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Chapter 2. Review of Matrix Algebra
Matrices and Indicial Notation
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Summation Convention
2 repeated indices implies summation (Einstein’s notation)
(3 repeated indices means nothing)
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Free indices

mimi xax =ˆ
this implies three equations ( i is called a free index)
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Symmetric Matrices

jiij aa =
Antisymetric Matrices
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Identity Matrix
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i is the row
j is the column



2.2

or we can use Kronecker’s delta
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Matrix Multiplication
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Transpose of a Matrix
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Some interesting things
If a is symmetric
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Swap rows and
columns
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If a is antisymmetric
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Orthogonal Matrix
Each set of columns form an orthogonal set of unit vectors
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a is an orthogonal matrix if:

Example:

















=
2/102/1

010

2/102/1

a

a is an orthogonal matrix since

An orthogonal matrix also has the property
Taa =−1

Given:

Is orthogonal to
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Is orthogonal to
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2.4

Determinant of a square matrix
The determinant of a square matrix is a scalar quantity which
summarizes the tensorial property in the form of a multilinear
functional

Determinant of matrix products
baba detdet)det( =⋅

Eigenvalues and Eigenvectors (in relation to stress tensors)

There exists a nonzero vector x such that the linear transformation
xσ ⋅ is a multiple of x

xxσ λ=⋅
where the eigenvalues iλ define the three principle values of

stress and the eigenvectors ix span the triad of the principle
directions.

This is equivalent to stating:
0xIσ =− )( λ

which for a nontrivial solution to exist:
0Iσ =− )det( λ

which gives the characteristic polynomial
)det()( Iσ λλ −=p

Note all aigenvalues are real as long as
Tσσ = is symmetric,

which is the case for nonpolar materials because of the conjugate

shear stresses jiij σσ = .


