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Differential geometric approach to atmospheric refraction
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Differential geometric techniques are presented and used to model the optical properties of the atmosphere
under conditions that produce superior mirages. Optical path length replaces the usual Euclidean metric as a
distance-measuring function and is used to construct a surface on which the paths of light rays are geodesics.
The geodesic equations are shown to be equivalent to the ray equation in the plane. A differential equation
that relates the Gaussian curvature of the surface and the refractive index of the atmosphere is derived. This
equation is solved for the cases in which the curvature vanishes or is constant. Illustrative examples based on
observation demonstrate the use of geometric techniques in the analysis of mirage images.

INTRODUCTION
Mirages are the images that result when the atmosphere
refracts light rays away from their usual (nearly straight)
paths. Sufficiently large temperature gradients will
cause changes to the curvature of ray paths large enough
to give rise to images that are elevated or depressed with
respect to the actual object. These images are called, re-
spectively, superior and inferior mirages. The former
arise from a temperature inversion, the latter from the
more usual decrease of temperature with elevation.

Pernter and Exnerl carried out an early classification
of mirages. They identified atmospheres that produced
certain simple shapes of ray paths and roughly classified
the properties of observed mirages. To summarize
briefly the relevant results: Linear variation of refrac-
tive index n with height produces parabolic ray paths,
while quadratic variation produces circular paths. The
nature of the variation determines the mirage images ob-
served. In the linear case the image is elevated or de-
pressed but undistorted. If n decreases nonlinearly with
height (such that its gradient has maximum magnitude at
the surface), an elevated mirage, consisting of a single dis-
torted image, is seen. If the refractive-index (or tempera-
ture) profile contains a point of inflection, it produces the
classic three-image mirage with alternating erect and in-
verted images, as was observed by Vince in 1798.2 This
form also produces optical ducting conditions, as identi-
fied by Lehn and Schroeder,3 in which light rays are
trapped beneath the inversion (found at the inflection
point elevation) for long distances.

The present paper extends the mirage classification
process: It presents ray path forms for atmospheres with
certain properties, and it discusses the resulting imaging.
In the following sections we present some techniques of
differential geometry4 that were not previously applied to
the study of mirages. Specifically, we endow the Eu-
clidean plane with a new metric structure, the optical
path length. The surface that results is, in some ways, a
more natural home for optical problems since the paths of
light rays will be geodesics on this surface. We will derive
the ray equation from the specified metric function and
present the results of modeling the atmosphere by a sur-
face whose Gaussian curvature vanishes or is constant.

We show that so constraining the Gaussian curvature pro-
duces a class of temperature profiles that are typical of
many observed mirages.

DIFFERENTIAL GEOMETRY
The path followed by a ray of light in an atmosphere of
constant refractive index is a straight line. The straight
line constitutes a geodesic, or a distance-extremizing
curve, in the Euclidean plane. The path followed by a ray
in a laterally homogeneous atmosphere with a noncon-
stant vertical refractive profile is a plane curve. By
Fermat's principle the time of travel along the ray will be
less than the time of travel along all the nearby paths. It
follows that the optical path length between two points on
the ray will also be minimized. Clearly, the curved path
is not a geodesic in the plane. We can, however, define a
surface wherein all the paths of light rays are geodesics by
replacing the Euclidean metric of the plane and by using
the optical path length to measure distance.5

If we restrict our attention to a ray that travels in the
x-z plane, then, for arbitrarily close points on the ray, the
optical path length is dl = n(x, z)ds, where ds2 = dx2 +
dz2 and n is the refractive index. The line element ds lies
in the Euclidean plane, and dl is the line element on a
two-dimensional surface, M, that is defined (at least lo-
cally) by this relation. If we identify x' with x and x2

with z, then, since d12 = n2(dx2 + dz 2) = n2Sidx'dxj =
gidxtdxJ and assuming that n is a function of elevation
alone, the covariant metric tensor and its contravariant
counterpart are

gij = n (z)3ij,

ij= 1 i (1)

where use of the summation convention is made. (See
Appendix A for a fuller exposition of the geometry and the
tensor analysis used here.) Associated with this metric
are the nonvanishing Christoffel symbols of the second
kind,

-F1
2

1 = 2
2

2 = F1 ' 2 = 2
1

1 = 1 dn
n dz (2)
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The parametric equation describing a geodesic on a sur-
face is

d 2x' dxJ' dxk
d12 + r 1kd - = 0,(3)

where the indices i, j, and k take on values of 1 and 2.
Substituting the Christoffel symbols from Eq. (2) into
Eq. (3), we obtain a pair of parametric equations, with
parameter 1, describing the geodesics of the surface M,

d2x 2 dn dx dzdl2 + dz -d = 0nJ ndz dl dl
d2z 1 dn dz 2 (dx )2
Ti d - -d dl) dl v (4)

We have defined the line element on M so that dl = nds.
The chain rule allows us to write

dx dx ds 1 dx
dl ds dl n ds

dz dz ds 1 dz
dl ds dl n ds (5)

d2 1 x d 1 dx dz\
d12 n2 ds2 n dz n ds ds

d 2z 1 d 2z 1 d dz dz\
d12 n2 ds2 +n dn dsds)' (6)

which, on substitution in Eqs. (4), yield a standard result,
the vector form of the ray equation

dr d ndr = Vn, (7)

where r locates a point on the ray in the x-z plane.
It can be shown6 that the Gaussian curvature K of a

surface is given by

K = R1212, (8)
Igl

where R12 12 is the [1212] component of the covariant cur-
vature tensor and Igj is the determinant of the metric ten-
sor, treated as a matrix (see Appendix A). Performing
the calculations implicit in Eq. (8), we obtain a second-
order, nonlinear differential equation relating the refrac-
tive index and the Gaussian curvature,

d2n 1 dn\ 2
-- = n3K . (9)TZi-_ dz )

Before we proceed to examine the solutions of this equa-
tion for zero and for constant K, it is useful to obtain an
explicit relation between the refractive index and the tem-
perature, since temperature is much easier to measure.

We use the relation7

n = 1 + ep = 1+ Ep ,

(226 x 10-6 m3 kg-'), and ,3 is the reciprocal of the specific
gas constant for dry air (3.48 10-' kg K J-'), to convert
from the refractive to the temperature profile. Since n is
always near unity, it is more convenient to use refractivity
r = n - 1 in the development. An explicit equation for
temperature in terms of refractivity is obtained as fol-
lows. Rewrite Eq. (10) as

rT = e,6p, (11)

where r, T and p are all functions of elevation z. Differ-
entiation of Eq. (11) with respect to z permits the elimi-
nation of p, since dp/dz = -pg for an atmosphere in a
gravitational field g. Thus

dT= -,3g(ep) = -gr,
dz

which integrates to

T(z) = r To - f3g | r(z)dz' .
r(z) [ J

(12)

(13)

VANISHING GAUSSIAN CURVATURE
The solution of Eq. (9) for K = 0 is n = aebz, where a and
b are constants of integration. When this exponential is
substituted into Eq. (13) we obtain the exact temperature
profile that corresponds to K = 0:

T(z) = 1 {roTo /3g [exp(bz) - 1] + gz
(14)

If the refractive index is known at two points, z = 0 and
Z = Ze, then

a = n = r + 1,

1 ne 1 I1 + rb =-ln-=-ln 
Ze nO Ze 1 + ro

(15)

(16)

Since the refractivity of air is small, Eq. (16) can be ap-
proximated quite accurately by

b rerO -r f-nO
Ze Ze

(17)

This shows that b is also small, a fact that permits us to
expand the exponentials in Eq. (14) in a short power series.
Expand the denominator exponential to the quadratic
term, and bring these terms into the numerator, using the
series for 1/(1 + 3), again to the quadratic term. After
expanding the numerator exponential (to the linear term),
multiply everything out and truncate after the quadratic
term to get

T(z) = To + -og abTo/

+ Z2f3gab _ ab2 To 1 a
rO rO 2 ro/J(10)

(18)

where p is the density, p is the pressure, T is the abso-
lute temperature, e is the specific polarizability of air

which agrees with Eq. (14) to better than 0.1° for tempera-
ture gradients as high as 0.2 K m-' and elevations as high
as 50 m.
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Our objective, however, was to show that T(z) is pre-
dominantly linear. This becomes clear when some typical
numbers are inserted. Let To = 273 K andpo = 1.0133 x
105 Pa. Then r = 291.92 x 10-6. If the linear term is
taken to be the (fairly strong) gradient of 0.2 K m'1, then
b = -250.3 x 10-9 m'1. For these values the quadratic
term has the coefficient 1.715 x 10-4 K m 2 . Thus the
linear term dominates at low elevations. At 25 m the dif-
ference between Eq. (14) and the linear version of Eq. (18)
is 0.120.

For atmospheres in which the refractive index is a func-
tion of z only (or, in a spherical system, a function of the
radial distance only), it is easy to show8 that the Euclidean
ray curvature K is given by

sin dn
n d (19)

where 0 is the zenith angle of the tangent to the ray.
When the exponential solution corresponding to zero
Gaussian curvature is used here, we obtain

K = -b sin 0 -b, (20)
since in practical mirage situations 0 is close to 900.

The visual effect of mirages with a vanishing curvature
is simple and often not perceived: Images are vertically
displaced, with unit magnification.' The most obvious
example is the normal well-mixed atmosphere in which
the temperature gradient is -0.006 K m-; we usually
ignore the slight vertical displacement and see everything
to the correct scale. More interesting is the temperature
inversion; for example, with To = 273 K and a gradient of
+0.112 K m'1, horizontal rays have the same curvature as
the Earth. Objects maintain their normal appearance
and scale, but the Earth then appears to be flat.

The imaging properties of the atmosphere at a given ob-
ject distance are conveniently presented on a graph where
the apparent elevations of the object points are plotted
against their actual elevations. This curve has been vari-
ously named the transfer characteristic 9 (TC), the trans-
fer mapping," and the image diagram." Its slope is the
image magnification. In the hypothetical case of straight
rays on a flat Earth, the TC would be a straight line of
unit slope passing through the origin. On a curved Earth
straight rays produce an offset TC, which intersects the
abscissa at a value given by the departure of the Earth's
shape from flatness at the object distance. For mirages
with vanishing Gaussian curvature, the TC remains
straight with unit slope but gains additional offset.

In summary, a vanishing Gaussian curvature implies
an exponential variation of the refractive index with ele-
vation (exactly) and a linear variation of temperature (ap-
proximately); and all nearly horizontal rays have the same
Euclidean curvature.

CONSTANT GAUSSIAN CURVATURE
Solving Eq. (9) for the case of K = constant, we obtain

2ac exp(-az)
\/f exp(-2az) + " (21)

where a and c are the constants of integration. The nega-
tive sign in the exponentials is the result of assuming that

the refractive index decreases with elevation, i.e., that the
temperature increases with elevation. It is under these
conditions of temperature inversion that a superior mi-
rage may be observed. If we again use no for the refrac-
tive index at z = 0 we can rewrite Eq. (21) as

n(z) = n(l + c2) exp(-az)exp(-2az) + 2 '
(22)

with

1 + c2a= n/ 2
2c

(23)

Interpretation is facilitated if we use Eq. (22) to express
the refractivity r(z) = n - 1 and then apply power-series
expansions. Numerical testing with practical tempera-
ture profiles indicates that a and K are small and that c is
near unity. If c = 1 identically, then Eq. (22) can be writ-
ten as n = no sech(az). In the more general case, we re-
place each exponential by a quadratic power series; then
the denominator series, when written in the form 1 + 8,
can be brought into the numerator. When the resulting
expression is expanded as a power series in z and trun-
cated after the quadratic term, the result is

1 - c2 1 - 6c 2 + C4 2r(z) = r + no'VK ~z + nK C 
2c 0 K 8c 

(24)

with no = r + 1 as before and ro = EBpo/To from Eq. (11).
This may be further simplified if c is replaced by 1 + y,
where y is small. Neglecting the terms in y2 , we obtain

r(z) = ro- no2 y\kz - no KZ2,
2

(25)

with

a = nV/-?. (26)

Equation (13) can be integrated in closed form if Eq. (25)
is substituted into it. The result consists of a cubic poly-
nomial divided by the quadratic r(z) function. When the
denominator is brought into the numerator (by series) and
the result is truncated at the quadratic term, we obtain

T(z) = To + bz + b2z
2 , (27)

where

=noyTo\/Kg3

rO

no3To Kb2=-2r 0

(28)

(29)

(in b2, relatively small terms have again been dropped).
Equation (29) permits an interesting interpretation: The
quadratic coefficient b2 is directly proportional to the
Gaussian curvature.

In the examples that follow, it is shown that, for practi-
cal inversion profiles, these series approximations with
their assumptions on the smallness of certain parameters
are justified.

If measurements or calculations provide a quadratic
temperature profile, then To, b , b2 are known, and the
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Table 1. Temperature (T) Profiles for
Examples A and B

Profile 1 Profile 2

z (m) T (C) Z (m) T (C)

0.0 -1.90 0.0 -32.00
1.2 -1.88 10.0 -32.00
3.2 -1.82 20.0 -31.90
5.2 -1.69 30.0 -31.40
8.0 -1.32 40.0 -30.45
9.6 -0.93 50.0 -29.40

11.2 -0.37 65.0 -27.65
12.8 0.55 75.0 -26.70
13.6 1.27 85.0 -26.00
14.0 1.65 95.0 -25.40

above equations are easily inverted to give a, , and K:

a = _2b2ro 1/2

ro(b + g)
an0 To

a 2

no2

using the previously given values for e, /3, andpo, are given
in Table 2. The ray paths for T(z) are shown in Fig. 2,
where the focusing at the antipodal points of the spherical
modeling surface is evident. The distance between focal
points is given by D = r/<.

The smallness of the parameters a, y, and Kjustifies the
series-expansion approximations made in the derivations.
The accuracy has also been verified by substituting these
values into the exponential solution [Eq. (21)] and integrat-
ing it according to Eq. (13) to find the exact temperature
profile for these parameters. The difference between this
and Eq. (33) is less than 0.01° over the range of interest.

The quadratic refractivity equation for this profile is

r(z) = 293.8 x 10-6 - (2.749 x 10- 9)z
- (14.40 x 10-9)z 2.

(30)

(34)

Profile 1

10
(31)

8
(32)

The parabolic temperature profile of Eq. (27) produces a
linear TC; this is consistent with the study of Rees," in
which the assumption of a linear image diagram leads to a
parabolic refractive profile. A linear TC produces a clear
image whose only distortion is a vertical magnification (of
a magnitude strictly greater than unity). If the image is
inverted, then the sign of the magnification is negative. If
portions of actual mirages possess these properties we can
attempt to model portions of the temperature profile by
assuming a constant K.

The assumption of a constant, positive Gaussian curva-
ture implies that the surface that we are using to model
the plane of the ray path is a segment of a sphere of radius
R = 1/VK. All the geodesics through a point on such a
surface will intersect at the antipodal point. This focus-
ing effect is evident in all the ray traces generated from
Eq. (22) (see Fig. 2 below).

6
0
*1)
Hi 4

2

0
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

Temperature (C)

(a)

Profile 2
70

60EXAMPLES
In each of the following examples temperature T is in
kelvins and elevation z is measured in meters above
sea level.

(A) One of the profiles used to reproduce an observed
Novaya Zemlya effect'2 is a suitable candidate. This pro-
file (profile 1; Table 1) creates an optical duct that traps
nearly horizontal rays between the ground and an eleva-
tion of 9.6 m. Over this range the profile looks nearly
parabolic; a least-squares fit produces

T(z) = 271.12 - 0.0316z + 0.0133z 2 .

50
'a'

0o0r
40

30

20

10
(33)

Figure 1(a) shows the original and the parabolic fit, which
follows the original to within 0.050 over the range of inter-
est. Because T(z) generates basically the same ray paths
as profile 1, the fit can be considered good. This is the
most significant comparison criterion, for it means that
the images observed will be similar. The corresponding
values of a, , and K, as calculated from Eqs. (30)-(32)

0 L
-33 -32 -31 -30 -29 -28 -27 -26

Temperature (C)

(b)
Fig. 1. Fitting of parabolic (constant K) temperature profile to
two Novaya Zemlya observations; the circles mark the input tem-
peratures, and the solid curves show the parabolic fit.
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Table 2. Parameter Values for Profiles 1 and 2
Parameter Profile 1 Profile 2

a (m-) 169.7x 10-6 58.63x 10-6
y 16.20 x 10-6 500.7 x 10-6
K (m 2 ) 28.78 x 10-9 3.435 x 10-9

12

10

's
0
a2
1o

W

8

6

4

2

0
0 10 20 30

Horizontal Distance (km)
40

Fig. 2. Calculated ray paths derived from profile 1, exhibiting
strong focusing at the antipodal points of the spherical modeling
surface.

While the linear and the quadratic terms have coefficients
that are quite small in relation to r, they cannot be ne-
glected. The function is clearly parabolic and must be so
to generate the parabolic T(z). Changing the shape of r
(perhaps by claiming that over such a small range almost
any function can be fitted to the data) changes the shape
of T(z), the nature of the ray paths, and the nature of the
images produced. The imaging properties are a sensitive
function of the temperature and hence of r(z).

(B) The basis for the second example is a Novaya
Zemlya effect observed in 1951.' Profile 2 (Table 1) was
calculated to reproduce the observation 4; the correspond-
ing light rays travel within an optical duct of height 65 m
over a distance of approximately 400 km. The portion of
the temperature profile that defines the duct is approxi-
mated to within 0.10 by a least-squares parabolic fit:

T(z) = 240.96 - 0.01272z + 0.001254z2 .

camera elevation of 2.5 m. The target was Whitefish
Summit, 20.3 m high,'5 shown in undistorted form in
Fig. 3(b). A comparison of the two images permits the
construction of the partial TC shown by the heavy lines in
Fig. 4. Gaps are present in this TC because of a lack of
elevation information for those rays producing sky images.
Any synthesized TC that coincides with the measured
partial TC will produce the same mirage of the summit.

The TC partitions naturally into three zones. In zone I
we have an undistorted erect image whose magnification
of 1.04 is close to unity. For straight rays the expected
TC offset at 20 km would be 31.4 m. Because the ob-
served TC has a (projected) offset of only 8.1 m, the image
has been vertically displaced (raised). Unit magnifica-
tion and vertical displacement are the properties of zero
Gaussian curvature, which implies a linear temperature
profile. Hence zone I will be so modeled.

In zone II we again have a linear TC but this time with
a magnification of -1.33. This suggests a constant K and
a parabolic temperature profile. This zone will thus be
modeled as a parabolic function smoothly attached to the
linear profile of zone I.

(a)

(35)

Figure 1(b) compares the original with the parabola; they
produce ray paths with similar properties. Table 2 shows
the resulting values of a, , K. Again, the parameters are
suitably small for the series expansions. The relevant ex-
pression for refractivity is

r(z) = 330.5 x 10-6 - (29.36 x 10-9 )z - (1.719 x 10-9)z2.
(36)

When this is substituted into the exact equation for tem-
perature, the maximum difference between that equation
and Eq. (35) is 0.15°.

(C) In other cases portions of profiles may be modeled.
Figure 3(a) shows an unusually clear and well-defined
superior mirage observed at Tuktoyaktuk, Northwest Ter-
ritories, Canada, on May 16, 1979. The line of sight,
20 km long, passed over the frozen Beaufort Sea from a

(b)
Fig. 3. Whitefish Summit photographed with a 560-mm lens
from Tuktoyaktuk, Northwest Territories, Canada, over a range
of 20 km. (a) Superior mirage: May 16, 1979, 03.12 mountain
daylight time, camera elevation 2.5 m. (b) Normal view:
camera elevation 5.8 m.
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gradient is varied until an exact match with the TC is
found. This occurs at a gradient of 0.075 K m'1. The
linear temperature profile is extended upward and capped
with a constant K profile. In zone II we have two ad-
justable parameters available to us: K and the transition
elevation of the bottom of zone II. The value of y is not
adjustable but is determined by the smoothness con-
straint. Recall from Eq. (29) that K is proportional to the
quadratic coefficient of the parabolic temperature profile.
K controls the slope (magnification) of the resulting TC,
so K is adjusted until a match to the zone II slope is found;
then the elevation is adjusted until the computed TC coin-
cides with the observed TC. A good fit is produced when
K = 0.994 x 10-6 m-2 , with a transition elevation of
40.22 m. The temperature profile itself is

T(y) = 273.825 + 0.075y + 0.471y2 , (37)

zrved; thin lines, calculated. where y = z - 40.22.
Xt. Zone III was more problematic, and we suspect that

specifying the Gaussian curvature here is not an effective
way to model the refractive profile, since the rays that
reach this level have done so after traversing both of the

m I lower zones, and any errors in modeling there will propa-
gate upward. We chose, therefore, to model zone III in
the manner described below.

In zone III a ray-steering algorithm, developed by Lehn,
was adopted. Noting that the rays with an initial ele-
vation angle greater than 13.15 arcmin reach the target
at successively higher elevations, we reduced the tem-
perature gradient at points above the vertex of this ray
(44.56 m) so that the next ray fell on the desired TC.
This procedure was repeated for higher rays to produce all
of zone III. The resulting TC and the synthesized tem-
perature profile are shown in Figs. 4 and 5, respectively.
The Earth's curvature was implicit in the algorithm that

, ,...,.. produced the TC.
5 10 15 Figure 6 shows the mirage image calculated from a digi-
ature (C) tized version of the undistorted photograph. The close

agreement between the original and the reconstructedgenerates the fittedimage is evident and indicates that superior mirages can
in the text. iaei vdn n niae htspro iae a

be classified and modeled effectively by differential geo-
metric techniques.

Kg. 6. Calculate mirage iage b d on F the calculated T CA -oX' :i'f' .f MY ',^T go I 24E 'd ' s,

Fig. 6. Calculated mirage image based on the calculated TC.

Once this simple model is constructed, finding the
parameters to produce the correct TC is easily done by
using a ray-tracing program. Starting with zone I, with
the eye-level temperature fixed at 271 K, the temperature

CONCLUSIONS
A new method of describing atmospheric refraction prob-
lems has been developed. By the appropriate selection of
Gaussian curvature a variety of optical conditions can be
modeled. The assumption of a constant, positive Gaus-
sian curvature leads to a closed solution to the differential
equation relating the refractive index and the Gaussian
curvature. This solution describes a class of superior mi-
rages that exhibit strong focusing.

APPENDIX A: DIFFERENTIAL GEOMETRY
We define an abstract surface in Euclidean three-space as
a set of points M in E3 and a set of mappings (called
patches or coordinate neighborhoods) from open sets in
the Euclidean plane, E2 , to open sets in M. Every point in
M must lie in the image of at least one patch, and where
two patches, x and y, overlap, the composite mappings
y 'x and x-ly must be differentiable. The differentiabil-
ity condition guarantees the existence of differentiable co-

m

I

.
, ., , . . . . . . . . - - -
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ordinate transformations where patches overlap, should a
surface not be covered by a single patch.

A patch is commonly the way we define a surface
algebraically; consider, for example, the patch x(u,v) =
[u,v,(1 - U2- v2)1/2] for u,v < 1, which covers the upper
half of the unit sphere except for the points lying on the
equator. To cover the entire sphere requires six hemi-
spherical patches: top, bottom, right, left, front, and back.

A geometric surface is an abstract surface endowed
with a geometric structure by means of a metric or a
distance-measuring function and corresponds to the usual
notion of a surface. Strictly speaking, the metric is a con-
sequence of defining an inner product on each of the tan-
gent planes of M, but this notion is not required for the
work presented here.

The choice of a metric is not unique. In the plane,
viewed as a geometric surface, we have the usual Eu-
clidean metric ds2 = d 2 + d 2 in line element form, and
on the surface of the unit sphere the metric is given by
ds2 = d 2 + sin2 Od2. By a suitable redefinition of the
metric on each of these surfaces, the geometric structures
can be interchanged, resulting in the so-called stereo-
graphic plane and the stereographic sphere. (See, for ex-
ample, Ref. 16.)

It is usual in classical tensor analysis to employ the
so-called summation convention; that is, when any index
occurs as both a superscript and a subscript in an expres-
sion there is an implicit summation over that index. We
follow this convention below.

The metric of a two-dimensional geometric surface
can be expressed as d 2 = gijdx'dxj. Each of the four
terms gij constitutes an element of the metric tensor. In
the Euclidean plane gij = 8ij, the Kronecker delta, while
on the surface of the unit sphere and employing spherical
polar coordinates

gij= sin2O1
Both of these examples are symmetric, second-rank ten-
sors, and they are, evidently, differentiable. The inverse
of the metric tensor is written as gii and is obtained from
gij by the usual methods of matrix inversion. The metric
tensor associated with the unit sphere, expressed with re-
spect to a polar coordinate system, is singular at the pole.
It should be clear that this defect arises from the coordi-
nate system chosen and not from any defect of the spheri-
cal surface. Practically this means that we work away
from the pole or recoordinate the surface as necessary to
remove the singularity.

On surfaces that do not admit of a Cartesian coordinate
system there is a distinction to be made between con-
travariant and covariant vectors (or first-rank tensors).
Under coordinate transformations, a contravariant vector
transforms as a differential, and its components are de-
noted by superscripts. A covariant vector, on the other
hand, transforms as a gradient, and its components are de-
noted by subscripts. These notions generalize to higher-
rank tensors, but specific transformation laws are not
required here.

Christoffel symbols of the first kind are defined by the
relation

1 (agkl dglh _ghk'\
Fhlk- 2 xh dxk ax,!

and Christoffel symbols of the second kind are defined by

1h7k = g'jFhlk -

We define the absolute differential of the contravariant
vector Xi as

DXi = dXi + rXh dxk

and the absolute differential of the covariant vector Y as

DYh = dYh - Fh k Ydx.

In E', the tangents of a straight line are all parallel to
one another, and the conventional differentials of the
components of the tanget vectors vanish. A vector field,
XJ(t), along a curve A in M is said to be parallel if its abso-
lute differential vanishes along A. The components of the
tangents of A (which form a vector field along the curve)
are given by ii, where the dot indicates a conventional dif-
ferentiation with respect to parameter t. Hence the
condition that tangents along A are parallel can be ex-
pressed as

DV = dii + FhJkx dx = 0

or

d 2xj dxh dxk
dt 2 + rk dt dt

These parametric equations define the geodesics of the
surface M.

The conventional derivatives of tensor quantities on a
geometric surface are, in general, not tensors. We define
the covariant derivative of a contravariant vector XP with
respect to xk:

XP = x + Fe, XI Xk
and of a covariant vector Yh with respect to xk:

YhJk = ay - rhk Ym.

The covariant derivative of any tensor quantity produces
a new tensor quantity with the covariant rank increased
by one. A necessary condition for the existence of such a
covariant derivative is the existence on the surface of a
nonsingular, differentiable, symmetric second-rank ten-
sor. The metric tensor will suffice on any region where it
is nonsingular. The Christoffel symbols of the second
kind, rhek, then constitute an affine connection of the sur-
face. A connection is said to be symmetric if rhek = rkph-

The conventional partial differentiation of a scalar
function is, subject to continuity constraints, symmetric
with respect to order, while repeated covariant differen-
tiation is, in general, not. It can be shown that XhJk-
XfJkIh = 0 implies that the tensor quantity

aljh arFl'k
Rljhk = k ax h + rmjkrlmh - rjIArlmk

vanishes when calculated with respect to a symmetric
connection. Rhk is referred to as the curvature tensor.
If the curvature tensor is nonzero, then clearly we must
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distinguish between X'hk and X',kjh. The curvature tensor
is skew symmetric with respect to interchange of the last
two covariant indices.

The covariant curvature tensor is defined by the rela-
tion Rlmhk = gjm Rljhk, and some counting will show that on
a two-dimensional surface it possesses only one indepen-
dent component, the [1212] component, all others being
zero or R1212.

If a(s) is a plane curve parameterized by arc length s,
then the curvature k = k(s) of a is defined to be

dt
ds

where t and n are the unit tangent and the unit normal,
respectively, of a. Intuitively we note that k measures
the rate of change of direction of the tangent vector with
respect to arc length.

Suppose that we have a two-dimensional surface with a
unique (up to sign) normal at every point. The intersec-
tion of the surface and a plane containing the normal de-
fines a plane curve, the curvature of which is called the
normal curvature of the surface. As this plane rotates
about the normal at p, the normal curvature at p will be
given as a function of the rotation angle. If the surface is
sufficiently smooth, with no self-intersections, there will
be two cases. Either the normal curvature will be a con-
stant function of angle or it will attain a maximum and a
minimum. The directions in which the extrema occur
will be orthogonal. These directions are called the princi-
pal directions, and the curvatures are called the principal
curvatures. The Gaussian curvature at a point is defined
as the product of the principal curvatures. For example,
the Gaussian curvature of the surface of a sphere of
radius r is 1/r2. It can be shown6 that the Gaussian cur-
vature of a two-dimensional surface is related to the co-

variant curvature tensor by K = R12 12 /1g1, where gJ is the
determinant of gij treated as a matrix.
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