ME 478 FINITE ELEMENT METHOD

Chapter 8. Other Cool Stuff

LINEAR ELASTO-DYNAMICS
Ma+Ku=f, +fp+f; +P

where

u(x,y,t)=Nu

£(x,y,t)=Bu

o(x,y,t)=D(Bu—-g,)
and the stiffness and mass matrices are:

K =([[[B"DBav M =[[[N" pNdv
V V
Note that M and K have the same form (due to connectivity)

MODAL ANALYSIS
We will start by looking at the free vibration problem

MU+Ku=0 (f =0)

let U(t) =UsIN(at +6) where U are the mode shapes, then
by substitution, we have:

(K —*M)a =0
for a nontrivial solution to exist, we require
det(K - M) =0

from which we can solve for the frequencies and then the
corresponding mode shapes.
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EXAMPLE: 1-D BAR 2
Recall that we had:

ue) =[N, NZ]{l‘f}

2
where

1-s 1+s
M= N e

and the strains are related to the displacements through:

— u
:—:S:[—l 1} "L=Bu
L L ju,

And the stress/strain relation as:
c.=EBuU
We apply Newton’s second law of motion to the 2 nodes

F=ma
J°u

1:1ext _ 1:1int = m at21
0°u,
f2ext — o =M, Jt2

AL AL
where M= ,07 and M= P~ (called the lumped mass)

Writing out the equations, we have:
{ fm} _ { fm}{ml 0 HU}
f2ext f2int O mz UZ

Consistent Mass matrix
Starting with d’Alembert’s principle

X" =—p(xy)
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where Xe IS the effective body force due to the mass of the
element. We can then convert this body force to nodal forces

through
f,=[[IN"X°av
Vv

Making the substitution for X® and knowing that U(X, y) =NU,
we have

f, = [[[N"oNdvi

ELASTODYNAMICS INCLUDING INELASTICITY
Starting with:

MU+ Ku=f
\_SJ

s=_[\_/”BTcdv

Now including rate effects 6 =Dg+ V¢
Therefore

S=IJIBTDBdw+IJIBTVBdw

where

So we have
MU+Cu+Ku=f
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SPECIAL CASES
1) No damping-Linear elasto-dynamics

MuU+Ku=f
2) No inertial effects-elasto-statics
Ku=f
3) Quasi-static-Visco-elasto statics
Cu+Ku=f
4) Viscous flow (Newtonian fluids)
Cu=f
RHEOLOGICAL MODELS
— A NN © i . Hookian o=Ee¢

— T o ° — Newtonian O =7]€

Parallel Arrangement (Voigt-Kelvin Model)
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During the creep response, the material represented by these
models undergoes

1. Initial instantaneous response

2. Non-linear delayed elastic response

3. Instantaneous elastic recovery

4. Delayed elastic-viscoelastic recovery

5. Permanent deformation

For the Maxwell model, the relationship between the deflection and
the applied load is:

U= E + E’ u(O) — @
K K
The resulting creep function for a unit step is:
c(t) = (1 + 1t]U (t)
k 7

and the relaxation function is:
r(t) = ke U (t)

For the Voigt model (slightly different than above), the relationship
between the deflection and the applied load is:

P=ku+nu, u(0)=0
The resulting creep function for a unit step is:

cm:%@_gwwpa)

and the relaxation function is:

r(t) =no(t)+kuU(t)

Viscoelastic Overstress — Delayed Elasticity
This element is associated with some threshold condition
Oy(€p)

o—4A~— o
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ELASTO-PLASTICITY

(we will look at this in more detail later)

Total Format (Henke)
E g€ =gt¢&p

oy(€p) Rate Format (St Venant VonMises Prandtl-Reuss)

€ =g tE&p
And our stress-strain relation becomes: 6 =D (¢ - ¢ )
AG
E
2
L[ 3
€p €e
ELASTO-VISCO-PLASTICITY
AG
Er ET _ 00 _ E Ep
de  E+E,
E
€
fo+—, c _90
0 ="
dE
€p

This is a combination of the three rheological models. Solution
procedure is much more complicated than for linear elasticity
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Example One Dimensional Viscoplasticity

Consider the basic one-dimensional
viscoplastic model. The total strain n the
model can be expressed as the sum of the
elastic and the viscoelstic components as:

& =&, t&,

The applied stress is related to the elastic
strain by:

o, =0 = Eg,
The stress in the dashpot is related to the
viscoplastic strain by:

O-d — 77évp
And the stress in the friction slider is:

c,=0 If O'p<Y

c. =Y if o.2Y

p p=
where Y represents the threshold stress which is a function of
some yield stress and some strain hardening as:

Y=0,+H'g,

Prior to the onset of viscoplastic yielding, €w = 0 giving O4 = 0
thus Op = O . Combining stresses in the dashpot and the friction
slider gives:

oc=0,+H'e, +ne,
Using éw = € ~€e and O = O = E&, gives

H'Ee+nEé=H'o+E(oc-0,)+n0

which is a first order ODE, Rearranging, we get
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s:%+1[a—(ay +H'e, )]

or
€ =g, + évp
Considering the case when we apply a constant stress to the model
H'Ec+nEé=H'c,+E(o,-0,)
The solution is:

(O-A — O-y )
H'
Note: the solution to ODE’s of the form Y+PY=T is

y(t)=e"[e"rdt + C ynere:h = pot

In the case of a perfectly viscoplastic material, (H'=0 ) then we
have (by applying L’'Hopital’s rule):

[1_ e—H't/?] ]

o
gt)=—L+
(t) =

(GA B Gy )t

o
et)=—"2+
(t) =

Viscoplasticity is a transient phenomena, thus the solution involves
taking a time incremental (time-stepping) approach. The simplest
approach is to use Euler’s rule where we extrapolate the value at
some time t,.; in terms of the quantities at time t.

Using this approach, we can define the viscoplastic strain
increment over time step At, =t -1, as:
n __ =N
Ag,, = ELAL,
The change in length of the element due to the strain increment is:
Au" =Ag L
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and adding this to the change in length due to the applied loading
gives:

Au" =Ag, L +LAPn
AE

and rewriting in matrix form gives:

AU,
AU" =1 Tt A=K TAF,
AU,

Where

1
AF. = AEév”pAtn{ 1}+APn

1 —
K = EA
L{—l 1}

Rewritting in the standard form
K = [B"DBdv
\%

and

AF, = [B"Detv+ AP,
V

The updated displacements at obtained as:
n+1

u™ =u"+Au"
The stress increment is:
n _ n _ n n
Ac" =EAg, =E(Ae" - Ag,))

[Au{‘—AuQ At j
vp—n

=E
The stress at time t,,1 IS:
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O'n+1:O'n+AO'n

The viscoplastic strain is:
n+1

Em = Ep HAEL
And lastly, the viscoplastic strain rate is:

. N+ 1 n+ 1 N+
et ==[c"" (o, +H'ex™)]

vp vp

The out of balance residual forces as expressed as the sum of the
applied nodal loads and the nodal forces equivalent to the
elemental stresses are:

1
LIJn+1 — AOJ]H{ }_'_ I:)n+1
-1

These residual forces are added to the pseudo forces to give the
forces for the next time increment as:

AF

1
- N+1
n+1+ — AEgvp Atn+1{_ 1} + AI:)n+1 + an+1
This step is repeated until the solution for the desired time duration
or steady state conditions are achieved (when the viscoplastic
strain rate becomes negligible).

There is a limit on the time step that one can use for the
viscoplastic solution. For the one-dimensional case considered
here, the limiting value is (Cormeau proposed this one and there
are many different values that have been proposed):
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Computational Implementation of 1-D

Viscoplasticity
STEP 1 At time t=t,, we compute that following quantities using the

standard approach
n n n

o, g", £ f" and u"  known

vp !
and compute the viscoplastic strain rate for each element as:
1
=N n 1 N
Ep=—lo" (o, +H'e,)]

STEP 2 Compute the displacement increment according to:

Au,
Au" =11 L =K TAF,
Au,

where
o 1
AF, = AB£LAL, | 1+ AR,
and for each element, the stiffness matrix is

1 —
K = EA
L{—l 1}

STEP 3 Compute the stress increment and the viscoplastic strain
increment for each element as:

Ag" = E[Au1 — AU,

_ggpmnj

Agy = QAL

8.11



STEP 4 Determine the total displacements, stresses and the
viscoplastic strains

u™t =u"+Au"
Gn+l — O_n +A0n
n+l N n
Ep =Ep TAE,
STEP 5 Compute the Viscoplastic strain rate for each element for
the next time step
: 1 :
8\:1p+1 — _[Gn+1 . (Gy + H gcpﬂ)]
STEP 6 Evaluate the residual forces by applying equilibrium
correction to each element

1
N 1:Ao_nﬂ{

+ AP
]} n+1

and add these into the vector of pseudo nodal loads to be used in
the next time step

1
AF, . = AEgV”p+1Atn+l{ }+ AP
-1

n+

+ \Pn+1

n+1

STEP 7 Check if the viscoplastic strain rate in each element has
become negligibly small. If so, then steady state conditions are

said to have been reached. If not, return to STEP 1 and repeat the

entire process for the next time step. One way to check for
convergence is as follows:

> acy)
> (ac)

=1

x100 < TOLERANCE
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