
Isaac Newton and the astronomical refraction

Waldemar H. Lehn
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada

*lehn@ee.umanitoba.ca

Received 14 April 2008; revised 4 July 2008; accepted 4 July 2008;
posted 7 July 2008 (Doc. ID 94958); published 8 September 2008

In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the
theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory.
Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and
equations that Newton used. In contrast to previous work, a closed form solution is identified for the
refraction integral that reproduces the table for his first model (in which density decays linearly with
elevation). The parameters of his second model, which includes the exponential variation of pressure in
an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear
that in each case Newton had derived exactly the correct equations for the astronomical refraction;
furthermore, he was the first to do so. © 2008 Optical Society of America

OCIS codes: 000.2850, 010.1290, 350.1260.

1. Astronomical Refraction before Newton

In the Western world, awareness of astronomical re-
fraction extends back to the 4th Century BC [1].
However, the first person whose surviving work con-
tains a clear atmospheric model was Ptolemy, a
Greek astronomer who worked in Alexandria in
the 2nd Century AD. His careful observations indi-
cated that the apparent altitude of a star was slightly
higher than its true one. His experiments on refrac-
tion in water and glass led him to conclude that air
also refracted light and that the displacements of the
stars were caused by this refraction. Accordingly, he
visualized that the atmosphere consisted of a uni-
form spherical shell of air surrounding and con-
centric with the Earth (see Fig. 1). Outside of this
shell was the ether that carried the stars in their or-
bits. Because the ether was far less dense than air,
the refraction that would take place as a ray of light
crossed the air–ether interface would have the effect
of raising the apparent altitude of a star. Although
Ptolemy did not try to measure the refraction, his
model produced qualitatively correct results. This
model endured for 15 centuries.

Astronomical measurements precise enough for
the development of theories were first made by Tycho
Brahe in the 16th Century. As his naked-eye instru-
ments could achieve a resolution of 1 arc min, correc-
tion for astronomical refraction could no longer be
avoided. Using his own careful measurements, Tycho
became the first astronomer to construct a table of
refractions [2], which he published in 1596 [3]. He
did not, however, try to find a mathematical model
to fit his data. This was done by his successor,
Johannes Kepler, who developed amathematical the-
ory of refraction based on the Ptolemaic atmospheric
model. In spite of much effort, the law of refraction
that he deduced, while reasonably accurate, was
not the correct one. Nevertheless, the table that he
calculated holds up surprisingly well when compared
with modern tables, at least for zenith distances less
than 70°. Kepler was the first to calculate a table of
refractions; he published it in 1604 [4].

Probably the last application of the Ptolemaic mod-
el was made by Gian Domenico Cassini in 1662 [5].
He applied the recently discovered Snell’s law of re-
fraction to the air–ether interface and adjusted his
parameters to produce quite a good refraction table
[6]. Its predictions were correct to within a few arc-
seconds [7] for zenith distances up to 70°. By this
time the Ptolemaic model was just a convenient
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way of calculating; astronomers were already well
aware that the true path of a light ray through the
atmosphere was a curve.
In 1681, John Flamsteed, the Astronomer Royal of

England, made exhaustive measurements of the as-
tronomical refraction, to an unprecedented precision
of 1 arc sec. He recognized the need for a theoretical
model, but, being an experimentalist, he was not cap-
able of developing one. Finally, in 1694, he wrote to
Isaac Newton to request of him the creation of a
mathematical model that would permit calculation
of refraction in a consistent, theoretical way that
would provide the mean corrections for all observa-
tions [8].

2. What Was Known about the Air in 1694?

In Newton’s day, instruments for the precise mea-
surement of atmospheric parameters were of rela-
tively recent invention.
Measurement of air pressure was motivated by the

study of the vacuum [9]. Experimentalists discovered
that if a long tube filled with water was inverted into
a pool of the same liquid, only a limited height (more
or less always the same) of water remained in the
tube. The space above the liquid was filled by the
mysterious vacuum. It was soon realized that the
weight of the air was supporting the column of liquid
and that this weight was not constant. In 1644 in
Florence, Torricelli invented the mercury barometer,
a column of mercury with a calibrated scale. Atmo-
spheric pressure could now be expressed as the
length of this column. This invention reduced the
size of the instrument to practical laboratory dimen-
sions, for the height of the water column would be
about 10m, while the mercury column would be only
76 cm.
With this new instrument, experiments were soon

undertaken to determine the nature of the atmo-
sphere. The first experiment to see whether pressure
varied with elevation was done in France in 1648. A
qualitative result was observed, but as the true ele-

vation difference was not known, a numerical result
could not be obtained. One concrete fact was, how-
ever, accepted: that far enough away from the Earth,
the pressure of the air would vanish. The question of
the distribution of pressure with elevation remained.
Robert Hooke was the first to solve this problem. He
applied the law published by Robert Boyle in 1662,
which stated an inverse proportion between the vo-
lume and the pressure of a gas. His discrete model
considered a vertical column of air to be divided into
1000 parts, each having the same weight. Although
Hooke was aware that gravity changed with eleva-
tion, he did not incorporate this into his model.
Nor did he include any variations in temperature, be-
cause the laws relating temperature to pressure and
volume had not yet been discovered. For this isother-
mal model, he obtained a correct result, which he
published in 1665 [10]. In passing, he mentioned that
one could allow the number of layers to become very
large. Had he actually done this, and passed to the
limit of an infinite number of layers, he would have
obtained the exponential pressure variation that cor-
rectly represents the isothermal atmosphere. But
calculus had not yet been discovered.

The other important parameter was temperature.
This quantity was measured by the spirit-in-glass
thermometer, also known as the Florentine thermo-
meter [11]. It was invented in Florence about 1650
and reached England in 1661. Great effort was spent
on giving the inner diameter of the tube a constant
value, in order that the column length of the working
fluid be proportional to its volume. The device was
calibrated in linear fashion, usually by means of
two reproducible fixed points. However, in 1665 Ro-
bert Hooke proposed the use of the ice point and a
reproducible degree size [12], a system that the Royal
Society of London adopted for some decades. In 1680
the ice point and boiling point of water were pro-
posed, but not put into universal practice until later.
The quantities that this instrument measured were
called “degrees of heat,” assumed to be linearly re-
lated to the length of the fluid column. A further phy-
sical interpretation was not attempted.

With atmospheric temperature variation, however,
no progress was made. No one had any idea of the
lapse rate of temperature with elevation. Even had
they known it, they did not possess the physical laws
that would enable them to incorporate the idea.
Nevertheless, Newton and others did know that heat
reduced the density of air.

3. Newton’s Conception of Optics in 1694

Snell’s law of refraction was universally known,
although the term “index of refraction” was not yet
in use. Instead, scientists always referred to the “ra-
tio of the sines” of incidence and refraction. This ratio
was known to be a constant, independent of angle,
when light moved from one medium to another [13].

Newton thought of light as a stream of small par-
ticles. In passing from one medium to another of dif-
ferent density, the particles would be attracted to the

Fig. 1. Ptolemy’s model of astronomical refraction. Light from a
star S suffers a single refraction at A before it reaches the observer
at O. The star is perceived at the higher position S0, which lies
along the straight backprojection of AO.
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denser one by a refractive force normal to the inter-
face. This force acted only in the immediate vicinity
of the interface; its effective range was zero. Newton
considered that the refractive force would instanta-
neously modify the square of a light particle’s velo-
city by a fixed amount. In modern terms, the force
would do a fixed amount of work, and modify the ki-
netic energy of any light particle by the same amount
[14]. If the motion were into the denser medium, the
change would be an increase. The component of ve-
locity parallel to the interface would not be affected;
the increase would appear only in the perpendicular
component. In his Principia (1687), Newton proved
that Snell’s law followed from this entirely mechan-
ical model. Further, he showed that the velocity of
the light particles in the denser medium was higher,
according to the ratio of sines [15].
Newton also tried to show, from experimental evi-

dence, that the work done by the refractive force was
proportional to the density. Although he had already
studied this before 1694, he did not publish the con-
jecture until 1704 [16]. In any case, his model pro-
duced correct results for the atmosphere.

4. Newton’s Approach to Astronomical Refraction

In 1836, just a year after Newton’s correspondence
with Flamsteed first appeared in print, Jean-Bap-
tiste Biot was the first to publish (in great detail)
his interpretation of Newton’s mathematical analy-
sis [17]. As will be done here, he endeavored to
put equations and methods to Newton’s words. In
Biot’s day, the effect of the refractive force would
be written as v2 ¼ c2þ refractive power, where v is
the speed of light within a medium, c is the speed
of light in free space, and refractive power (in rather
loose terminology) is proportional to the work done
by the refractive force. The equation would be nor-
malized with respect to c and rearranged to read
as v2 − 1 ¼ refractive power. Since v differs from 1
by only a very small amount, the left-hand side is
well represented by 2ðv − 1Þ, and thus v − 1 is propor-
tional to the refractive power. In modern terms, we
must consider Newton’s v as proportional to our re-
fractive index n, which leads one to conclude that the
refractive power, as used by Biot and Newton, is pro-
portional to what we today call the refractivity, n − 1.
Following his predecessors, Newton assumed that

the atmosphere possessed spherical symmetry, con-
centric with the Earth. All points of equal density
would have the same elevation. Thus the atmosphere
could be imagined as a sequence of thin spherical
shells, each having a fixed density. Refractive power
was assumed to be proportional to density, a result
that Hauksbee later demonstrated in 1708 [18].
Thus, v2 − 1 would be proportional to density.
Because the refractive force was normal to the

spherical shells, it would always point toward the
center of the Earth. Hence it would be a central force,
under whose influence the light particles would fol-
low orbits that could be calculated from his theory of
planetary motion. In particular, motion under any

central force would conserve the angular momentum
of the light particles. In the notation of Fig. 2, he
would write vr sin θ ¼ K, a constant. He named this
quantity Kepler’s constant, because it arose from Ke-
pler’s law of areas. Since in Newton’s theory, v ¼ nc,
where n is our modern index of refraction and c is the
speed of light in space, we could rewrite his equation
as nr sin θ ¼ constant. This is the well known ray in-
variant for light paths under spherical symmetry.
The ray invariant thus follows directly from Newto-
nian mechanics.

5. Newton’s First Model for Astronomical Refraction

On 17 November 1694 Newton sent Flamsteed a let-
ter containing a new refraction table [19]. It was pre-
sented in three columns giving the expected
refraction for Summer, Spring–Fall, and Winter.
Newton had apparently used only two of Flamsteed’s
observations, all he needed to set the parameters of
his model: these were the “horizontal refraction” (as
the refraction for zero altitude was conventionally
called) and that for the altitude of 3°. In this letter,
Newton said absolutely nothing about his method of
calculation.

After some prodding by Flamsteed, Newton finally
sent a sketch (see Fig. 3) and a description of his
mathematical model, dated 20 December 1694 [20]:

“Let AKL represent the globe of the earth, & sup-
pose this globe is covered wth an Atmosphere of Air
whose density decreases uniformly from ye earth up-
wards to the top wch is here represented by the circle
MON. And let SO be a ray of light falling on ye top of
this Atmosphere at O & in its passage from thence
through ye Atmosphere to the spectator at A, conti-
nually refracted & bent in ye curve line OBA. From
any point of this curve line B to ye center of the earth
draw the right line BC cutting the surface of the
earth in D & take CF a mean proportional between
CB & CD& let AFG be ye Locus of the point F, that is

Fig. 2. Conservation of angular momentum. At any point A on
the ray, r is the distance to the Earth’s center, θ is the angle be-
tween the ray and the local vertical, and v is the velocity of the
light particle. Its angular momentum relative to the center of force
is vr sin θ.
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the curve line in wch ye point F will be allways found:
& if this curve line AFG cut the right line OC in G;
the whole refraction of ye ray in passing from O to A
will be proportional to the area AFGC & the refrac-
tions in passing through any part of that line OB or
BA will be proportional to the corresponding part of
the area GFCG or FACF. This Theorem is Geometri-
cally demonstrable but the demonstration is too in-
tricate to be set down in a Letter.”

Flamsteed naturally wanted to know how one cal-
culated the relevant areas. In his letter of 15 January
1694–1695 [21], Newton told him how: “The areas in
that Theoreme I sent you are to be determined by the
5t Lemma of my Third Book of Principia Math. But
ye calculation is intricate.”
The lemma to which he referred explained how one

could find the areas under curves by approximating
them with parabolic arcs, the areas under which
were well understood. This would indeed be very ac-
curate for the smooth curves in question, although it
would require an enormous effort. This point will be
elaborated later.
In Newton’s sketch, Fig. 3, shading has been added

to highlight the area to which the refraction is sup-
posed to be proportional. The distance CF to the
curve is the geometric mean (“mean proportional”)
between the Earth’s radius CD (RE) and the distance
to the ray CB (r). To facilitate the understanding of
this model, one can express it in terms of modern cal-
culus. Let f be the refraction, φ the polar angle at C,
and l the distance CF. Then the refraction is to be
proportional to the shaded area, or, in terms of infi-
nitesimals, df ∝ l2dφ=2. Since l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RErðφÞ
p

, one
has df ∝

1
2RErðφÞdφ.

To carry out this integration, the ray path equation
rðφÞ is required. This is directly available from the
ray invariant vr sin θ ¼ K , where one keeps in mind
that Newton’s light speed v is proportional to the
modern refractive index n. From Fig. 4, one can
see that dr=rdφ ¼ cot θ. The ray invariant permits
the elimination of θ through

cot θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2θ

p

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2=v2r2

p
K=vr

;

then the differential equation of the path is obtained:

dφ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2

K2 − 1
q dr

r
: ð1Þ

Substitution of this into df gives the following equa-
tion as the equivalent of Newton’s model:

df ∝

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2

K2 − 1
q dr: ð2Þ

The modern form of the differential equation of re-
fraction is [22]

df ¼ −
1
n
dn
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2r2

K2 − 1
q dr; ð3Þ

whereK is the constant of the ray invariant (Kepler’s
constant). Since n − 1 is proportional to density, New-
ton’s assumption of a constant density gradient
makes dn=dr constant. Then if the numerator term
1=n is replaced by unity (introducing an error of less
than 3 parts in 10000) one obtains

df ∝

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2r2

K2 − 1
q dr; ð4Þ

exactly Newton’s result. Clearly Newton fully under-
stood the mathematics of astronomical refraction;
and he was the first to do so [23].

To determine his constants of proportionality,
Newton had two parameters to adjust: the depth of
the atmosphere,h, and the refractive index at the sur-
face, n0 (here he would have used v0, the velocity of
light at the surface). For this he needed two data
points. He selected the refraction for the apparent

Fig. 3. Newton’s diagram showing how to find the refraction; ta-
ken from [8], p. 61 (shading added).

Fig. 4. Ray path geometry.
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altitudes of 0° and 3°. Flamsteed’s extract of 11 Octo-
ber 1694 [24] gave readings of 3303000 and 1400000, re-
spectively. For some reason, Newton did not use
exactly these values; his table implies that he settled
on 3302000 and 1304000 to build the equinoctial table.
Here it was attempted to reproduce this table by

using modern methods, starting with Eq. (3). Let A ¼
nr=K and r ¼ RE þ z, where z is elevation above the
Earth’s surface. The linear density profile is
ρ ¼ ρ0ð1 − z=hÞ, where ρ0 is the density at the surface.
The refractive index n is related to density n ¼ 1þ ερ,
where ε has the numerical value of 226 × 10−6 in SI
units. Now, as was done to derive Newton’s result,
the numerator term 1=n is replaced by 1. Then A
may be written as

A ¼
ð1þ ερÞ

�
1þ z

RE

�

n0 sin θ1
; ð5Þ

where the ray invariant has been expressed in terms
of surface parameters n0, RE, and the zenith angle of
the ray at the observer, θ1: K ¼ n0RE sin θ1. Because
both ερ and z=RE are much less than 1, the expansion
of the numerator suffers little loss of accuracy when
the product of these terms is neglected. Next replace
ρ with its linear form, to obtain A as a linear function
of z:

A ¼ 1þ Bz=n0

sin θ1
; ð6Þ

where

B ¼
�

1
RE

−

ερ0
h

�
:

The numerator of the refraction integral becomes a
constant:

dn
dz

¼ −

ερ0
h

;

and Eq. (3) becomes

f ¼ ερ0
h

Z
h

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

− 1
p ; ð7Þ

which can be evaluated in closed form. The result is a
logarithmic function:

f ¼ ερ0
Bh

sin θ1 ln
�
1þ Bhþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ BhÞ2 − sin2θ1

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2θ1

p
�
:

ð8Þ

Note that only one first-order approximation for A
was necessary to get to this point.
An additional first-order approximation leads to a

simpler form. In the linear term of A, the coefficient

of z is very small, so that a good approximation to A2

is the linear function

A2 ¼ 1þ 2Bz=n0

sin2θ1
:

The integral is now very easy, and the result is

f ¼ ερ0 sin θ1
Bh=n0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ1 þ 2Bh=n0

q
− cos θ1Þ: ð9Þ

Calculations made with this form agree exactly (to
the arcsecond) with those made with the logarithmic
form. Therefore this form will be used in the follow-
ing work. It is worth noting that, for the atmosphere
of linear density variation, the troublesome singular-
ity that usually arises at θ1 ¼ 90° simply does
not exist.

The refraction equation contains two parameters
that must be set from experimental data. They are
(keeping in mind that n0 ¼ 1þ ερ0) the quantities
ερ0 and h. The first is the refractivity of air at the
surface, and the second is the height of the finite at-
mosphere. Two observations suffice to determine
them, as Newton informed Flamsteed [25].

Let the two reference observations be ðθ1; f 1Þ and
ðθ2; f 2Þ. When substituted into Eq. (9), they yield two
conditions that must be solved simultaneously. If the
two n0 terms are taken equal to one exactly (the re-
lative error in so doing being negligible, as previously
stated), then one can explicitly solve for the unknown
parameters. The solutions are

ερ0 ¼ f 1f 2ðf 2 sin θ1 cos θ1 − f 1 sin θ2 cos θ2Þ
f 22 sin

2θ1 − f 21 sin2θ2
; ð10Þ

h
RE

¼ Bhþ ερ0; ð11Þ

where

Bh ¼ 2ðερ0Þ2 sin2θ1 − 2f 1ερ0 sin θ1 cos θ1
f 21

: ð12Þ

Newton’s table contained 3 columns of refractions:
for summer, equinox, and winter. Consider the equi-
noctial table, and use the two reference observations
that Newton says he used, namely, a refraction of
3302000 at 90° zenith angle and one of 1304000 at 87°
zenith angle. Then one obtains ερ0 ¼ 250:6 × 10−6

and h ¼ 10105m. Now a table of refractions can be
calculated, an extract of which is given in Table 1.
The agreement at altitudes 0° and 3° is forced, but
the remaining refractions deviate significantly from
Newton’s values. It seems clear that he could not
have obtained his table in this way.

A remarkable thing happens if the first data point
(the horizontal refraction) is excluded. If the adjusta-
ble parameters are recalculated by using, for
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example, altitudes 1° and 3°, one gets ερ0 ¼ 256:63 ×
10−6 and h ¼ 11600m. Then a calculation of the re-
fraction at integer values of apparent altitude from
1° on (seeTable 2) produces analmost exact fit toNew-
ton’s table [26]. A slight optimization of the para-
meters, to ερ0 ¼ 256:75 × 10−6 and h ¼ 11620m,
reduces the errors at the half-angles to two instances
of 1 arc sec each. Such agreement, unlikely to happen
by chance, suggests that he did not use the horizontal
refraction as one of his reference points. Searching
through Flamsteed’s data, I have not been able to
identify exactly which two reference points he did
use, but these results strongly imply that Newton’s
mathematical model was very like the one described
by Eq. (9) above.

6. Newton’s First Refraction Table

A few remarks on Newton’s first refraction table
would be in order. The refractions of summer and
winter are in the ratio of 8 : 9, and the equinoctial
refraction is their exact arithmetic mean. Now, to
anyone doing these calculations by hand, it would
be reasonable to calculate only one column and then

find the other two by proportions. Biot proposed that
Newton did this, calculating the winter table first
[27], then finding the others by proportion. But the
better numerical agreement obtained by starting
with the equinoctial table suggests that Newton
may have calculated it first, after which he could
multiply by 16=17 and 18=17, respectively, to get
the summer and winter values.

Further, Biot, still adhering to the particle model of
light, suggested that Newton used orbital mechanics
to determine the path of a ray through the atmo-
sphere. Biot considered the effect of the central refrac-
tive force, which would be constant in the case of the
uniform density gradient. Because orbits for such a
force were extremely difficult to calculate, he sug-
gested that Newton would have replaced it by an in-
verse square law force, for which the orbits were
known. He argued that this was valid because an in-
verse square law would vary only slightly over the
shallow depth of the atmosphere, and thus would
be a good approximation to the constant central force.

In spite of his conviction that Newton knew the
differential equation for refraction, Biot accepted
Newton’s instructions on how to do the calculations.
The business of repeated parabolic fits would be an
enormous amount of work. Given the agreement of
Newton’s table with the mathematical model pro-
posed here, it seems reasonable to believe that
Newton himself had worked out a closed form solu-
tion for the refraction. His message on how to do the
calculation was for Flamsteed’s benefit alone; some-
one like Flamsteed, who knew no calculus, could do it
in no other way.

Biot was unable to get a good agreement between
his model and Newton’s table. This is understand-
able because he accepted Newton’s statement about
using the horizontal refraction as a reference point.
The foregoing analysis strongly suggests that
Newton invented the first value in his table, in order
that it would agree more closely with observations.
After all, no one was capable of proving him wrong.

Suppose one assumes that Newton artificially se-
lected the refraction for 0°, and that he calculated all
of the remaining integer altitudes using a formula
like Eq. (9). Rather than calculating the half-angle
values directly, he could have used interpolation
[28]. Newton’s tables are indeed consistent with a hy-
perbolic interpolation. For example, such an interpo-
lation based on the data for altitudes 1°, 2°, and 3°
reduces the 100 difference at 1°300 to zero. A problem
remains for altitude 0°300, however. The closest fit to
this point is provided by a parabolic interpolation
based on 0°, 1°, 2°, which leaves a difference of only
200; but in general parabolic interpolations work
poorly on Newton’s data. There is no particular rea-
son to suppose that Newton used the parabolic form
here, while using hyperbolic forms elsewhere. More
likely he invented the refraction at 0°3000 as well.

On the other hand, interpolation saves little time if
a closed form solution is available. It would be quite
reasonable to assume that Newton calculated all of

Table 1. Refractions Calculated on the Basis of Altitudes 0° and 3°

Apparent
Elevation

Calculated
Refraction

Newton’s
Table Difference

0° 3302000 3302000 000

1° 2305500 2301200 4300

2° 1704200 1702900 1300

3° 1304000 1304000 000

4° 1005900 1100400 −500

5° 900600 901300 −700

Table 2. Portion of Newton’s Tabula Refractionuma

Altitudo
apparens

Refractio
aestiva

Refractio
verna et

autumnalis
Refractio
hyberna

Calculated
Values for
Spring–Fall Difference

° 0 0 00 0 00 0 00 0 00 00
0.00 31.30 33.20 35.10 31.32 −108
0.30 26.06 27.45 29.24 27.00 −45
1.00 21.50 23.12 24.34 23.12 0
1.30 18.51 20. 2 21.13 20. 3 1
2.00 16.27 17.29 18.31 17.29 0
2.30 14.31 15.23 16.15 15.23 0
3.00 12.52 13.40 14.28 13.40 0
3.30 11.32 12.15 12.58 12.15 0
4.00 10.25 11. 4 11.43 11. 4 0
4.30 9.29 10. 5 10.41 10. 4 −1
5.00 8.40 9.13 9.46 9.13 0
6.00 7.24 7.52 8.20 7.52 0
7.00 6.27 6.51 7.15 6.51 0
8.00 5.42 6. 3 6.24 6. 3 0
9.00 5. 5 5.24 5.43 5.24 0

10.00 4.36 4.53 5.10 4.53 0
11.00 4.11 4.27 4.43 4.27 0
12.00 3.51 4. 5 4.19 4. 5 0
13.00 3.33 3.46 3.39 3.46 0
14.00 3.18 3.30 3.42 3.30 0
15.00 3. 4 3.16 3.28 3.15 −1

a From [8], p. 49. The calculated values are found from Eq. (7).
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his tabulated values (except the first two) by using
his closed form. The 100 discrepancies at 1°300 and
4°300, possibly due to his round-off procedure, are
too small to be significant. An alternate possibility
is transcription error. According to Scott [29], the
handwritten original of the table is in poor condition
and hard to read. It is thus easy to imagine minor
errors creeping in when the original was converted
to print [30]. Clearly such a point could be resolved
by examining the original table.
Although Newton did not publish his solution for

the linear variation of density, the model appeared
to take on a life of its own. Thus in 1743, Thomas
Simpson produced an analysis of the same problem,
unaware that Newton had already solved it and dis-
carded the result [31]. Simpson expressed the refrac-
tion in a simple, elegant formula, whose two
parameters were set to match the measured refrac-
tion for altitudes 0° and 30°. A few decades later, To-
bias Mayer worked on the same problem, and in 1770
published a refraction formula that could be shown to
follow from Simpson’s. Finally, James Bradley recast
the formula into a slightly different form, made small
adjustments to the parameters, and in 1798 pub-
lished a refraction table that came into wide and pro-
longed use. Both Mayer and Bradley included
correction tables for the effects of local temperature
and pressure. In spite of the fact that none of these
efforts was based on a correct atmospheric model, the
linear density model became the first practical repla-
cement for Cassini’s tables. An excellent synopsis of
the 18th Century research is given by Bruhns [23].

7. Newton’s Second Model for Astronomical
Refraction

On reflection Newton recognized the flaw in his first
model: that its constant density gradient would pro-
duce the same refraction at the top of the atmosphere
as at the bottom. Further, he was still worried about
not being able to match the 0° and 3° values (entirely
understandable if one accepts that the 0° value was
not actually calculated) [32]. So he started over again.
This time he used a more realistic density profile.

He assumed that density was proportional to pres-
sure, a relation well known to his contemporaries Ro-
bert Boyle and Robert Hooke. Then he could apply
his analysis of the spherically symmetric static atmo-
sphere in an inverse square law gravitational field,
which he had previously published in his Principia
[33]: “… if the distances [from the centre] be taken
in harmonic progression, the densities of the fluid
at those distances will be in a geometrical progres-
sion.” (Interestingly, though Newton was familiar
with Robert Hooke’s earlier and much simpler proof,
he neither used nor acknowledged it [10]).
Newton’s proposition is exactly what emerges if

one models the isothermal atmosphere in an inverse
square law gravitational field. The relation between
pressure and density is given by dp=dr ¼ −gρ, where
gðrÞ is the acceleration of gravity. This integrates to
the law of pressure variation,

p ¼ p0 expð−RE=HÞ expðR2
E=rHÞ; ð13Þ

where p0 is the pressure at the surface and H is the
scale height of the atmosphere. If r is replaced by
RE þ z, and z is considered to be much less than
RE, i.e., gravity is taken to be constant, this reduces
to the familiar exponential variation of pressure and
density with elevation [34]:

p ¼ p0 expð−z=HÞ: ð14Þ

The exponential model entered the public domain
two decades after Newton completed his work. Brook
Taylor was actually the first to publish it [35], and for
some time he carried the credit for priority in its dis-
covery. But because of the work begun by Simpson,
nearly a century passed before the exponential model
reemerged. Kramp’s work on the subject (1799) was
considered excellent [36], but it was soon superceded
by Laplace’s elegant analysis in his widely read Mé-
canique Céleste of 1805 [37]. In 1825, Thomas Young
summarized the history of the exponential model
[38], but because this predated the publication of
Newton’s correspondence, Young was unable to say
much about Newton’s contribution. As previously
mentioned, Biot finally had access to Newton’s let-
ters in 1836. He closely followed the methods of La-
place, who had available to him all of the gas laws as
well as a good estimate of the temperature lapse rate.
Among modern authors, Whiteside provided an in-
terpretation of how Newton solved both of his refrac-
tion models [39], and Whiteside discussed in detail
the relevant correspondence between Newton and
Flamsteed [40].

The modern form shows what kind of integral
Newton now had to evaluate. Recall Eq. (3), here
written in integral form in terms of z:

f ¼
Z

∞

0
−

1
n
dn
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

− 1
p dz; ð15Þ

where A ¼ ½nðRE þ zÞ�=K.
As before, Newton correctly took the refractive

power (n − 1) as proportional to density, and density
as proportional to pressure. For the constant-gravity
approximation, the equation is n − 1 ∝ p0 expð−z=HÞ.
Then the terms in the integrand become

dn
dz

¼ −

ερ0
H

exp
�
−

z
H

�
; ð16Þ

A ¼

�
1þ ερ0 expð−z=HÞ

�
ð1þ z=REÞ

n0 sin θ1
: ð17Þ

Again, two parameters must be set to match the ob-
servational data. They are ερ0 (as before) andH (this
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time the scale height rather than the absolute height
of the atmosphere). However, the refraction integral
(15) is now impossible to evaluate in closed form.
From a few statements in Newton’s correspon-

dence, Biot concluded that he fitted segments of
the integrand by parabolic arcs, the area under
which was known. While extremely tedious, this
should be quite accurate because the integrand is
smooth and slowly varying. The one exception is a
problem that arises at zero altitude. In this case
the integrand becomes singular at the lower limit
of z ¼ 0. However the integral remains finite, and
the calculation can be handled (see the Appendix).
In his analysis, Biot assumed that Newton’s two

reference points were 0° and 45°. Although Newton’s
correspondence provides no evidence that he actually
used these points, one could follow this line of
thought for a moment. For the higher altitudes,
say 45° and up, the refraction can be well estimated
by an approximation expressed in terms of zenith an-
gle θ1 (see the Appendix):

f ≈ ερ0 tan θ1: ð18Þ

This equation is independent of the scale height H,
and thus permits solution for ερ0 based on a single
measurement [41].
If Newton had done this, he would be left with a

single parameter (H) to set. Given that H appears
mostly within exponential functions, this process
would be extremely laborious. Speculation on how
he might have done it will not be attempted.
Biot identified ερ0 ¼ 262:5068 × 10−6 and H ¼

8597:78mas his best fit to Newton’s table. He carried
out the numerical integration to the elevation at
which the density in Newton’s model would be 1%
of the surface value (39; 594m). Unfortunately, his
calculations did not agree well with Newton’s table.
Biot did not consider that his result might be sen-

sitive to his chosen upper limit of integration and
made no attempt to deduce the height at which
Newton terminated his integration. However, when
this third parameter (the upper limit h) was allowed
to vary, an improved fit to Newton’s table became
possible. The optimum solution, which minimized
the sum of the absolute errors, was ερ0 ¼
267:7 × 10−6 and H ¼ 8725m, with a reduced inte-
gration height of 29; 200m.
Table 3 summarizes the results of the calculations.

The first two columns list every second entry in New-
ton’s table, up to an altitude of 10°. Column 3 is the
refraction that arises from the optimum three para-
meters, calculated by means of MATLAB numerical
integration. The difference between this calculation
and Newton’s tabulation is given in column 4, in
units of arcseconds. A calculation for Biot’s values,
based on the parameters that he identified as his
best solution, appears in column 5; Biot himself
did not give a tabulation. The differences in column
6 are the deviations between Biot’s and Newton’s
values.

The three parameter solution produces a distinct
improvement over that of Biot. At the altitudes of
0° and 3°, which Newton considered to be important
reference points, the agreement is exact. At the inte-
ger altitudes, the maximum discrepancy is 400; most
are 200 or less.

Integer angles are again emphasized here because
it seems unlikely that Newton would have calculated
any integrals for the fractional angles. When a hand
calculation of such complexity is discussed, it is es-
sential to consider the possibility of interpolation
[42]. Typically one would calculate only a few points,
say at integer altitudes, and interpolate the inter-
mediate points. To investigate this hypothesis, one
should first see whether Newton’s table is consistent
with it. Three anchor points are necessary to fit a hy-
perbola of form y ¼ aþ ½b=ðx − cÞ� to the data. If these
points are chosen fairly close together, e.g., adjacent
integers at the low altitudes, then almost any combi-
nation of anchor points produces an interpolation
that matches Newton’s table very well, with discre-
pancies not exceeding 1 arc sec. For example, with in-
terpolations based on the set of altitudes [0, 1, 2], [2,
3, 4], [4, 5, 6], [6, 8, 10], and [10, 15, 20], he would
have to do only 11 integrations to get the first 35
points in his table. For this selection, 8 of the inter-
polated points deviate only 100 from his table, while
the remaining 16 agree exactly. When the fact that
Newton was doing numerical integration by hand
calculation is taken into account, a discrepancy of
100 must be considered to be entirely negligible. In
other words, Newton’s table is consistent with the in-
terpolation hypothesis.

This postulated interpolation is the reason that
the calculations presented here should be compared
with the table only at integer altitudes (and perhaps
not even all of those). In any case the agreement is so
good that it is hard to imagine that Newton could
have used an integral different from the one pro-
posed in Eqs. (15)–(17).

It might be of interest to calculate the refraction by
using numerical values available to Newton. In his

Table 3. Portion of Newton’s Second Refraction Tablea

Altitudo
apparens Refractio

Calculated
Values Diff.

Biot’s
values Diff.

° 0 0 00 0 00 00 0 00 00
0. 0 33.45 33.45 0 33.33 −12
0.30 27.35 27.35 0 27.25 −10
1. 0 23. 7 23. 5 −2 22.57 −10
1.30 19.46 19.41 −5 19.36 −10
2. 0 17. 8 17. 4 −4 17. 0 −8
3. 0 13.20 13.20 0 13.18 −2
4. 0 10.48 10.50 2 10.50 2
5. 0 9. 2 9. 5 3 9. 5 3
6. 0 7.45 7.47 2 7.48 3
7. 0 6.47 6.47 0 6.48 1
8. 0 6. 0 6. 1 1 6. 2 2
9. 0 5.22 5.23 1 5.24 2

10. 0 4.52 4.52 0 4.53 1
a From [8], p. 95.
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Opticks, Newton listed the refractive index of air as
3201/3200, and its specific gravity as 0.0012, without
giving the temperature or pressure [43]. The stan-
dard pressure at the time was commonly taken as
30 in: of mercury. Temperature will be ignored, as
not being relevant to Newton’s model. From these

one can find the scale height H ¼ 8630m and the re-
fractivity ερ0 ¼ 312:5 × 10−6. These values are very
different from the ones given above that match New-
ton’s table, and, as expected, the refractions calcu-
lated with them do not agree at all with the table.
The discrepancies are of the order of hundreds of arc-
seconds. Newton clearly did not use these values,
even though they were available to him. As postu-
lated previously, he must have set his parameters
simply to match the measured refraction data.
Newton was never fully satisfied with his results

and never published them. He knew that the tem-
perature distribution in the air was an important fac-
tor [44]. He could not derive it himself from
mechanical principles, as he had done for pressure,
nor did he have access to any scientific observations
about it. It may be for these reasons that his Opticks
(in 1704) contained only a very limited discussion of
astronomical refraction, for the flat-Earth case.
Nevertheless, the second table was published by Ed-
mund Halley in 1721 [45].

8. Conclusions

When one considers that a 17th Century hand-
calculated numerical integration is being compared
with that of a modern MATLAB program, the agree-
ment is actually quite remarkable. It suggests that
the integrals Newton solved to build his tables were
rather similar to the ones presented here. The con-
clusion appears inescapable that Isaac Newton fully
understood the refraction of the isothermal atmo-
sphere and that he was the first to produce a correct
mathematical model for the phenomenon.

Appendix

The refraction integral has a singularity at its lower
limit when θ1 ¼ 90°. Consider Newton’s isothermal,
spherically symmetric atmosphere in a constant grav-
itational field, as described byEqs. (15)–(17). Combin-
ing these gives the full expression of the integral:

f ¼
Z

∞

0

ερ0ð1þ ερ0Þ sin θ1 expð−z=HÞdz
nH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ερ0 expð−z=HÞ�2½1þ z=RE�2 − ½1þ ερ0�2sin2θ1

p : ðA1Þ

For the horizontal ray, when θ1 ¼ 90°, the denomina-
tor becomes zero when z → 0. However, in this limit
the contents of the square root canbe replacedby their
first-order expansions; for example, replace
expð−z=HÞ with (1 − z=H), etc. The root will then con-
tain a linear function of z, which enables the integral
to be carried out down to the lower limit. The total hor-
izontal refraction can thenbe foundby integrating the
approximate expression between limits ð0; δÞ and
adding to that the full integral (A1) evaluated be-
tween limits ðδ;∞Þ. The parameter δ must be rela-
tively small; however, good results are obtained
even if it is as high as 500m.

At the other end of the scale, namely, small
zenith angles, the refraction integral can be greatly
simplified, with little loss of accuracy. In the
refraction integral, Eq. (A1), because ερ0 and z=RE
are much smaller than 1, the elements in the de-
nominator may be replaced by their first-order ex-
pansions to yield

f ¼
Z

∞

0

ερ0ð1þ ερ0Þ sin θ1 expð−z=HÞdz
nH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ1 þ 2ερ0 expð−z=HÞ þ 2z=RE − 2ερ0 sin2θ1

p : ðA2Þ

With Newton, again take n ¼ 1, and cancel it with
the surface refractive index 1þ ερ0. Now divide out
the cos2 term to get

f ¼
Z

∞

0

ερ0 tan θ1 expð−z=HÞdz
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ερ0 expð−z=HÞ

cos2θ1
þ 2z

RE cos2θ1
− 2ερ0 tan2θ1

q :

ðA3Þ
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Expand the root in first order terms and move it to
the numerator:

f ¼
Z

∞

0

ερ0
H

tan θ1 expð−z=HÞ
�
1 −

ερ0 expð−z=HÞ
cos2θ1

−

z

REcos2θ1
þ ερ0tan2θ1

�
dz: ðA4Þ

This integrates to

f ¼ ερ0 tan θ1
�
1þ ερ0

�
tan2θ1 −

1

2 cos2θ1

�

−

H

RE cos2θ1

�
: ðA5Þ

To obtain Newton’s resolution of 1arc sec, the term in
the brackets can safely be considered to be unity. For
example, when θ1 ¼ 45°, the factor is 0.9973. For this
case Newton’s table contains a refraction of 5400, and
ignoring a factor of 0.9973 introduces a deviation far
less than 100.
Biot extracted the following values from Newton’s

data: ερ0 ¼ 0:0002625068 and H=RE ¼ 0:001350536.
He used them to construct a slightly different formu-
la for small zenith angles:

f ¼ 54:065200 tan θ1 − 0:06598800 tan3θ1: ðA6Þ
At θ1 ¼ 45°, Eqs (A5) and (A6) produce exactly the
same result of 54:0000. But given that Biot’s tan3 θ1
correction term is completely negligible in the light
of 100 precision, a very simple form is left,

f ¼ ερ0 tan θ1; ðA7Þ
which with Biot’s value for ερ0 reproduces Newton’s
table for all zenith angles less than 45°.
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