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ME 478 FINITE ELEMENT METHOD

Chapter 4.5 Field Problems

Thermal problems (1dof – Temperature, T)
Electrostatic problems (1dof – Potential, V)
Antiplane problems (1dof – Out of plane displacement, w)

1-D Field Problems
(1-D heat conduction)

Consider a wall of thickness L
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which we model as a single element

We have two equations with two unknowns 1T and 2T
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We write this in matrix form as:

























−

−
=









2

1

2

1

T

T

L

Ak

L

Ak
L

Ak

L

Ak

Q

Q

tt

tt

This is the same thing that we had for the 1-D truss element
Consider a wall made up of two layers

We model this as two elements

For element 1 we have For element 2 we have
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Now join the two elements
equilibrium requires that Q2

(1)
+ Q2

(2)
= Q2

compatibility requires that T2
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We really have the following 3 equations with 3 unknowns
In matrix from:
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Or Ktq =
Nt. We don’t have to rotate this –T has no direction

2-D Field Problems
(General case)

The field variable is φ
The steady state problem is given by
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Which, when k = constant, reduces to the well known Poisson’s
equation as:

k

Q=∇ φ2

Which, when Q = 0, reduces to the well known Laplace equation as:

02 =∇ φ
For now let’s consider the more general case
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2-D heat transfer finite element derivation
Again we are going to go through the same steps as before

Step 1 Select element type
Consider the three nodded triangular element

Here each node has only 1 dof (Temperature)

Step 2 Select a temperature function
Since we have 3 nodes and 1 dof per node, let
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which upon solving for the a’s can be written as:
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where the shape functions are solved as follows:
We really have 3 equations here
In matrix form we have for ux
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Which can be solved as:
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To get the inverse of x we use the method of cofactors
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A is the area of the triangle and
Tcofadj ])[(][ xx =

Step 3 Define the temperature gradient/temperature and heat
flux/temperature gradient relations

Btg =



















∂
∂
∂
∂

=

y

T
x

T

where g is the temperature gradient matrix (analogous to strain)
and
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The heat flux/temperature gradient relation is:
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Step 4 Derive the element conduction matrix and equations
Here we are going to use the variational method (analogous to

the principle of minimum potential energy seen earlier)
Given the functional

hqQh U Ω+Ω+Ω+=π
Internal Energy
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Where Q is internal heat generation, q is heat flow and h is
convection loss
(Nt, we can’t specify both q and h on the same surface)
We can rewrite in matrix form as:
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t is not a function of x and y so lets pull it out if the integrals to get

h
TTTT

Sh

Sq
q

TT

V

TT

V

TT
h

dsTTh

dsq

QdVdv

)(
2

1

2

1

2

1

2

*

∞∞ +−+

−

−=

∫∫

∫∫

∫∫∫∫∫∫

NtNtNt

Nt

NttDBBtπ

We want to find the minimum energy (differentiate w.r.t. t and = 0)
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And rewriting
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We can simplify the conduction matrix since all terms in the B
matrix are constant as
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Step 5 Assembly
Use the same approach as shown before by applying compatibility
and equilibrium

Step 6 Solve for the nodal temperatures…
Step 7 Postprocess for the temperature gradients and heat flux

And Voila!!


