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ME 478 FINITE ELEMENT METHOD

Chapter 8. Other Cool Stuff

LINEAR ELASTO-DYNAMICS
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and the stiffness and mass matrices are:
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Note that M and K have the same form (due to connectivity)

MODAL ANALYSIS
We will start by looking at the free vibration problem
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let )sin()( θω += ttu u) where u) are the mode shapes, then
by substitution, we have:
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for a nontrivial solution to exist, we require
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from which we can solve for the frequencies and then the
corresponding mode shapes.
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EXAMPLE: 1-D BAR
Recall that we had:
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and the strains are related to the displacements through:
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And the stress/strain relation as:
uBσ Es =

We apply Newton’s second law of motion to the 2 nodes
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m ρ= (called the lumped mass)

Writing out the equations, we have:
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Consistent Mass matrix
Starting with d’Alembert’s principle
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where
eΧ is the effective body force due to the mass of the

element. We can then convert this body force to nodal forces
through
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Making the substitution for
eΧ and knowing that uNu &&&& =),( yx ,

we have

uNNf &&∫∫∫=
V

T
b dvρ

ELASTODYNAMICS INCLUDING INELASTICITY
Starting with:
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Now including rate effects εVDεσ &+=
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SPECIAL CASES
1) No damping-Linear elasto-dynamics

fKuuM =+&&
2) No inertial effects-elasto-statics

fKu =
3) Quasi-static-Visco-elasto statics

fKuuC =+&
4) Viscous flow (Newtonian fluids)

fuC =&
RHEOLOGICAL MODELS

Hookian εσ E=

Newtonian εησ &=

Parallel Arrangement (Voigt-Kelvin Model)

Serial Arrangement (Maxwell model)
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During the creep response, the material represented by these
models undergoes

1. Initial instantaneous response
2. Non-linear delayed elastic response
3. Instantaneous elastic recovery
4. Delayed elastic-viscoelastic recovery
5. Permanent deformation

For the Maxwell model, the relationship between the deflection and
the applied load is:
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The resulting creep function for a unit step is:
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and the relaxation function is:
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For the Voigt model (slightly different than above), the relationship
between the deflection and the applied load is:
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The resulting creep function for a unit step is:
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and the relaxation function is:
)()()( tkUttr += ηδ

Viscoelastic Overstress – Delayed Elasticity
This element is associated with some threshold condition

σy(εp)
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ELASTO-PLASTICITY
(we will look at this in more detail later)

Total Format (Henke)

pe εεε +=

Rate Format (St Venant VonMises Prandtl-Reuss)

pe εεε &&& +=

And our stress-strain relation becomes: )( pεεDσ &&&& −⋅=

ELASTO-VISCO-PLASTICITY
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This is a combination of the three rheological models. Solution
procedure is much more complicated than for linear elasticity
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Example One Dimensional Viscoplasticity
Consider the basic one-dimensional
viscoplastic model. The total strain n the
model can be expressed as the sum of the
elastic and the viscoelstic components as:

vpe εεε +=
The applied stress is related to the elastic
strain by:
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The stress in the dashpot is related to the
viscoplastic strain by:

vpd ε&ησ =
And the stress in the friction slider is:
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where Y represents the threshold stress which is a function of
some yield stress and some strain hardening as:
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Prior to the onset of viscoplastic yielding, 0=vpε giving 0=dσ

thus σσ =p . Combining stresses in the dashpot and the friction
slider gives:
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Using evp εεε −= and ee Eε== σσ gives
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which is a first order ODE, Rearranging, we get
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Considering the case when we apply a constant stress to the model
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The solution is:
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Note: the solution to ODE’s of the form rypy =+' is

Cdtreety hh += ∫−)( where: ∫= pdth

In the case of a perfectly viscoplastic material, ( 0'=H ) then we
have (by applying L’Hopital’s rule):
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Viscoplasticity is a transient phenomena, thus the solution involves
taking a time incremental (time-stepping) approach. The simplest
approach is to use Euler’s rule where we extrapolate the value at
some time tn+1 in terms of the quantities at time t.

Using this approach, we can define the viscoplastic strain

increment over time step nnn ttt −=∆ +1 as:
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The change in length of the element due to the strain increment is:
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and adding this to the change in length due to the applied loading
gives:
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Rewritting in the standard form
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The updated displacements at obtained as:
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The stress at time tn+1 is:
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nnn σσσ ∆+=+1

The viscoplastic strain is:
n
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And lastly, the viscoplastic strain rate is:
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The out of balance residual forces as expressed as the sum of the
applied nodal loads and the nodal forces equivalent to the
elemental stresses are:
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These residual forces are added to the pseudo forces to give the
forces for the next time increment as:
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This step is repeated until the solution for the desired time duration
or steady state conditions are achieved (when the viscoplastic
strain rate becomes negligible).

There is a limit on the time step that one can use for the
viscoplastic solution. For the one-dimensional case considered
here, the limiting value is (Cormeau proposed this one and there
are many different values that have been proposed):
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Computational Implementation of 1-D
Viscoplasticity

STEP 1 At time t=tn, we compute that following quantities using the
standard approach
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and compute the viscoplastic strain rate for each element as:
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STEP 2 Compute the displacement increment according to:
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and for each element, the stiffness matrix is
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STEP 3 Compute the stress increment and the viscoplastic strain
increment for each element as:
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STEP 4 Determine the total displacements, stresses and the
viscoplastic strains

n
vp

n
vp

n
vp

nnn

nnn uuu

εεε

σσσ

∆+=

∆+=

∆+=

+

+

+

1

1

1

STEP 5 Compute the Viscoplastic strain rate for each element for
the next time step
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STEP 6 Evaluate the residual forces by applying equilibrium
correction to each element
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and add these into the vector of pseudo nodal loads to be used in
the next time step
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STEP 7 Check if the viscoplastic strain rate in each element has
become negligibly small. If so, then steady state conditions are
said to have been reached. If not, return to STEP 1 and repeat the
entire process for the next time step. One way to check for
convergence is as follows:
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