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ME 478 FINITE ELEMENT METHOD

Chapter 6.5 Thermo-Mechanical Analysis

All mechanical components are subject to thermal loading.

This is either due to processing (heat treating, welding or joining) or
due to service conditions (climate changes) or on-off cycling (such
as an automobile engine or the components in your computer).

Often it is important to account for the effects of thermal loading on
the response of structures (you want your car to function the same
whether it is –30oC or +40oC).

General Thermal Stress Problem
In general, a temperature change will cause a material to deform. In
two-dimension, the thermal strain looks something like:
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which is related to the change in temperature times the coefficient
of thermal expansion. For an isotropic material

in the case of plane stress 
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and in the case of plane strain 
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6.2

The total strain is a combination of strain due to mechanical loading
and strain due to thermal loading
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which we can rewrite in terms of stress as:
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Let us now look at the potential energy
The total PE is
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The Internal Strain Energy is now
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recall that we can express the strains in terms of the nodal degrees

of freedom as: Buε =
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Which can be simplified as:
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6.3

Lastly, we use the PMPE to obtain the stiffness equations as:
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Again, in order to evaluate integrals, we transform the integrals in
the x-y plane to integrals over the s-t plane from –1 to 1 through the
transformation and use Gaussian Quadrature to perform the
integration
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Example: 1-D 2-node trusses
Consider the simple 1-D truss structure shown below

The global stiffness matrix is:

K fu = 0

Material A
AE=1000
L=1
α=5x10-6

Material B
AE=1000
L=1
α=100x10-6

P=10

1 2 3 ∆T=95.25oC
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The force vector is now composed of two components
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which upon substituting for the known quantities yields:
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The solution is:
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For comparison, if we neglect thermal effects, then:
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and the solution is:
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6.5

Example: 4-node brick element with coupled
thermo-mechanical loading

Now we consider a 2-D structure for which there is both mechanical
and thermal loading.

The degrees of freedom at each node are now:
Tuu yx and,,

We have to form both the Stiffness matrix and the Conduction
matrix. Here the mechanical loading does not influence the thermal
response of the structure; however, the thermal loading affects the
mechanical response, thus we have to determine the temperature
distribution and use this information to determine the strains
resulting from the temperature change.

Consider the following structure
Consider the following simple 2-D problem

Start by breaking the surface up into elements and assigning node
numbers and element numbers

P

2m

2m

E=100
ν=0.3

Plane stress
thickness=0.1

T=100oC

T∞=20oC
H=20W/m2K
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Here we have 9 nodes (with 3 dof per node yx uu , and T)

Thus we would expect an 18by18 stiffness matrix, an 18by1
displacement vector, an 18by1 force vector and also a 9by9
conduction matrix, a 9by1 temperature vector, and a 9by1 flux
vector.

Starting with Element 1
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6.7

Using the isoparametric formulation, we map from the global
coordinate system to the local coordinate system using the
following relations for our geometry and nodal degrees of freedom:
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For the thermal problem we have:

[ ]




















=

4

5

2

1

4521),(

T

T

T

T

NNNNyxT or tN TT =

and for the mechanical problem we have
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6.8

The element conduction equations are formed using the result of
Chapter 4.5
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Once we determine the temperature distribution, we can determine
the corresponding mechanical response. Here the element
stiffness equations are formed using
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