ME 478 FINITE ELEMENT METHOD

Chapter 8. Other Cool Stuff

LINEAR ELASTO-DYNAMICS

$$
\mathbf{M u ̈}+\mathbf{K u}=\mathbf{f}_{\varepsilon_{o}}+\mathbf{f}_{b}+\mathbf{f}_{t}+\mathbf{P}
$$

where

$$
\begin{aligned}
& u(x, y, t)=\mathbf{N} \mathbf{u} \\
& \varepsilon(x, y, t)=\mathbf{B} \mathbf{u} \\
& \sigma(x, y, t)=\mathbf{D}\left(\mathbf{B u}-\boldsymbol{\varepsilon}_{o}\right)
\end{aligned}
$$

and the stiffness and mass matrices are:

$$
\mathbf{K}=\iiint_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d v \quad \mathbf{M}=\iiint_{V} \mathbf{N}^{T} \rho \mathbf{N} d v
$$

Note that \mathbf{M} and \mathbf{K} have the same form (due to connectivity)

MODAL ANALYSIS

We will start by looking at the free vibration problem

$$
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{K} \mathbf{u}=0 \quad(\mathbf{f}=0)
$$

let $u(t)=\widehat{\mathbf{u}} \sin (\omega t+\theta)$ where $\widehat{\mathbf{u}}$ are the mode shapes, then by substitution, we have:

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \widehat{\mathbf{u}}=0
$$

for a nontrivial solution to exist, we require

$$
\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=0
$$

from which we can solve for the frequencies and then the corresponding mode shapes.

EXAMPLE: 1-D BAR
Recall that we had:

$$
u(s)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

where

$$
N_{1}=\frac{1-s}{2} \quad N_{2}=\frac{1+s}{2}
$$

and the strains are related to the displacements through:

$$
\boldsymbol{\varepsilon}_{s}=\left[\begin{array}{ll}
\frac{-1}{L} & \frac{1}{L}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\mathbf{B u}
$$

And the stress/strain relation as:

$$
\boldsymbol{\sigma}_{s}=E \mathbf{B} \mathbf{u}
$$

We apply Newton's second law of motion to the 2 nodes

$$
F=m a
$$

$$
\begin{aligned}
& f_{1 e x t}-f_{\text {lint }}=m_{1} \frac{\partial^{2} u_{1}}{\partial t^{2}} \\
& f_{2 e x t}-f_{2 \text { int }}=m_{2} \frac{\partial^{2} u_{2}}{\partial t^{2}}
\end{aligned}
$$

where $m_{1}=\rho \frac{A L}{2}$ and $m_{1}=\rho \frac{A L}{2}$ (called the lumped mass)
Writing out the equations, we have:

$$
\left\{\begin{array}{l}
f_{\text {1ext }} \\
f_{2 \text { ext }}
\end{array}\right\}=\left\{\begin{array}{l}
f_{\text {lint }} \\
f_{\text {2int }}
\end{array}\right\}+\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\left\{\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right\}
$$

Consistent Mass matrix
Starting with d'Alembert's principle

$$
\mathbf{X}^{e}=-\rho \ddot{\mathbf{u}}(x, y)
$$

where \mathbf{X}^{e} is the effective body force due to the mass of the element. We can then convert this body force to nodal forces through

$$
\mathbf{f}_{b}=\iiint_{V} \mathbf{N}^{T} \mathbf{X}^{e} d v
$$

Making the substitution for \mathbf{X}^{e} and knowing that $\ddot{\mathbf{u}}(x, y)=\mathbf{N u}$, we have

$$
\mathbf{f}_{b}=\iiint_{V} \mathbf{N}^{T} \rho \mathbf{N} d v \ddot{\mathbf{u}}
$$

ELASTODYNAMICS INCLUDING INELASTICITY Starting with:

$$
\mathbf{M} \ddot{\mathbf{u}}+\underbrace{\mathbf{K u}}_{\mathbf{S}}=\mathbf{f}
$$

where

$$
\mathbf{s}=\iiint_{V} \mathbf{B}^{T} \boldsymbol{\sigma} d v
$$

Now including rate effects $\boldsymbol{\sigma}=\mathbf{D} \boldsymbol{\varepsilon}+\mathbf{V} \dot{\boldsymbol{\varepsilon}}$
Therefore

$$
\mathbf{s}=\iiint_{V} \mathbf{B}^{T} \mathbf{D B} d \nu \mathbf{u}+\iiint_{V} \mathbf{B}^{T} \mathbf{V B} d v \dot{\mathbf{u}}
$$

So we have

$$
\mathbf{M u}+\mathbf{C} \dot{\mathbf{u}}+\mathbf{K u}=\mathbf{f}
$$

1) No damping-Linear elasto-dynamics

$$
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{K} \mathbf{u}=\mathbf{f}
$$

2) No inertial effects-elasto-statics

$$
\mathbf{K u}=\mathbf{f}
$$

3) Quasi-static-Visco-elasto statics

$$
\mathbf{C} \dot{\mathbf{u}}+\mathbf{K} \mathbf{u}=\mathbf{f}
$$

4) Viscous flow (Newtonian fluids)
$\mathbf{C} \dot{\mathbf{u}}=\mathbf{f}$ RHEOLOGICAL MODELS

Parallel Arrangement (Voigt-Kelvin Model)

Serial Arrangement (Maxwell model)

During the creep response, the material represented by these models undergoes

1. Initial instantaneous response
2. Non-linear delayed elastic response
3. Instantaneous elastic recovery
4. Delayed elastic-viscoelastic recovery
5. Permanent deformation

For the Maxwell model, the relationship between the deflection and the applied load is:

$$
\dot{u}=\frac{\dot{P}}{k}+\frac{P}{\eta}, \quad u(0)=\frac{P(0)}{k}
$$

The resulting creep function for a unit step is:

$$
c(t)=\left(\frac{1}{k}+\frac{1}{\eta} t\right) U(t)
$$

and the relaxation function is:

$$
r(t)=k e^{-(k / \eta) t} U(t)
$$

For the Voigt model (slightly different than above), the relationship between the deflection and the applied load is:

$$
P=k u+\eta \dot{u}, \quad u(0)=0
$$

The resulting creep function for a unit step is:

$$
c(t)=\frac{1}{k}\left(1-e^{-(k / \eta) t}\right) U(t)
$$

and the relaxation function is:

$$
r(t)=\eta \delta(t)+k U(t)
$$

Viscoelastic Overstress - Delayed Elasticity
This element is associated with some threshold condition

$$
\sigma_{\mathrm{y}}\left(\varepsilon_{\mathrm{p}}\right)
$$

ELASTO-PLASTICITY

(we will look at this in more detail later)

$$
\left\{\begin{array}{lc}
& \text { Total Format (Henke) } \\
\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{e}+\boldsymbol{\varepsilon}_{p} \\
& \\
\sigma_{\mathrm{y}}\left(\varepsilon_{\mathrm{p}}\right) & \text { Rate Format (St Venant VonMises Prandtl-Reuss) } \\
\dot{\boldsymbol{\varepsilon}}=\dot{\boldsymbol{\varepsilon}}_{e}+\dot{\boldsymbol{\varepsilon}}_{p}
\end{array}\right.
$$

And our stress-strain relation becomes: $\boldsymbol{\sigma}=\mathbf{D}:\left(\dot{\boldsymbol{\varepsilon}}-\dot{\boldsymbol{\varepsilon}}_{p}\right)$

ELASTO-VISCO-PLASTICITY

$$
E_{p}=\frac{\partial \sigma}{\partial \varepsilon_{p}}
$$

This is a combination of the three rheological models. Solution procedure is much more complicated than for linear elasticity

Example One Dimensional Viscoplasticity

Consider the basic one-dimensional viscoplastic model. The total strain n the model can be expressed as the sum of the elastic and the viscoelstic components as:

$$
\varepsilon=\varepsilon_{e}+\varepsilon_{v p}
$$

The applied stress is related to the elastic strain by:

$$
\sigma_{e}=\sigma=E \boldsymbol{\varepsilon}_{e}
$$

The stress in the dashpot is related to the viscoplastic strain by:

$$
\sigma_{d}=\eta \dot{\varepsilon}_{v p}
$$

And the stress in the friction slider is:

$$
\begin{array}{lll}
\sigma_{p}=\sigma & \text { if } & \sigma_{p}<Y \\
\sigma_{p}=Y & \text { if } & \sigma_{p} \geq Y
\end{array}
$$

where Y represents the threshold stress which is a function of some yield stress and some strain hardening as:

$$
Y=\sigma_{y}+H^{\prime} \varepsilon_{v p}
$$

Prior to the onset of viscoplastic yielding, $\boldsymbol{\varepsilon}_{v p}=0$ giving $\sigma_{d}=0$ thus $\sigma_{p}=\sigma$. Combining stresses in the dashpot and the friction slider gives:

$$
\sigma=\sigma_{y}+H^{\prime} \varepsilon_{v p}+\eta \dot{\varepsilon}_{v p}
$$

Using $\varepsilon_{v p}=\varepsilon-\varepsilon_{e}$ and $\sigma_{e}=\sigma=E \varepsilon_{e}$ gives

$$
H^{\prime} E \varepsilon+\eta E \dot{\varepsilon}=H^{\prime} \sigma+E\left(\sigma-\sigma_{y}\right)+\eta \dot{\sigma}
$$

which is a first order ODE, Rearranging, we get

$$
\dot{\varepsilon}=\frac{\dot{\sigma}}{E}+\frac{1}{\eta}\left[\sigma-\left(\sigma_{y}+H^{\prime} \varepsilon_{v p}\right)\right]
$$

or

$$
\dot{\varepsilon}=\dot{\varepsilon}_{e}+\dot{\varepsilon}_{v p}
$$

Considering the case when we apply a constant stress to the model

$$
H^{\prime} E \varepsilon+\eta E \dot{\varepsilon}=H^{\prime} \sigma_{A}+E\left(\sigma_{A}-\sigma_{y}\right)
$$

The solution is:

$$
\varepsilon(t)=\frac{\sigma_{A}}{E}+\frac{\left(\sigma_{A}-\sigma_{y}\right)}{H^{\prime}}\left[1-e^{-H^{\prime} t / \eta}\right]
$$

Note: the solution to ODE's of the form $y^{\prime}+p y=r$ is

$$
y(t)=e^{-h} \int e^{h} r d t+C \text { where }: h=\int p d t
$$

In the case of a perfectly viscoplastic material, $\left(H^{\prime}=0\right)$ then we have (by applying L'Hopital's rule):

$$
\varepsilon(t)=\frac{\sigma_{A}}{E}+\frac{\left(\sigma_{A}-\sigma_{y}\right) t}{\eta}
$$

Viscoplasticity is a transient phenomena, thus the solution involves taking a time incremental (time-stepping) approach. The simplest approach is to use Euler's rule where we extrapolate the value at some time t_{n+1} in terms of the quantities at time t.

Using this approach, we can define the viscoplastic strain increment over time step $\Delta t_{n}=t_{n+1}-t_{n}$ as:

$$
\Delta \varepsilon_{v p}^{n}=\dot{\varepsilon}_{v p}^{n} \Delta t_{n}
$$

The change in length of the element due to the strain increment is:

$$
\Delta u^{n}=\Delta \varepsilon_{v p}^{n} L
$$

and adding this to the change in length due to the applied loading gives:

$$
\Delta u^{n}=\Delta \varepsilon_{v p}^{n} L+\frac{L}{A E} \Delta P_{n}
$$

and rewriting in matrix form gives:

$$
\Delta u^{n}=\left\{\begin{array}{l}
\Delta u_{1}^{n} \\
\Delta u_{2}^{n}
\end{array}\right\}=\mathbf{K}^{-1} \Delta F_{n}
$$

Where

$$
\Delta F_{n}=A E \dot{\varepsilon}_{v p}^{n} \Delta t_{n}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+\Delta P_{n}
$$

and

$$
\mathbf{K}=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Rewritting in the standard form

$$
\begin{aligned}
& \mathbf{K}=\int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d v \\
& \Delta F_{n}=\int_{V} \mathbf{B}^{T} \mathbf{D} \varepsilon d v+\Delta P_{n}
\end{aligned}
$$

The updated displacements at obtained as:

$$
u^{n+1}=u^{n}+\Delta u^{n}
$$

The stress increment is:

$$
\begin{aligned}
\Delta \sigma^{n} & =E \Delta \varepsilon_{e}^{n}=E\left(\Delta \varepsilon^{n}-\Delta \varepsilon_{v p}^{n}\right) \\
& =E\left(\frac{\Delta u_{1}^{n}-\Delta u_{2}^{n}}{L}-\dot{\varepsilon}_{v p}^{n} \Delta t_{n}\right)
\end{aligned}
$$

The stress at time t_{n+1} is:

$$
\sigma^{n+1}=\sigma^{n}+\Delta \sigma^{n}
$$

The viscoplastic strain is:

$$
\varepsilon_{v p}^{n+1}=\varepsilon_{v p}^{n}+\Delta \varepsilon_{v p}^{n}
$$

And lastly, the viscoplastic strain rate is:

$$
\dot{\varepsilon}_{v p}^{n+1}=\frac{1}{\eta}\left[\sigma^{n+1}-\left(\sigma_{y}+H^{\prime} \varepsilon_{v p}^{n+1}\right)\right]
$$

The out of balance residual forces as expressed as the sum of the applied nodal loads and the nodal forces equivalent to the elemental stresses are:

$$
\Psi_{n+1}=A \sigma^{n+1}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+P_{n+1}
$$

These residual forces are added to the pseudo forces to give the forces for the next time increment as:

$$
\Delta F_{n+1}+=A E \dot{\varepsilon}_{v p}^{n+1} \Delta t_{n+1}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+\Delta P_{n+1}+\Psi_{n+1}
$$

This step is repeated until the solution for the desired time duration or steady state conditions are achieved (when the viscoplastic strain rate becomes negligible).

There is a limit on the time step that one can use for the viscoplastic solution. For the one-dimensional case considered here, the limiting value is (Cormeau proposed this one and there are many different values that have been proposed):

$$
\Delta t \leq \frac{\eta \sigma_{y}}{E}
$$

Computational Implementation of 1-D Viscoplasticity

STEP 1 At time $t=t_{n}$, we compute that following quantities using the standard approach

$$
\sigma^{n}, \quad \varepsilon^{n}, \quad \varepsilon_{v p}^{n}, \quad f^{n}, \text { and } u^{n} \quad \text { known }
$$

and compute the viscoplastic strain rate for each element as:

$$
\dot{\varepsilon}_{v p}^{n}=\frac{1}{\eta}\left[\sigma^{n}-\left(\sigma_{y}+H^{\prime} \varepsilon_{v p}^{n}\right)\right]
$$

STEP 2 Compute the displacement increment according to:

$$
\Delta u^{n}=\left\{\begin{array}{l}
\Delta u_{1}^{n} \\
\Delta u_{2}^{n}
\end{array}\right\}=\mathbf{K}^{-1} \Delta F_{n}
$$

where

$$
\Delta F_{n}=A E \dot{\varepsilon}_{v p}^{n} \Delta t_{n}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+\Delta P_{n}
$$

and for each element, the stiffness matrix is

$$
\mathbf{K}=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

STEP 3 Compute the stress increment and the viscoplastic strain increment for each element as:

$$
\begin{aligned}
& \Delta \sigma^{n}=E\left(\frac{\Delta u_{1}^{n}-\Delta u_{2}^{n}}{L}-\dot{\varepsilon}_{v p}^{n} \Delta t_{n}\right) \\
& \Delta \varepsilon_{v p}^{n}=\dot{\varepsilon}_{v p}^{n} \Delta t_{n}
\end{aligned}
$$

STEP 4 Determine the total displacements, stresses and the viscoplastic strains

$$
\begin{aligned}
& u^{n+1}=u^{n}+\Delta u^{n} \\
& \sigma^{n+1}=\sigma^{n}+\Delta \sigma^{n} \\
& \varepsilon_{v p}^{n+1}=\varepsilon_{v p}^{n}+\Delta \varepsilon_{v p}^{n}
\end{aligned}
$$

STEP 5 Compute the Viscoplastic strain rate for each element for the next time step

$$
\dot{\varepsilon}_{v p}^{n+1}=\frac{1}{\eta}\left[\sigma^{n+1}-\left(\sigma_{y}+H^{\prime} \varepsilon_{v p}^{n+1}\right)\right]
$$

STEP 6 Evaluate the residual forces by applying equilibrium correction to each element

$$
\Psi_{n+1}=A \sigma^{n+1}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+\Delta P_{n+1}
$$

and add these into the vector of pseudo nodal loads to be used in the next time step

$$
\Delta F_{n+1}=A E \dot{\varepsilon}_{v p}^{n+1} \Delta t_{n+1}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}+\Delta P_{n+1}+\Psi_{n+1}
$$

STEP 7 Check if the viscoplastic strain rate in each element has become negligibly small. If so, then steady state conditions are said to have been reached. If not, return to STEP 1 and repeat the entire process for the next time step. One way to check for convergence is as follows:

$$
\frac{\sum_{i=1}^{M}\left|\left(\Delta \varepsilon_{v p}^{n}\right)_{i}\right|}{\sum_{i=1}^{M}\left|\left(\Delta \varepsilon_{v p}^{1}\right)_{i}\right|} \times 100 \leq \text { TOLERANCE }
$$

