Chapter 2. Review of Matrix Algebra

 Matrices and Indicial Notation$$
\mathbf{a}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=a_{i j}
$$

i is the row
j is the column

Summation Convention

2 repeated indices implies summation (Einstein's notation)
(3 repeated indices means nothing)

$$
\mathrm{Ex}: \quad a_{i i}=\sum_{i=1}^{3} a_{i i} \quad a_{i j} b_{j k}=\sum_{j=1}^{3} a_{i j} b_{j k}
$$

Free indices

$$
\hat{x}_{i}=a_{i m} x_{m}
$$

this implies three equations (i is called a free index)

$$
\begin{aligned}
& \hat{x}_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& \hat{x}_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
& \hat{x}_{3}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{aligned}
$$

Symmetric Matrices

$$
a_{i j}=a_{j i}
$$

Antisymetric Matrices

$$
a_{i j}=-a_{i j}, \quad i \neq j
$$

Identity Matrix

$$
\mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

or we can use Kronecker's delta

$$
\begin{aligned}
\delta_{i j} & =1 & & \text { for } i=j \\
& =0 & & \text { for } i \neq j
\end{aligned}
$$

Matrix Multiplication

$$
\begin{aligned}
& \mathbf{c}=\mathbf{a b}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]=\sum_{j=1}^{3} a_{i j} b_{j k}=a_{i j} b_{j k}=c_{i k} \\
&=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right] \\
& \mathbf{c}=\mathbf{a I}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]=\sum_{j=1}^{3} a_{i j} \delta_{j k}=a_{i j} \delta_{j k}=c_{i k}
\end{aligned}
$$

Transpose of a Matrix

$$
\begin{gathered}
\mathbf{a}^{T}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \\
\text { Swap rows and } \\
\text { columns } \\
x^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]
\end{gathered}
$$

Some interesting things
If a is symmetric

$$
\mathbf{a}^{T}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]^{T}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]=\mathbf{a}
$$

If a is antisymmetric

$$
\frac{\mathbf{a}+\mathbf{a}^{T}}{2}=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]=\mathbf{a} I
$$

Orthogonal Matrix

Each set of columns form an orthogonal set of unit vectors
Given: $\quad \mathbf{a}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
a is an orthogonal matrix if:

$$
\left\{\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right\} \text { Is orthogonal to }\left\{\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right\} \text { Is orthogonal to }\left\{\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right\}
$$

Example:

$$
\mathbf{a}=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right]
$$

\mathbf{a} is an orthogonal matrix since
$\left\{\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right\} \bullet\left\{\begin{array}{l}0 \\ 1 \\ 0\end{array}\right\}=0 \quad\left\{\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right\} \bullet\left\{\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right\}=0 \quad\left\{\begin{array}{l}0 \\ 1 \\ 0\end{array}\right\} \bullet\left\{\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right\}=0$
An orthogonal matrix also has the property

$$
\mathbf{a}^{-1}=\mathbf{a}^{T}
$$

Determinant of a square matrix

The determinant of a square matrix is a scalar quantity which summarizes the tensorial property in the form of a multilinear functional

Determinant of matrix products

$$
\operatorname{det}(\mathbf{a} \cdot \mathbf{b})=\operatorname{det} \mathbf{a} \operatorname{det} \mathbf{b}
$$

Eigenvalues and Eigenvectors (in relation to stress tensors)
There exists a nonzero vector \mathbf{x} such that the linear transformation $\boldsymbol{\sigma} \cdot \mathbf{X}$ is a multiple of \mathbf{x}

$$
\boldsymbol{\sigma} \cdot \mathbf{x}=\lambda \mathbf{x}
$$

where the eigenvalues λ_{i} define the three principle values of stress and the eigenvectors \mathbf{X}_{i} span the triad of the principle directions.

This is equivalent to stating:

$$
(\boldsymbol{\sigma}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}
$$

which for a nontrivial solution to exist:

$$
\operatorname{det}(\boldsymbol{\sigma}-\lambda \mathbf{I})=\mathbf{0}
$$

which gives the characteristic polynomial

$$
p(\lambda)=\operatorname{det}(\boldsymbol{\sigma}-\lambda \mathbf{I})
$$

Note all aigenvalues are real as long as $\boldsymbol{\sigma}=\boldsymbol{\sigma}^{T}$ is symmetric, which is the case for nonpolar materials because of the conjugate shear stresses $\sigma_{i j}=\sigma_{j i}$.

