ( ) 0RM M
ω

ω
→

= =  , (52) 

and 
  lim ( )UM M M

ω
ω

→∞
= = . (53) 

 
Relations (52) and (53) mean that Maxwell body under the application of a unit-step 
strain relaxes from value UM  (at the time of application of the unit-step strain) down to 
a zero stress. Because, eq. (41), 
 

  1
R

R
C

M
= , (54) 

 
Maxwell body creeps forever under the application of a unit-step stress. 

Find now the stress relaxation function. Using eqs. (14) and (50) we have 
 

( )tψ = F  -1 
( )M

i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
F  -1 

r

M
iω ω

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
  

and 
 
  ( ) exp( ) ( ) exp( ) ( )rt M t H t M t H tσψ ω τ= − = − . (55) 
 
Here, 

 1

r Mσ
ητ

ω
= =  (56) 

 
is the stress relaxation time (also Maxwell relaxation time). Then rω  can be called the 

relaxation frequency. The relaxation time στ  characterizes time during which stress 
falls down by a characteristic value. Using eq. (9) we can also find the time-dependent 
modulus 
 
 ( ) ( ) exp( ) ( ) ( )r rM t t M t t H tψ ω δ ω⎡ ⎤= = − −⎢ ⎥⎣ ⎦ . (57) 
 

An application of the time-domain rules leads to: 
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HB: 
 ( ) ( )HB HBt M tσ ε=  (58) 
 
SB: 
 ( ) ( )SB SBt tσ η ε=  (59) 
 
MB = HB – s – SB:  

  
 ,HB SB HB SBσ σ σ ε ε ε= = = +  (60) 
 

 ( ) ( )( ) t tt
M
σ σε

η
= +  (61) 

 
 ( ) ( ) ( )r rt t M tσ τ σ τ ε+ =  (62) 
 
The use of eqs. (16) and (57) yields 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
0

exp ( ) ( ) ( )

exp ( )

t

r r

t

r r

t M t t

M t t H t d

M t M t d

σ ε

ω τ δ τ ω τ ε τ τ

ε ω τ ω ε τ τ

−∞

= ∗

⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦

= − − −

∫

∫

 

and 

  ( ) ( ) ( ) ( )
0

exp ( )
t

r rt M t M t dσ ε ω ω τ ε τ τ= − − −∫  . (63) 

 
Assume ( ) ( )t H tσ =  in eq. (61) and integrate the equation with respect to time in 

the interval 0, t : 

 
( ) ( ) ( ) ( )

0 0

1 1

1 1 .

t t

t t d H d
M

M t
M

χ ε δ ξ ξ ξ ξ
η

η

= = +

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∫ ∫
  

 
Then, using definition (56), 
 

  ( ) 1 1 ; 0tt t
M σ

χ
τ

⎛ ⎞⎟⎜ ⎟⎜= + ≥⎟⎜ ⎟⎜ ⎟⎝ ⎠
 . (64) 
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The first term on the right-hand side of eq. (64) represents the elastic deformation that 
appears instantaneously at the time of application of the unit-step stress. This 
deformation is instantaneously removed upon removal of the stress. The second term 
represents viscous deformation that grows with time and that will remain after the stress 
is removed. The behavior of Maxwell body is illustrated in Figs. 6 and 7. 

 
 

Kelvin-Voigt Body 
 
Another simplest viscoelastic models is Kelvin-Voigt body (Fig. 5, middle panel). We 
can easily derive the basic characteristics of this rheological model. An application of 
the frequency-domain rules leads to: 
 
HB: 
 ( ) ( )HB HBMσ ω ε ω=  (65) 
SB: 
 ( ) ( )SB SBiσ ω ωη ε ω=  (66) 
 
KVB = HB – p – SB (here – p – means connection in parallel): 
 
 ,HB SB HB SBσ σ σ ε ε ε= + = =  (67) 
 

( )( ) ( )M iσ ω ωη ε ω= +  
 

 ( ) ( ) ( ) ; ( )M M M iσ ω ω ε ω ω ωη= = +  (68) 
 
 

0
lim ( )RM M M
ω

ω
→

= =  (69) 

 
( ) ( )t M tψ = = F  -1 ( ){ }M ω = F  -1 { }M iωη+   

 
 ( ) ( ) ( )M t M t tδ ηδ= +  (70) 
 
 ( ) ( ) ( )t M H t tψ ηδ= +  (71) 
 
 

0
lim ( ) (0)U t

M t Mψ ηδ
→

= = +  (72) 

 
An application of the time-domain rules leads to: 

 
HB: 
 ( ) ( )HB HBt M tσ ε=  (73) 
SB: 
 ( ) ( )SB SBt tσ η ε=  (74) 
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KVB = HB – p – SB: 
 
 ,HB SB HB SBσ σ σ ε ε ε= + = =  (75) 
 
 ( ) ( ) ( )t M t tσ ε η ε= +  (76) 
 
We would obtain eq. (76) also by using eqs. (10) and (70). 

 
It follows from eq. (40) that the compliance is 

 

 1( )C
M i

ω
ωη

=
+

 (77) 

 
and from eq. (34) that the time derivative of the creep function is 
 

   ( )tχ = F  -1 ( )1 1 exp ( )M t H t
M i

η
ωη η

⎧ ⎫⎪ ⎪⎪ ⎪ = −⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
. 

 
Then the creep function is obtained by the time integration 
 

 ( )
0

1( ) exp ( )
t

t M H dχ ϑ η ϑ ϑ
η

= −∫  

that gives 

  ( )1( ) 1 exp ; 0t t t
M εχ τ⎡ ⎤= − − ≥⎣ ⎦  . (78) 

 
Here, 

 
Mε
ητ =  (79) 

 
is the strain relaxation time (also called retardation time). This terminology comes from 
the exponential character of increase of the creep function. It follows from eqs. (36) and 
(78) that 
 
 0UC = . (80) 
 
The latter result means that the Kelvin-Voigt body has zero creep (zero strain) at the 
time of the application of the unit-step stress. At the same time, as 
  

  1
U

U
M

C
= =∞  , (81) 

 
the instantaneous stress response at the time of the application of the unit-step strain is 
singular. The behavior of the Kelvin-Voigt body is illustrated in Figs. 6 and 7.
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Fig. 5.   The simplest rheological models of viscoelastic materials. 
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Fig. 6.   Creep in Maxwell, Kelvin-Voigt and Zener (standard linear) bodies: strain-time 

diagrams for a constant stress applied at time 0t  and removed at time 1t . 

 

 
Fig. 7.   Stress relaxation in Maxwell, Kelvin-Voigt and Zener (standard linear) bodies: 

stress-time diagrams for a constant strain applied at time 0t . 
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Zener ( Standard Linear)  Body 

 
A more general than Maxwell and Kelvin-Voigt bodies is still relatively simple 
viscoelastic Zener (also standard linear) body (Fig. 5, bottom panel). There are two 
equivalent models: H – p – M  (Hooke body connected in parallel with Maxwell body) 
and H – s – KV (Hooke body connected in series with Kelvin-Voigt body). It is easier 
to see the meaning of the elastic moduli in the H – p – M model. At the time of the 
application of the unit-step strain the instantaneous, i.e., unrelaxed, stress will be given 
by the sum of moduli of the two elastic springs, U RM M Mδ= + . At the same time 
deformation of the dashpot will start to grow from zero. The growth of the viscous 
deformation will gradually release stress of the spring connected in series with the 
dashpot (i.e., spring in Maxwell body). In the limit, the relaxed stress, RM , will be only 
in the spring connected in parallel with Maxwell body.  We can easily derive the basic 
characteristics of this rheological model. An application of the frequency-domain rules 
leads to: 
 
HB: 
 ( ) ( )HB R HBMσ ω ε ω=  (82) 
MB, eq. (49): 

 ( ) ( )MB MB
i M
M i
ωηδσ ω ε ω

δ ωη

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 (83) 

 
ZB = H – p – MB: 
 ,HB MB HB MBσ σ σ ε ε ε= + = =  (84) 
 

( ) ( ) ( )

1
( )

1

R

U

R
R

i MM
M i

Mi
M MM

i
M

ωηδσ ω ε ω ε ω
δ ωη
ηω
δ ε ωηω
δ

= +
+

+
=

+

 

 
Define stress and strain relaxation times, στ  and ετ , 
 

 , U

R

M
M M Mσ ε
η ητ τ
δ δ

= =  . (85) 

 
Then 

  1( ) ( ) ( ) ; ( )
1R

iM M M
i

ε

σ

ωτσ ω ω ε ω ω
ωτ

+= =
+

. (86) 
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Taking limits of ( )M ω  we verify our interpretation of the meaning of the elastic 
moduli: 
 
  

0
lim ( ) , lim ( )U R RM M M M M M
ω ω

ω δ ω
→∞ →

= = + =  . (87) 

 
From eqs. (85) we have the simple relation between the unrelaxed and relaxed moduli: 
 

 U RM M ε

σ

τ
τ

=  . (88) 

 
We can now determine the stress relaxation function using eqs. (14) and (86): 
 

 ( )tψ = F  -1 
( )M

i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
F  -1 R

i iiM
i i

ε σ

σ σ

τ τ
ω τ ω τ ω

⎧ ⎫⎡ ⎤⎪ ⎪−⎪ ⎪⎢ ⎥+ −⎨ ⎬⎢ ⎥⎪ ⎪− −⎪ ⎪⎣ ⎦⎩ ⎭
 . 

 
It is now easy to find 
 

  ( )( ) 1 1 exp ( )Rt M t H tε
σ

σ

τ
ψ τ

τ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 . (89) 

 
It is also easy to obtain the creep function of Zener body as 
 

  ( )1( ) 1 1 exp ( )
R

t t H t
M

σ
ε

ε

τ
χ τ

τ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= − − −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 . (90) 

 
The behavior of Zener body is illustrated in Figs. 6 and 7. 
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The GZB and GMB-EK Rheological Models 

 
 

 

 
 
 
 Figure 8. Rheological model of the Generalized Maxwell Body (GMB-EK) 

defined by Emmerich and Korn (1987). HM  and lM  denote elastic 
moduli, lη  viscosity. 
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 Figure 9. Rheological model of the Generalized Zener Body (GZB). For a 

classical Zener body (standard linear body) there are two equivalent 
models: H-p-M , that is, Hooke element connected in parallel with 
Maxwell body, and H-s-KV, that is, Hooke element connected in 
series with Kelvin-Voigt body. In the H-p-M model it is easier to 
recognize the relaxed modulus RlM  and modulus defect lMδ .  1lM  

and 2lM  in the H-s-KV model denote elastic moduli. In both models 

lη  stands for viscosity. 
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GMB-EK. For the GMB-EK we easily find 
 

 ( )
1

n
l

H
ll

iMM M
i
ω

ω
ω ω=

= +
+∑  (91) 

with relaxation frequencies 

 ; 1,...,l
l

l

M l nω
η

= =  . (92) 

 
We find relaxed and unrelaxed moduli 
 

 ( ) ( )
0 1

lim , lim
n

R H U R l
l

M M M M M M M
ω ω

ω ω
→ →∞ =

≡ = ≡ = +∑  . (93) 

 
Since U RM M Mδ= + , 
 
 l lM Mδ=  . (94) 
 
Without any simplification we can consider 
 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  . (95) 

Then 

 ( )
1

n
l

R
ll

iaM M M
i
ωω δ

ω ω=
= +

+∑  . (96) 

 
 
Using relation (14) we easily obtain the relaxation function 
 

  ( ) ( )
1

l

n
t

R l
l

t M M a e H tωψ δ −

=

⎡ ⎤
⎢ ⎥= + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑  , (97) 

 
where ( )H t  is the Heaviside unit step function. The above formulas were presented by 
Emmerich and Korn (1987). 
 
 
GZB. From the two equivalent models of the GZB (see Figure 9) we choose the one in 
which a single ZB is of the H-p-M type (Hooke element in parallel with Maxwell 
body). This is because we can immediately see the meaning ( ,Rl lM Mδ ) of the elastic 

moduli of both Hooke elements in each ZB. For the GZB we easily obtain a well-
known 
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 ( )
1

1
1

n
l

R l
ll

iM M
i

ε

σ

τ ω
ω

τ ω=

+=
+∑  (98) 

with relaxation times 
 

 , ,U l U ll l l
l l

l R l l l R l

M M
M M M M

ε
ε σ

σ

η η ττ τ
δ δ τ

= = =  (99) 

and 
   U l Rl lM M Mδ= +  . (100) 
 
The unrelaxed and relaxed moduli are 
 

 
( )

( )

0 1

1 1

lim

lim .

n

R Rl
l
n n

l
U Rl R l

ll l

M M M

M M M M M

ω

ε
ω σ

ω

τω δ
τ

→ =

→∞ = =

≡ =

≡ = = +

∑

∑ ∑
 (101) 

 
Using relation (14) we easily obtain the relaxation function 
 

 ( ) ( ) ( )
1

1 1 exp
n

l
Rl l

ll
t M t H tε

σ
σ

τψ τ
τ=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ ⎪⎟⎪ ⎪⎜⎢ ⎥⎟= − − − ⋅⎜⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
∑  (102) 

 
Assuming simplification (Carcione, 2001) 
 

 1
Rl RM M

n
=  (103) 

we get 
 

( )

( ) ( ) ( )

1

1

1 ,
1

11 1 exp

n
lR

ll

n
l

R l
ll

iMM
n i

t M t H t
n

ε

σ

ε
σ

σ

τ ωω
τ ω

τψ τ
τ

=

=

+=
+

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= − − − ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑
 (104) 

 
Formulas (103) and (104) were presented by Carcione (2001). As far as we know, 
papers dealing with the incorporation of the attenuation based on the GZB, starting 

from Liu et al. (1976), had the same error – the missing factor 1
n

 in the viscoelastic 

modulus and relaxation function ( 1
L

 in most of the papers, L being the number of 

classical Zener bodies, that is, the number of relaxation mechanisms). 
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The Relation between the GZB and GMB-EK 
 

After papers by Emmerich and Korn (1987) and Carcione et al. (1988a,b) different 
authors decided either for the GMB-EK or GZB. 

The GMB-EK formulas were used by Emmerich (1992), Fäh 1992, Moczo and 
Bard (1993), and in many other papers. Moczo et al. (1997) applied the approach also 
in the finite-element method and hybrid finite-difference – finite-element method. An 
important aspect was that in the papers one memory variable was defined for one 
displacement component. Later Xu and McMechan (1995) introduced term composite 
memory variables which, however, did not differ from the variables used from the very 
beginning in the above papers. 

Robertsson et al. (1994) implemented the memory variables based on the GZB 
rheology into the staggered-grid velocity-stress finite-difference scheme. Their 
numerical results do not suffer from the missing factor  1 n  because they were 
performed for 1n= . Blanch et al. (1995) suggested an approximate single-parameter 
method, τ -method, to approximate constant ( )Q ω  law. Xu and McMechan (1998) 
used simulated annealing for determining a best combination of relaxation mechanisms 
to approximate a desired ( )Q ω  law. In the two latter papers the factor 1 n  was missing 
in the relaxation functions. 

As far as we know, in many following papers the authors using the GZB did not 
comment on the rheology of the GMB-EK and the corresponding time-domain 
algorithms, and the authors using the GMB-EK did not comment those for the GZB. 
Thus, two parallel sets of papers and algorithms had been developed during years. 
 
Therefore, following Moczo and Kristek (2005), look at the relation between the GZB 
and GMB-EK rheologies. Consider again the ZB (H-p-M) model. The application of 
the frequency-domain rules (Table 3) to the l-th ZB, that is to (H-p-M), gives 
 

  ( ) ( )1 1 1 Rl Rl
l

l l l l

M M
M i M i

σ ω ε ω
δ η ω δ η ω

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟⋅ + = + + ⋅⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
 . (105) 

Defining 

 l
l

l

Mδω
η

=  (106) 

and rearranging equation (105) we get 
 

  ( ) ( ) ( ) ( ); l
l l l R l

l

i MM M M
i

δ ωσ ω ω ε ω ω
ω ω

= ⋅ = +
+

 . (107) 

 
For n ZB (H-p-M) connected in parallel, that is, for the GZB (Figure 9), the stress is 
 

 ( ) ( ) ( ) ( )
1 1

n n

l l
l l

Mσ ω σ ω ω ε ω
= =

⎡ ⎤
⎢ ⎥= = ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑  (108) 
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and thus 

  ( )
1 1

n n
l

R l
ll l

i MM M
i

δ ω
ω

ω ω= =
= +

+∑ ∑  . (109) 

Since 

  
1 1

, ,
n n

R Rl U R l U R
l l

M M M M M M M Mδ δ
= =

= = + = +∑ ∑  , (110) 

 
without loss of generality we can consider 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  (111) 

and get 

  ( )
1

n
l

R
ll

i aM M M
i
ω

ω δ
ω ω=

= +
+∑  . (112) 

 
We see that for the GZB (H-p-M), Figure 9, we obtained exactly the same ( )M ω  as it 
has been obtained by Emmerich and Korn (1987) for their GMB-EK (Figure 8). It is 
also easy to get the same for the GZB (H-s-KV) or to rewrite non-simplified ( )tψ  for 

the GZB, equation (102), into the form of ( )tψ  for the GMB-EK, equation (97), 
without any simplification. In other words, the rheology of the GMB-EK and GZB is 
one and the same. As a consequence, we can continue with the GMB-EK and its 
simpler-form relations compared to those developed in papers on the GZB with two 
relaxation times. Also note that there is no need for a simplification (103) in equations 
(104). 
 
 

Introduction of the Anelastic Functions 
 
We will use term anelastic functions instead of memory variables. It is easy to rewrite 
the viscoelastic modulus (112) and relaxation function (97) using the unrelaxed 
modulus, 
 

 ( )
1

n
l l

U
ll

aM M M
i
ω

ω δ
ω ω=

= −
+∑  (113) 

and 

 ( ) ( ) ( )
1

1 l

n
t

U l
l

t M M a e H tωψ δ −

=

⎡ ⎤
⎢ ⎥= − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑  , (114) 

 
and obtain the time derivative of the relaxation function 
 

     



Moczo, Kristek, Franek:  Lecture Notes on Rheological Models. DAPEM FMPI CU  2006 
 

 30

 
 

( ) ( )

( ) ( )
1 1

( ) 1 .l l

n n
t t

l l U l
l l

M t t

M a e H t M M a e tω ω

ψ

δ ω δ δ− −

= =

=
⎡ ⎤
⎢ ⎥= − ⋅ + − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑
 (115) 

 
Inserting equation (115) into equation (10) gives 
 

 

( ) ( ) ( )

( )

( )( ) ( )

1

1

( )

( )

1 ( )

l

l

t n
t

l l
l

t

U

t n
t

l
l

t M a e H t d

M t d

M a e t d

ω τ

ω τ

σ δ ω τ ε τ τ

δ τ ε τ τ

δ δ τ ε τ τ

− −

=−∞

−∞

− −

=−∞

= − ⋅ − ⋅

+ ⋅ − ⋅

− − ⋅ − ⋅

∑∫

∫

∑∫

 (116) 

and 

 ( ) ( ) ( ) ( )

1

l

tn
t

U l l
l

t M t M a e dω τσ ε δ ω ε τ τ− −

= −∞

= ⋅ − ⋅∑ ∫  . (117) 

 

Now it is possible to replace the convolution integral by additional functions (anelastic 
functions, internal variables, new variables, memory variables). While Day and 
Minster (1984), Emmerich and Korn (1987) and Carcione et al. (1988a,b) defined the 
additional functions as dependent also on the material properties, for an important 
reason that will be explained later, Kristek and Moczo (2003) defined their anelastic 
functions as independent of the material properties. Here we follow Kristek and Moczo 
(2003). Defining an anelastic function 
 

 ( ) ( ) ( ) , 1,...,l

t
t

l lt e d l nω τζ ω ε τ τ− −

−∞

= ⋅ =∫  (118) 

 
we get the stress-strain relation in the form 
 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ζ
=

= ⋅ − ∑  . (119) 

 
Applying time derivative to equation (118) we get 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

l

l

t
t

l l

t
t

l l

l l

dt e d
dt

e d t

t t

ω τ

ω τ

ζ ω ε τ τ

ω ω ε τ τ ε

ω ζ ε

− −

−∞

− −

−∞

= ⋅

⎡ ⎤
⎢ ⎥= − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= − +⎣ ⎦

∫

∫  (120) 
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and 
 

 ( ) ( ) ( ) ; 1,...,l l l lt t t l nζ ω ζ ω ε+ = = . (121) 
 
Equations (119) and (121) define the time-domain stress-strain relation for the 
viscoelastic medium whose rheology corresponds to rheology of the GMB-EK (and to 
its equivalent – the GZB). 

If the staggered-grid velocity-stress finite-difference scheme is to be used, then the 
time derivative of the stress is needed. In such a case, ( )M t  given by equation (115) is 
inserted into relation (16) and the above procedure of obtaining the anelastic functions 
and stress-strain relation can be followed with time derivatives of the stress and strain 
instead of the stress and strain themselves. An alternative procedure is to apply time 
derivatives to equations (119) and (121), and define the anelastic function as the time 
derivative of the anelastic function (118). In either case we obtain 
 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ξ
=

= ⋅ − ∑  (122) 

and 
   ( ) ( ) ( ) ; 1,...,l l l lt t t l nξ ω ξ ω ε+ = =  . (123) 
 
It is useful to define anelastic coefficients 
 

   ; 1,...,l l
U

MY a l n
M
δ= =  . (124) 

 
Then the stress-strain relations (119) and (122) become 
 

 ( ) ( ) ( )
1

n

U U l l
l

t M t M Y tσ ε ζ
=

= ⋅ − ∑  (125) 

and 

   ( ) ( ) ( )
1

n

U U l l
l

t M t M Y tσ ε ξ
=

= ⋅ − ∑  . (126) 

 

The related equations (121) and (123) are unchanged. It is clear that the stress or its 
time derivative can be calculated if the unrelaxed modulus and anelastic coefficients are 
known. The unrelaxed modulus is directly related to the elastic speed of wave 
propagation, the anelastic coefficients have to be determined from ( )Q ω -law. 

Using the anelastic coefficient, the elastic modulus and viscosity in the l-th MB are 

U lM Y  and 1
U l

l
M Y

ω
 , respectively, the relaxed modulus is 

1
1

n

R U l
l

M M Y
=

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ , 
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and viscoelastic modulus 
 

   ( )
1

1
n

l
U l

ll
M M Y

i
ωω

ω ω=

⎡ ⎤
⎢ ⎥= −⎢ ⎥+⎢ ⎥⎣ ⎦

∑  . (127) 

 
 
(Note that Emmerich and Korn 1987, used slightly less numerically accurate 

; 1,...,l l Ry a M M l nδ= = .)  The quality factor (26) is then 
 

   
( )

2 2
1

2

2 2
1

1

1

n
l

l
l l

n
l

l
l l

Y

Q
Y

ω ω
ω ω

ω ω
ω ω

=

=

+=
−

+

∑

∑
 . (128) 

 

From equation (128) we can get 
 

 ( ) ( )2 1
1

2 2
1

n
l l

l
l l

Q
Q Y

ω ω ω ω
ω

ω ω

−
−

=

+
=

+∑ . (129) 

 

Equation (129) can be used to numerically fit any ( )Q ω -law. Emmerich and Korn 
(1987) demonstrated that a sufficiently accurate approximation to nearly constant 
( )Q ω  is obtained if the relaxation frequencies lω  cover the frequency range under 

interest logarithmically equidistantly. If, for example, ( )Q ω  values are known at 
frequencies ; 1,..., 2 1k k nω = − , with 1 1 2 1, n nω ω ω ω−= =  , equation (129) can be 
solved for the anelastic coefficients using the least square method. 

A more detailed discussion of the frequency range and its sampling by frequencies 
kω  can be found in the paper by Graves and Day (2003; equations 13 and 14). 

 
In practice, a phase velocity at certain reference frequency rω , instead of the elastic 
velocity corresponding to the unrelaxed modulus, is known from measurements. The 
phase velocity ( )c ω  is given by 

   
( )

( ) 1 2
1 Re

M
c

ω
ω ρ

−⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟= ⎜⎢ ⎥⎟⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 . (130) 

 
From equations (127) and (130) we get (Moczo et al. 1997) for the phase velocity 
( )rc ω  

   ( )2 1
22U r

RM c
R

ρ ω Θ+=  , (131) 

where 
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( )

( ) ( )

1 22 2
1 2

1 22 2
1 1

,

11 , .
1 1

n n
r l

l l
l lr l r l

R

Y Y ω ω

ω ω ω ω

Θ Θ

Θ Θ
= =

= +

= − =
+ +

∑ ∑
 (132) 

 
Thus, using equations (131) and (132), the unrelaxed modulus can be determined from 
the anelastic coefficients ; 1,...,lY l n= , and phase velocity ( )rc ω . 
 
 
 

Viscoelastic moduli and attenuations for Hooke, Stokes, Maxwell, 
Kelvin-Voigt, Zener and GMB-EK (=GZB) bodies - 

- Graphical examples 
 
Here we graphically illustrate viscoelastic modulus M  and attenuation 1 Q  for Hooke, 
Stokes, Maxwell, Kelvin-Voigt, Zener and GMB-EK (=GZB) body. For each type of 
rheology we show a real part of  modulus, imaginary part of modulus, absolute value of 
modulus, and attenuation as functions of frequency. Graphs clearly illustrate different 
viscoelastic properties of the basic type of rheological models. Figure legends explain 
how the graphs were obtained. Hooke and Stokes rheologies are illustrated in Fig. 10, 
Maxwell and Kelvin-Voigt in Fig. 11, and Zener together with GMB-EK (=GZB) for 
three relaxation mechanisms in Fig. 12. 
 
 
Fig. 10. Viscoelastic modulus M  and attenuation 1 Q  as functions of frequency f . 

The horizontal axis (frequency) is logarithmic, the vertical axis decadic. 
Modulus for Hooke body is calculated using eq. (2), modulus for Stokes body 
using eq. (5). Frequency dependence of 1 Q  is calculated using eq. (26). Note 
that 1 Q  gives infinity for Stokes body. 

 
Fig. 11. Viscoelastic modulus M  and attenuation 1 Q  as functions of frequency f . 

The horizontal axis (frequency) is logarithmic, the vertical axis decadic. 
Modulus for Maxwell body is calculated using eq. (50), modulus for Kelvin-
Voigt body using eq. (68). Frequency dependence of 1 Q  is calculated using 
eq. (26). 
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Fig. 10 

Hooke body Stokes body 
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Fig. 11 
 

Maxwell body Kelvin-Voigt body 
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Fig. 12. Viscoelastic modulus M  and attenuation 1 Q  as functions of frequency f . The horizontal axis (frequency) is logarithmic, the 
vertical axis decadic. Left column: First, eq. (129) is solved for an anelastic coefficient Y  of Zener body (GMB-EK with 1n=  gives Zener 
body) for 100Q=  at relaxation frequency 2 1Hzf = . Then viscoelastic modulus M  and attenuation 1 Q  as functions of frequency f  are 
calculated using eqs. (127) and (128), respectively. (Continued on the next page.) 

Zener body I Zener body II GMB-EK = GZB 
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Right column: First, eq. (129) is solved (using the least square method) for anelastic coefficients ( 1, 2,3)lY l =  of GMB-EK with 3n=  and 

100Q=  at relaxation frequencies 1 0.1Hzf = , 2 1Hzf = , and 3 10Hzf = . Then viscoelastic modulus M  and attenuation 1 Q  as functions of 
frequency f  are calculated using eqs. (127) and (128), respectively. Middle column: Viscoelastic modulus M  and attenuation 1 Q  as 
functions of frequency f  calculated only for anelastic coefficient 2Y  , that is, for a single relaxation mechanism at 2 1Hzf =  using eqs. (127) 
and (128), respectively. Anelastic coefficient 2Y  is the same as in the case of GMB-EK with 3n= , that is, 3 relaxation mechanisms. 

Zener body I Zener body II GMB-EK = GZB 
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Equations for the 1D Case – A Summary 

 
We can now generalize 1D equations of motion for the smoothly heterogeneous 
viscoelastic medium. The considered formulations are: 
 
 
displacement-stress formulation 
 

 
1

, ,
n

M
x U U l l

l
d f M M Yρ σ σ ε ζ

=
= + = ⋅ − ∑  (133) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (134) 
 
displacement-velocity-stress formulation 
 

 
1

, , ,
n

M
x U U l l

l
f d M M Yρυ σ υ σ ε ζ

=
= + = = ⋅ − ∑  (135) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (136) 
 
velocity-stress formulation 
 

 
1

, ,
n

M
x U U l l

l
f M M Yρυ σ σ ε ξ

=
= + = ⋅ − ∑  (137) 

 
 ; 1,...,l l l l l nξ ω ξ ω ε+ = =  (138) 
 
displacement formulation 
  

( ) ( )
1

, ,
n

M
U x U l l x

l
d M M Y fρ ε ζ

=
= ⋅ − +∑  (139) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (140) 
 
In equations (133) - (140), M   and ε  stand for 
 

2λ μ+  and ,xd    in the case of the P wave 
or 

2μ        and 1
2 ,xd  in the case of the S wave. 

 
Note that in the above equations we used the upper index M for the anelastic functions 
to indicate that the anelastic function corresponds to modulus M. 
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