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ME 478 FINITE ELEMENT METHOD

Chapter 9. Even More Cool Stuff

ELASTO-PLASTIC PROBLEMS IN 2-D
Step 1 We begin by defining the yield criterion ( 0),( =qF σ in
principle stress space). This describes the stress level at which
plastic deformation begins. Physically, the yield criterion should be
independent of the coordinate system. This is typically
accomplished by making it a function of the three stress invariants
only which are defined as:
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We note that typically, plastic deformation is independent of the
hydrostatic pressure. As a result, the yield criterion depends on the

second and third invariants of the deviatoric stress '2J and '3J ,
which are determined from
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For example, the VonMises yield criterion (1913) states that

yielding occurs when '2J reaches some critical value as:
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where the second invariant of the deviatoric stress can be explicitly
written as:
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Furthermore, the yield criterion can be written as:

( ) 2/1
2 '3 J=σ

where σ is called the effective stress, generalized stress or
physical stress.

In general, we write the yield criterion as:
0),( =qF σ

The following figure shows several different representations of yield
criteria plotted in the principle stress space. Note that there are
many different yield criteria and even many different modifications
to the ones shown below. For example, the Drucker-Prager (1952)
yield criterion is a modification of the VonMises yield criterion to
account for the influence of hydrostatic stress component.

If 0),( <qF σ& then we have elastic unloading.

If 0),( =qF σ& then we have plastic loading and the stress
remains on the yield surface for a perfectly plastic material.

If 0),( >qF σ& then we have plastic loading for a hardening
material and the stress remains on the yield surface, which
changes with the amount of plastic deformation.
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where trialσεD &&& =⋅
In a strain controlled arrangement

i) Plastic loading when 0≥⋅ trialσn &&&

ii) Elastic unloading when 0<⋅ trialσn &&&

Work and strain hardening – Even after initial yielding has
occurred, the yield surface may change shape. This is called
hardening. The yield surface may expand equally in all direction
with increasing plastic deformation. This is call isotropic strain
hardening. Or it may translate with increasing plastic deformation.
This is called kinematic strain hardening. A perfectly plastic
material does not experience strain hardening and the yield surface
remains the same after further plastic deformation.

a) perfectly plastic b) isotropic hardening c) kinematic hardening
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Note that some materials may not exhibit strain hardening but
rather strain softening, a decrease in the size of the yield surface
with plastic deformation, an example is soil.

After initial yielding, the material will experience a behavior that
consist of an elastic part and a plastic part as:

pe εεε &&& +=
The elastic strain rate is related to the stress rate through
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Or splitting this into the hydrostatic and the deviatoric parts we get,
in indicial notation
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Next we look at the plastic strain rate. We assume that the plastic
strain rate is proportional to the stress gradient of a term called the
plastic potential Q. This equation is called the plastic flow rule and
represents the evolution law that must be followed once yielding
has occurred.
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where pλ& is called the plastic multiplier and m=
∂
∂
σ
Q

is the

direction. Here Q is called the plastic potential and represents the

gradient of the flow rule. Thus, F

Q
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would be the non-associativity,

which characterizes the difference between the normal and the
gradient of the flow rule. The physical argument behind the non-
associated flow rule is to control the volumetric part, i.e. the
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dilatency. Note: for an associated flow rule QF = and hence,
mn = .

Once we determine the stress level we apply the consistency
condition to determine whether we are staying on the yield surface
as:
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Form this equation, we can determine the plastic multiplier as:
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Lastly, we can uses these results to determine the tangential
stress-strain relation
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Physically, we think of a material as being elastic prior to yielding
with stress strain relation characterized by the elastic modulus.
After yielding, the stress strain relation is no longer linear where the
local tangent to the stress strain curve varies. The slope of this

curve is called the elasto-plastic tangent modulus epD
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Simplification: Associated Flow Without Hardening
Step 2 Adopt a plastic flow rule (Evolution law)
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where pλ& is the plastic multiplier and n is the direction. Note: the
plastic strain rate is directed along the gradient of the flow rule, i.e.
normality, (this is not valid for frictional materials).

Step 3 Apply consistency condition to determine the plastic
multiplier
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Step 4 Determine the tangential stress-strain relation
εDσ && ep=
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1. Coaxiality – the plastic strain rate is parallel to the stress
2. Normality – the plastic strain rate is directed along the gradient of
the flow rule
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REALLY SIMPLE 1-D EXAMPLE
(Predictor-Corrector Method)

We decompose the

pe ddd εεε +=
and define the strain hardening parameter as
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This can be thought of as the slope of the stress- plastic strain
curve
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When the response of the material is elastic, the applied stress is
less than the yield stress, the force is related to the displacement
for the element through:
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Suppose that this force is increased until yielding begins to occur.
Then the change in length of the element due to a change in the
load is:

Ldddu pe )( εε +=
And the change in load is:
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The tangential stiffness of the material then becomes
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Rewriting this we get
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Lastly, we can express the stiffness for elasto-plastic behavior of an
element as:
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Note that the first part of this represents the elastic stiffness and the
second part represents a decrease in the elastic stiffness due to
yielding

The solution procedure involves using the tangential stiffness
method (or a slightly modified Newton Raphson method) where
upon the application of a load increment, we do the following.

STEP 1 We compute the tangential stiffness at the trial

displacement state nu according to:
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STEP 2 We compute the residual force vector according to:

nnn
n
ep ΨfuK =−+1

STEP 3 We compute a correction to the trial value

n
n
epn ΨKu 11)( −+=∆

STEP 4 We update the solution

nnn uuu ∆+=+1

STEP 5 Check for convergence, if not, then go to STEP 1.

(Note: Alternative techniques can be used such as the standard
Newton-Raphson method or the Initial Stiffness method.)
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Tangential Stiffness method Initial Stiffness method

BACK TO 2-D ELASTO-PLASTICITY
(Elastic Predictor-Plastic Corrector)

Example: von Mises J2 theory

STEP 1 We compute the element stiffness and the tangential
stiffness. For the first iteration, we basically assume that the
material behavior is linear elastic. For subsequent iterations, we
will update the stiffnesses to include the plastic effects which will
cause a reduction in the elastic stiffness.
STEP 2 Solve the system of equations
STEP 3 Next we calculate the residual force vector as:
STEP 4 And the effective stress level is computed using:
STEP 5 Determine the flow vector as:
STEP 6 Lastly, we check to see whether the solution has
converged. If not, return to step 1.
Note the difference in the approach here is that we will be using the
stresses as the principle variable in the analysis. In the One-
dimensional example presented earlier, we used the nodal
displacements.
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