ME 478 FINITE ELEMENT METHOD

Chapter 4.5 Field Problems

Thermal problems (1dof - Temperature, T)
Electrostatic problems (1dof - Potential, V)
Antiplane problems (1dof - Out of plane displacement, w)

1-D Field Problems
 (1-D heat conduction)

Consider a wall of thickness L

$$
q=-k_{t} A \frac{d T}{d x} \quad q=Q_{1}=-Q_{2} \quad \frac{d T}{d x}=\frac{T_{2}-T_{1}}{L}
$$

which we model as a single element

We have two equations with two unknowns T_{1} and T_{2}

$$
\begin{aligned}
& Q_{1}=\frac{k_{t} A}{L}\left(T_{1}-T_{2}\right) \\
& Q_{2}=\frac{k_{t} A}{L}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

We write this in matrix form as:

Flux vector
Temperature vector
Conductance matrix
This is the same thing that we had for the 1-D truss element Consider a wall made up of two layers

We model this as two elements

For element 1 we have
For element 2 we have
$\left\{\begin{array}{l}Q_{1}^{(1)} \\ Q_{2}^{(1)}\end{array}\right\}=\left[\begin{array}{ll}\frac{k_{t} A^{(1)}}{L} & -\frac{k_{t} A^{(1)}}{L} \\ -\frac{k_{t} A^{(1)}}{L} & k_{t} A^{(1)}\end{array}\right]\left\{\begin{array}{l}T_{1}^{(1)} \\ T_{2}^{(1)}\end{array}\right\} \quad\left\{\begin{array}{l}Q_{2}^{(2)} \\ Q_{3}^{(2)}\end{array}\right\}=\left[\begin{array}{ll}\frac{k_{t} A^{(2)}}{L} & -\frac{k_{t} A^{(2)}}{L} \\ -\frac{k_{t} A^{(2)}}{L} & \frac{k}{t}^{L} A^{(2)}\end{array}\right]\left\{\begin{array}{l}T_{2}^{(2)} \\ T_{3}^{(2)}\end{array}\right\}$
Now join the two elements
equilibrium requires that $Q_{2}{ }^{(1)}+Q_{2}{ }^{(2)}=Q_{2}$
compatibility requires that $T_{2}{ }^{(1)}=T_{2}^{(2)}=T_{2}$

We really have the following 3 equations with 3 unknowns In matrix from:

Or

$$
\left\{\begin{array}{c}
Q_{1} \\
Q_{2} \\
Q_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{k_{t 1} A_{1}}{L_{1}} & -\frac{k_{t 1} A_{1}}{L_{1}} & 0 \\
-\frac{k_{t 1} A_{1}}{L_{1}} & \frac{k_{t 1} A_{1}}{L_{1}}+\frac{k_{t 2} A_{2}}{L_{2}} & -\frac{k_{t 2} A_{2}}{L_{2}} \\
0 & -\frac{k_{t 2} A_{2}}{L_{2}} & \frac{k_{t 2} A_{2}}{L_{2}}
\end{array}\right]\left\{\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right\}
$$

Nt. We don't have to rotate this $-T$ has no direction

2-D Field Problems
 (General case)

The field variable is ϕ
The steady state problem is given by

$$
\frac{\partial}{\partial x}\left(k_{x x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial x}\left(k_{y y} \frac{\partial T}{\partial y}\right)+Q=0
$$

Which, when $k=$ constant, reduces to the well known Poisson's equation as:

$$
\nabla^{2} \phi=\frac{Q}{k}
$$

Which, when $Q=0$, reduces to the well known Laplace equation as:

$$
\nabla^{2} \phi=0
$$

For now let's consider the more general case

$$
\frac{\partial}{\partial x}\left(k_{x x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial x}\left(k_{y y} \frac{\partial T}{\partial y}\right)+Q=0
$$

2-D heat transfer finite element derivation
Again we are going to go through the same steps as before

Step 1 Select element type

Consider the three nodded triangular element

Here each node has only 1 dof (Temperature)
Step 2 Select a temperature function
Since we have 3 nodes and 1 dof per node, let

$$
T(x, y)=a_{1}+a_{2} x+a_{3} y
$$

which upon solving for the a's can be written as:

$$
T(x, y)=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right]\left\{\begin{array}{c}
T_{i} \\
T_{j} \\
T_{m}
\end{array}\right\}=\mathbf{N t}
$$

where the shape functions are solved as follows:
We really have 3 equations here
In matrix form we have for u_{x}

$$
\left\{\begin{array}{l}
T_{i} \\
T_{j} \\
T_{m}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}
$$

Which can be solved as:

$$
\mathbf{a}=\mathbf{x}^{-1} \mathbf{t}
$$

To get the inverse of \mathbf{x} we use the method of cofactors

$$
\mathbf{x}^{-1}=\frac{1}{2 A} \operatorname{adj}[\mathbf{x}]
$$

where

$$
2 A=\operatorname{det}\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]
$$

A is the area of the triangle and $\operatorname{adj}[\mathbf{x}]=(\operatorname{cof}[\mathbf{x}])^{T}$

Step 3 Define the temperature gradient/temperature and heat flux/temperature gradient relations

$$
\mathbf{g}=\left\{\begin{array}{l}
\frac{\partial T}{\partial x} \\
\frac{\partial T}{\partial y}
\end{array}\right\}=\mathbf{B t}
$$

where \mathbf{g} is the temperature gradient matrix (analogous to strain) and

$$
\mathbf{B}=\frac{1}{2 A}\left[\begin{array}{lll}
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]
$$

The heat flux/temperature gradient relation is:

$$
\mathbf{q}=\left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\}=\mathbf{D} \mathbf{g}=\left[\begin{array}{cc}
k_{x x} & 0 \\
0 & k_{y y}
\end{array}\right]\left\{\begin{array}{l}
\frac{\partial T}{\partial x} \\
\frac{\partial T}{\partial y}
\end{array}\right\}
$$

Step 4 Derive the element conduction matrix and equations
Here we are going to use the variational method (analogous to the principle of minimum potential energy seen earlier)
Given the functional

$$
\pi_{h}=U+\Omega_{Q}+\Omega_{q}+\Omega_{h}
$$

Internal Energy

$$
U=\iiint_{V} \frac{1}{2}\left[k_{x x}\left(\frac{\partial T}{\partial x}\right)^{2}+k_{y y}\left(\frac{\partial T}{\partial y}\right)^{2}\right] d V
$$

Potential energy of the external forces

$$
\begin{aligned}
& \Omega_{Q}=-\iint_{V} Q T d V \\
& \Omega_{q}=-\iint_{S_{q}} q^{*} T d s_{q} \\
& \Omega_{h}=\iint_{S h} \frac{1}{2} h\left(T-T_{\infty}\right)^{2} d s_{h}
\end{aligned}
$$

Where Q is internal heat generation, q is heat flow and h is convection loss
(Nt , we can't specify both q and h on the same surface) We can rewrite in matrix form as:

$$
\begin{array}{rl}
\pi_{h}=\iiint_{V} \frac{1}{2} \mathbf{g}^{T} \mathbf{D} \mathbf{g} & d v-\iiint_{V} \mathbf{t}^{T} \mathbf{N}^{T} Q d V \\
& -\iint_{S q} \mathbf{t}^{T} \mathbf{N}^{T} q^{*} d s_{q}+\iint_{S h} \frac{1}{2} h\left(\mathbf{t}^{T} \mathbf{N}^{T}-T_{\infty}\right)^{2} d s_{h}
\end{array}
$$

\mathbf{t} is not a function of x and y so lets pull it out if the integrals to get

$$
\begin{aligned}
\pi_{h}=\frac{1}{2} \mathbf{t}^{T} \iiint_{V} \frac{1}{2} & \mathbf{B}^{T} \mathbf{D B} d v \mathbf{t}-\mathbf{t}^{T} \iiint_{V} \mathbf{N}^{T} Q d V \\
& -\mathbf{t}^{T} \iint_{S q} \mathbf{N}^{T} q^{*} d s_{q} \\
& +\iint_{S h} \frac{1}{2} h\left(\mathbf{t}^{T} \mathbf{N}^{T} \mathbf{N} \mathbf{t}-\mathbf{t}^{T} \mathbf{N}^{T} T_{\infty}+T_{\infty}^{2}\right) d s_{h}
\end{aligned}
$$

We want to find the minimum energy (differentiate w.r.t. \mathbf{t} and $=0$)

$$
\begin{array}{rl}
\frac{\partial \pi_{h}}{\partial \mathbf{t}}=\iiint_{V} \mathbf{B}^{T} \mathbf{D B} & d v \mathbf{t}-\iiint_{V} \mathbf{N}^{T} Q d V \\
& -\iint_{S q} \mathbf{N}^{T} q^{*} d s_{q} \\
& +\iint_{S h} h\left(\mathbf{N}^{T} \mathbf{N} \mathbf{t}\right) d s_{h}+\iint_{S h} \frac{1}{2} h\left(\mathbf{N}^{T} T_{\infty}\right) d s_{h}
\end{array}
$$

And rewriting

We can simplify the conduction matrix since all terms in the \mathbf{B} matrix are constant as

$$
\begin{aligned}
\mathbf{K} & =\left[\iiint_{V} \mathbf{B}^{T} \mathbf{D B} d v+\iint_{S h} h\left(\mathbf{N}^{T} \mathbf{N}\right) d s_{h}\right] \\
& =t A \mathbf{B}^{T} \mathbf{D} \mathbf{B}+h \iint_{S h}\left(\mathbf{N}^{T} \mathbf{N}\right) d s_{h}
\end{aligned}
$$

Step 5 Assembly
Use the same approach as shown before by applying compatibility and equilibrium

Step 6 Solve for the nodal temperatures...
Step 7 Postprocess for the temperature gradients and heat flux

