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Time-Domain Electromagnetic Plane Waves
in Static and Dynamic Conducting Media: I

Joe LoVetri, Member, IEEE, and Joachim B. Ehrman

Abstract—Solutions are derived for the time-domain Maxwell
equations for static (J = ¢ E) and dynamic (70J /8t +J = o E)
conducting media where the field is assumed to vary with respect
to only one spatial direction, i.e., plane-wave propagation. The
plane wave is introduced into the media via the imposition of
an electric field boundary condition at the plane boundary of
a half-space and it is assumed that the fields inside the half-
space are initially zero. Solutions are derived directly from the
first-order system of partial differential equations and it is shown
that once the electric field at the plane boundary is imposed, the
magnetic field is automatically determined for causal solutions.
It is shown that the form of the Maxwell equations, without a
magnetic conductivity term added, is sufficient to allow well and
uniquely defined solutions of this problem.

I. INTRODUCTION

HE PROBLEM of finding time-domain solutions to elec-

tromagnetic fields in a dissipative medium is not a new
one. The reason this problem has not received as much
attention, in the time domain, as compared to monochromatic
excitations is probably due to the complicated analytic ex-
pressions which arise. If one searches the literature, under the
disciplines where time-domain results are important, one finds
that the subject has a substantive set of published work [1]-[9].
Work has continued in this area and, recently, a general
formulation in terms of the singularity-expansion method
(SEM), of the more complicated problem of scattering by
perfectly conducting objects in lossy media has been given by
Baum [10]. There seems to be a renewed interest in the more
fundamental transient plane-wave problem, for generalized
conducting media [11]-[13].

The reason for this renewed interest is due to a controversy
over whether or not a solution to the electromagnetic fields
in a homogeneous conducting medium, for the transient plane
wave, can be obtained without the inclusion of a magnetic
conductivity term in the Maxwell equations [11]-[13]. Re-
cently, a challenge with regards to this problem, has been
made to the electromagnetics community [14]. It is suggested
in [14], that the subtle difficulties in finding a solution,
although disputed, are somehow amplified when one deals
with a dynamic conducting model, 78J/8t + J = ooE, of
the medium. In this paper, we hope to address most of the
concerns raised by Harmuth and others. Since most of the
concerns are subtle and mathematical in nature we will try to
maintain mathematical rigor and thus may be repeating some
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of the results given in the older literature. We will attempt to
reference similar results in previous literature.

It has been asserted by Harmuth that the Maxwell equations
require modification in order to obtain the electric and mag-
netic fields of a nonmonochromatic wave in a lossy medium
[11]. To support this view, he has advanced two entirely
separate arguments. The first is that constitutive relations
which use tensor, or more simply, scalar frequency-dependent
€ and p ([13, “Reply by Harmuth,” eq. (6), p. 190]) are not
derivable from the Maxwell equations, that they constitute a
nontrivial modification of the Maxwell equations, and that
they are insufficiently general. But constitutive relations are
supplementary to the Maxwell equations and do not represent
a modification of the Maxwell equations at all. It has never
been claimed that the use of e(w) and p(w) is absolutely
general even for a uniform isotropic medium, since they
assume a linear and spatially local relationship between the
electric flux density D(z,t) and the electric field intensity
E(z,t), and between the magnetic flux density B(z,t) and
the magnetic field intensity H(z,t) (see Jackson, [15, p.
309]). However, scalars ¢, p, and o dependent on w only
are applicable to a wide variety of media and to fields
short of those magnitudes occurring in nonlinear optics. In
fact, for sea water, which Harmuth suggests as a medium
for testing the conflicting views on the need to modify the
Maxwell equations, it is quite satisfactory to take e, u,
and o as frequency-independent constants provided that the
only significant frequency components are < 10** [Hz].
If frequency components > 10 [Hz] are important, then
constant €, u, and o are unsatisfactory for sea water so that
calculations such as those of Boules [16], using constant &, s,
and o, become invalid. (By the way, above 10'° [Hz], why
not refer to sea water as simply water?)

The second, entirely different, argument of Harmuth claims
that unless the Faraday Law is modified by the introduction
of a magnetic current term, the Maxwell equations constitute
an ill-posed problem in the case of a jump discontinuity in the
initial/boundary conditions. In this view, Harmuth has recently
been joined by Hillion [17]-[19}, who points out that unless
compatibility conditions analogous to [17, eq. (6)] or [19, eq.
(9°)] are satisfied, the equations are not solvable. This assertion
of Hillion’s, while strictly correct, does not at all invalidate
the well-posedness of solutions of the Maxwell equations
without the magnetic conductivity term in the Faraday Law.
For example, if in the one-dimensional problem we take
E(x,0) =0and H(z,0) =0 for all z > 0 and E(0,t) = Ey
(where Ej is a nonzero constant) for all ¢ > 0, we really
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(physically) mean that E(0,t) is a function equal to 0, and
with its first two time derivatives equal to 0, at £ = 0, and that
E(0, ) rises from 0 to its value Fj in a time short compared to
times of interest, but not short compared to 10~19 {s], since in
considering ¢, u, and o to be constant for sea water, we (and
implicitly, also Harmuth and Boules) assume that frequency
components above 10'° [Hz] are not appreciable. But if one
then examines the functional dependence of E(x,t), H(z,t)
on E(0,t) (see (30) and (31) below), it is clear that the change
from a function E(0,t) with a continuous second derivative
att = 0 to a constant E, times a Heaviside unit step function
will not change E(z,t), H(z,t) appreciably. Of course, if for
mathematical convenience we use a step function for E(0, ),
this discontinuity will propagate along a characteristic into
the interior of the quadrant, z > 0, ¢ > 0 but off this
characteristic, both E(z,t) and H(z,t) are well and uniquely
defined. Contrary to Harmuth er al. [20, pp. 319-320], two
solutions which differ only on one smooth curve in the
quadrant z > 0, ¢ > 0 may be considered identical. Harmuth’s
assertion that E(z, t) can be uniquely obtained but not H(z, t)
when E(0,t) is given as a boundary condition is not valid and
both are explicitly given. With any time dependence, there
are no electric or magnetic excitations as Harmuth would
have it, only electromagnetic excitations, and the imposition
of a time-dependent electric field at the boundary of a half-
space problem as well as initial conditions inside the half-
space automatically determines the form of the time-dependent
magnetic field at the boundary (see (20) below).

Incidentally, it is not clear why [17, eq. (2)] of Hillion’s,
which follows from the use of a magnetic current density by
Harmuth, should be less subject to the need of a compatibility
condition at the origin to make the problem well-posed than
(17, eq. (3)], which is obtained when no magnetic current
density is introduced. Indeed, Hillion does not explicitly say,
in [17], that there is a difference, though he implies it.

In this paper, the one-dimensional unmodified Maxwell
equations are solved in the region z > 0, ¢ > 0 subject to
the initial conditions E(z,0) = 0, H(z,0) = 0 for z > 0, and
the boundary condition E(0,t) = Eo(t), an arbitrary function
of time, for ¢ > 0. It is assumed that ¢, p, and o are constants
which is satisfactory, e.g., for sea water at frequencies < 10'°
[Hz].

If Ohm’s law is changed from J = oFE to that of a
dynamic conductivity [14], [21], 78J/8t + J = oo E, then
if only frequency components very small compared to 1/7
are appreciable, the net effect is to replace € by ¢ — 7oy,
and no qualitative change is made in the analysis as long as
700/e < 1. (In fact, for sea water, 7a¢/e = 10~5. For copper,
to be sure, Tog/e = 10™* and the analysis for this case will
be dealt with in a later paper.)

II. FORMULATION OF THE TIME-DOMAIN
PLANE-WAVE PROBLEM

A. Homogeneous Static Conducting Medium:
Ohms Law (J = oFE)

Consider a homogeneous conducting half-space with per-
mittivity, permeability, and conductivity of the medium de-

noted as € [F/m], p [H/m], and o [S/m], respectively. The
electric and magnetic field intensities inside the half-space are
denoted as E, = E(z,t) and H, = H(z,t), respectively.
These fields are initially zero in the half-space (i.e., at time
t = 0) and are excited by the imposition of a time-varying
electric field which is constant over the plane z = 0 (i.e., the
boundary of the half-space). Thus from the Maxwell equations,
the fields can be shown [21], [22] to be related by the coupled
partial differential equations

82 1 3 =0 (1)
%—f+a%—’f+a’E=0 )

where it has been assumed that the current density in the region
is given by Ohm’s law, J = oF, and that this is the only
source of current density (i.e., no impressed currents). It should
be mentioned that in practice, fields are usually produced by
the imposition of sources in a region, i.e., either currents
or charges, and that the use of the electric field boundary
condition is only a mathematical convenience.

Upon differentiating (1) and (2) with respect to z and
assuming that the order of differentiation with respect to z
and ¢ can be exchanged gives second-order wave equations

B ) .
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which are similar to the telegraph equations of the
transmission-line problem. For this mixed initial boundary
value problem these may be solved for the electric field
E, say, and then the magnetic field H can be obtained by
using either (1) or (2).

For the case where the boundary conditions on either of the
field variables are discontinuous it is more convenient to solve
the system of equations (1) and (2) directly. This is to allay
doubts of the validity of the telegraph equation near the point
of discontinuity due to the exchange of differentiation with
respect to time and space. Note that the initial discontinuity
will not remain on the boundary but will travel along a
characteristic into the domain where a solution is being sought.

B. Homogeneous Conducting Medium: Dynamic
Conductivity (18J [0t + J = ooE)

It has been suggested by Becker [21, p. 238] and others
that the relationship between the current density in a medium
which contains charge carriers and the electric field may be
better represented by the equation

T%'tl +J =0oF )
where ¢ [S/m] is the static or dc conductivity of the medium
and 7 [s] is a time constant which can be expressed as 7 =
agom/(Ne?) where m is the mass of the charge carriers [kg],
N is the density of the charge carriers [number of carriers per
m®], and e = 1.6x 10™1° [C] is the value of one unit of charge.
Typical values of this time constant are 7. = 2.4 x 107 [s]
for copper and on the order of 7, = 4 x 107!% [s] for sea
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water. For this case, the Maxwell equations are written in the
more general form

Et+ul=0 ©)
9H 1 €28 — g ©)

where the scalar function J is meant to represent the compo-
nent of the current density vector having the same orientation
as the electric field; in this case, J(z,t) = Jy(z,t) and (5)
is written as

oJ
Tﬁ +J =o0gFE. ®)

III. SOLUTION OF THE SYSTEM VIA THE LAPLACE TRANSFORM

A. Initial Boundary Value Problem: Homogeneous
Static Conducting Medium

The solution of the boundary value problem is now obtained
through the use of the Laplace Transform technique. This
problem is formulated mathematically by adding the initial
conditions

E(z,0) =0, H(z,0) =0, z>0 (9
and the boundary conditions
E(0,t)= Eo(t),  H(0,t)=Ho(t), t>0 (10)

to the first-order equations (1) and (2) where Eo(t) and Hy(t)
are specified functions of time. It should be noted that these
boundary conditions cannot be specified independently of each
other and that once one boundary field is specified, say Ey(t),
the remaining boundary field, Hy(t), will be related to the
previous in such a way as to satisfy the coupled partial
differential equations with bounded field values throughout the
half-space. It is assumed that solutions to the field variables
will be required for the general case where Ey(t) and Hy(t)
may be discontinuous functions of time.

Denoting the Laplace Transform with respect to the time
variable of the field variables as e(z,s) = L{E(z,t)}, and

h(z,s) = L{H(z,t)}, (1) and (2) transform to
Le(z,8) + psh(z,8) =0 an
£ h(z,s) + ese(z, s) + oe(z,s) = 0 (12)

where the zero initial conditions have been used. The boundary
conditions (10) transform to

¢(0,) = eo(s) = ho(s).

Thus the problem has become one of solving the ordinary
differential equations (11) and (12) subject to the boundary
conditions (13). This is most easily achieved by performing
another Laplace transformation, this time with respect to the
space variable z. Denoting

é(p,s):/ e(z,s)e ™ dx

0

A(p,s) = f h(z, s)eP* do
0

h(0, ) 13)

14

this will transform (11) and (12) to algebralc equations which
in matrix notation are written as

p us][éms)] _ [eals)
es+o p ||h(z,s) ho(s) |’
The solution of this algebraic system is easily found as

o] = e e )]
(16)

as)

where

k%(s) = (es + o)us. a7

This solution, in the (p, s) transform space, incorporates both
the initial and the boundary conditions.
The inversion with respect to the p variable is easily
accomplished via the two transform pairs
_P
P? — a2
a

> cosh (az)

m > sinh (al’)

so that the solution in the (z, s) domain is found as

e(z, s) = eg(s) cosh (k(s)z) — ho(s) smh(k(s)a;) (18)

k(s )
= ho(s)cosh (k(s)z) — eo(s)( 9) sinh (k(s)z).

k(s)

(19)
In order that a physical solution is obtained the field variables
must become zero as = goes to infinity (for the case of no dissi-
pation, i.e., where o is zero, this condition would be changed to
that of boundedness). This physical condition manifests itself
mathematically in the statement that lim,_, ., e(z, s) = 0, and
lim, o0 h(z,s) = O for all values of s. If the hyperbolic
functions in (18) and (19) are expressed as exponentials, then
as = goes to infinity (18) and (19) are written as

k(s)x —k(s)x
lim e(z,s) = zll'lgo {eo(s) ($)

h(z, s)

2

(s )k’(‘:) (ek(s)z +2e-k(s)m)} e

] . ek(s)z + e—k(s)z:
s (2

es+ o ()T 4 k()=
=0
o 5 (5

and, choosing Re {k(s)} = Re {y/(es + ous)} > 0 fors > 0,
this implies that

k(s)x k(s)x
Jim (e}~ hlo i S} =0
. ek(e)z es+o ek(s)”:
zll.m {ho(s) — eo(8)—— W) 3 } =0
or that
ho(s) = 1/ 2 Zeo(s). 0)

ns
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This relation between the boundary values of the magnetic
and electric field variables restricts the solution to waves
propagating in the positive x direction and is a result of
the imposition of the zero initial conditions in the half-space
as well as the physical requirement that the fields remain
bounded as x goes to positive infinity (i.e., causal solutions).
Substituting this equation into (18) and (19) results in the
expressions

e(z,s) = eg(s)e *()* (21)
h(z,s) = 80(3)1 / i‘t:;-ze"’“(")I
()es+ ) @
= +
€o eEs+o (o) )

which must now be inverted with respect to the s variable
back to the time variable ¢.

This inversion can be performed by the use of the integral
(see [23, p. 179])

e~ as?+bstc _ 8—(b/(2ﬁ))zefﬁzs

d [~ _ e—bt/2a \/_
+z\/;fme ViZ - az? ( ‘- as?
where
d = (b/2)? — ac.

For the case considered herein

I
o

d= 3 (po)

os y o (2. [E
~=(5%)

X P —
./\/;Ez /1% — pex?
x I (%e\/tz - ;Le:c2> dt.

In order to simplify the above expression, the abbreviations

a = pe b=pus c

whence

e_z\/(m = e_(%\/g)ze_

o o [p
— =8 B =y

pe=a 2¢e 2V e

are introduced and the integral expression becomes

e—z\/(es+a)us = e~ VZg—aT3
o JI2 — o222
+x’7/ ert-m LOVE - @02%) 4y
az t2 — a2x2
=e e 4+ L{Vi(z,t)}
=e e + v (x, 3) (23)
where

0, 0<t<ax
Vi(z,t) = ns ﬂ S— 24)

xye
B4 Vi2—a2z?

, t>ax.

The other Laplace Transform pair which is required is [24, p.
253, no. 63]

e~ IV (s+e) 0,
Vis+ d)(s + e) e—"%tlo(d_;g /2= f2), t> f.

Thus expressing

0<t< f

e~av/Erm —zm\/s2+(s e/
(es+o)us  Jpe/s2+ VIE/s(s + £

and comparing with the transform pair with the abbreviations

f=z/pe =za d=0 e=%
the transform pair
ok()z 0, 0<t<arx
—_—
k(s) —l—e“%(%)tlo(i t2 — a?z?), t > az
VIE 2e
or in terms of the shorthand notation
k()2 0, O<t<azx
—_— e
k(s) le_‘"lo(,[i\/ 12 — a2122), t>az
o

where the fact that Iy is an even function of its argument
has been used. This transform pair can be written using the
Heaviside step function, 1(t — ax), as

e-—k(s)z

- —1-1(t — az)e Pt I(BV12 — a2z?).
k(s) a

The solution for the electric and magnetic fields can now
be written as

E(z,t) = L™ {ep(s)e ™% + eo(s) L{Vi(z, t)}}
_r-1 e_k(s)‘” e—k(s)a:
) = 17 {eoloes gy + s g |

which can be inverted for general ep(s) using operational
transforms. Thus it is found that the fields are zero for { < az
and for t > az the electric field intensity can be expressed as

E(zt) = e " Ep(t — ax)
t T 252
+w'y/ Eo(t —1)e” 5TI1(ﬂ T o7 )

NG
=e "Ey(t — az)
Eo(T)e‘ﬁ(”‘T)I1 Byt - ) - a2z2)

(¢ - a?a?)

+zy

t—az

E(z,t) = e " Ey(t — ax)

— 2y /t—axEo(T)e—ﬁ(t—r) Il(ﬂ (t - T)2 - azzz)
0 V(- 71)2 - a2z?)

(25)
where it can be shown that this is identical to the solution
obtained by Stratton [22, p. 320]. The magnetic field inten-
sity is derived as follows. Application, again, of operational
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transforms leads to

H(z,t) = 6/0 Eo(t —‘r)%[él(‘r— az)e PT

x Iy (ﬂ T2 — az:z:r-’)] dr

t
+o Eo(t — T)ée"ﬁ"Io (ﬂ\/ T2 — azzz) dr

oz

(26)

which, when the partial derivative with respect to 7 is per-
formed inside the first integral and the sifting property of the
Dirac delta function is used, becomes

t -B8T
H(z,t) = % / Eo(t—-1) [\/%_oﬂ_?h (ﬂ\/ 72 — aza:z)
-Be P71, (,H\/ T2 — azxz)] dr
t
+ g Eo(t—1)e P"I, (ﬂm) dr

+ iEo(t — az)e~Pos, @7
Grouping terms and simplifying slightly this can be written as
H(z,t) zéEo(t — az)e™”

13

+ -2% . Eo(t —1)e=PT
x Iy (ﬂ\/ T2 — azzz) dr

o t
—_ E — —
+ 20 ax O(t T) T2 - 0621172

x I (B\/ T2 — a2a:2>d'r

Te 8T

(28)
and

H(z,t) = gEo(t —ag)e””

o t—ax ,B(t )
+ % /t Ep(1)e

x I (ﬂm) dr

t—az Ealr) (t— T)e=BCE-7)
VE—12 - a2z?

x I (ﬁm) dr.

The electric and magnetic fields can be written in terms of the
media constitutive parameters as

A
2a 0

(29)

B(z,t) = e~ (/i) e gy 5
t—z/c
+ z(% ﬁ) / Eo(r)e~ (/2=
0

3

(V=)
V&= - /)

dr (30)

H(z,t) = \/gEo(t _z/c)e=(o12Vule)=

t—z/c
+ 12? i Eo(r)e~(e/29)(=7)

X 10(—2% (t—-7)2— (x/c)z)dr
oc t—z/c (t __ ,r)e—(o'/2s)(t—‘r)
Tk PO

y 11(%\/m) dr

(3N

where the constant ¢ = 1/a = 1/,/€f has been introduced.
Alternatively, starting with (26), and integrating by parts we
find that the magnetic field intensity can be expressed in the
more compact form

H(z,t)

¢
= g [Eo(t —)1(r — az)e P, (,3\/ T2 — azzz)]
0
- 2 /t Ej(t — 7)1(r — az)e P71, (ﬂm) dr
0
+ a/t Eo(t - T)Elx-e_BTIo (ﬁ\/m) dr

H(z,t)

= ZEy(0)1(r - az)e?7I, (ﬁ\/m)

[03
t o € —8r
+/M (EEo(t—T)—EE{)(t—T))e g

% Io (ﬂm) dr

H(z,t)

= %EO(O)I(t _ ax)e PTI, (ﬂ\/ 72— a2w2) dr
t—ax
+ [ (8o - Sa) )t
x Iy (B\/ (t-1)2— azzz) dr

(32)

or zero for t < «/c and for t > x/c

H(z,t) = \/EEO(O)e‘“’/ZE”Io(;’—Ex/tTW)

+ [ eoBor) - S Es(remteraten
o (VT /)

(33)

B. Initial Boundary Value Problem: Homogeneous
Dynamic Conducting Medium

For the solution to the initial boundary value problem where
the conductivity of the medium is modeled via (8) the problem
can be solved using the Laplace Transform method as well.
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Equations (1), (2), and (8) are transformed as

L e(z,8) + psh(z,s) =0 (34)
%h(:}:, 8) +ese(z, s) + j(z,8) =0 (35)
Tsj(z, 8) + j(z, s) = ope(z, s) (36)

where j(z,s) denotes the Laplace Transform of the current
density J(z,t) and in (36) the fact that J(x,;0) = 0 has been
used. Solving for j(z,s) in (36) and substituting into (35)
gives the coupled ordinary differential equations

ez, s) + ush(m,g) =0 3D

dzh(x 8)+ (es+ H_me(:c, s))=0 (3%

which are to be solved subject to the boundary conditions
given by (13). Using the same procedure as in the previous
section of taking the Laplace Transform of these equations
with respect to the space variable results in the algebraic
system

p us | [&,s) eo(s) |
_ = 39)
es+ 1% p | |h(pss) ho(s) |
which is solved as
[é(p, S)] . [ e —us | [eo(s)
- =32
o)) PO e o | |hos)
where we have defined
2 —
¢*(s) = (ss +7 T S)us. (40)

This is easily transformed back from the (p, s) space to the
(z, s) space as
e(z, s) = eo(s) cosh (c(s)z) — ho(s)% sinh (s(s)x)
a1
h(z, s) = ho(s)cosh (¢(s)z) — eo(s) (63 + T s)
sinh (¢(s)x)
X ———
s(s)

Again using the conditions that

42)

lim e(z,s) =0
and

lim A(z,s) =0

=00

and given that for s > 0

Re{¢(s)} = Re1/(es+ 1 )p,s >0

implies that
s(9)e s(s)=
lim {eo(s)e — ho(s)25-C } -0

<(s) 2
s(8)z <(s)z
e go € _
{m»55 cale) (e + e v
or that the boundary value of the magnetic field must be related
to the boundary value of the electric field by the relation

L (eo4 25 )eoto)

Notice that for the case o9 = 0, ho(s) = 1/&/peo(s), which
is what one would expect for the case of a plane wave
propagating in the positive z direction. Substitution of (43)
into (41) and (42) results in the equations

lim
L= 00

ho(s)

1+7 “3)

—c(s)x

e(z, s) = eg(s)e 44

_ oo\ s
h(z, s) = eo(s) (es +1 " T8> o)

which must be transformed back from the (z,s) domain to
the (z,t) domain. If in these expressions we introduce the
Taylor’s expansion for the expression

1

(45)

=1- z- 4
5 s 78+ (18) (46)
and neglect all but the first two terms, we have
1
~1 - 47
1478 8 @7

which is certainly a very good approximation since t is on the
order of 10~ [s] and we are only interested in frequencies
< 10'° [Hz] due to the assumption of constant ¢ and u. Then
the function ¢(s) becomes
<(s) = +/(es + 00(1 — 78))s
= /[oo + (e — To0)s]us. (48)
Thus introducing, the effective permittivity ¢ = € — 70 we

have
s(s) = /(o0 + €s)us 49)
e(z, 8) = eo(s)e™(” (50)
R e:(s)z
h(z,s) = eo(s)(o0 + ES)C—(S)— D)

which are identical in form to (17), (21), and (22) which were
solved for the static conductivity case. Thus we see that the
field solutions for the case of the dynamic conductivity will be
exactly as those given by (30) and (31) or (33) with ¢ replaced
by é = € — Tag everywhere, provided € > 0. The case £ < 0
will be dealt with in a later paper.

IV. CONCLUSION

It has been shown that electric field boundary conditions at
z = 0 for ¢t > 0, together with initial conditions for £ and H
at t = 0 for z > 0 (taken zero in our particular case) allow
for a unique and well-posed (i.e., depending continuously on
boundary condition) solution for both E(z,t) and H(z,t) in
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the z > 0, > 0 quadrant. If a discontinuity is assumed for
mathematical convenience at (0,0), it propagates along the
characteristic z = t/./p€ (or z = t/\/u(e — 7o) for > 0
modification of the Ohm law) into the interior of the quadrant.
(Note that, e.g., for sea water, 1/4/u(e — 7o) is smaller than
the speed of light in a vacuum even though larger than 1/ VIE.)

The results are in full agreement with Kuester [13} and
others [1]-[9], and with Hallen’s solution of the Telegraph
equation for R = 0 when V,I,C,L,G are identified with
E, H, ¢, p, and o, respectively, [25, pp. 412-413]. We fully
concur with Kuester’s conclusions. There are two important
points in this paper which we hope might help to settle the
Harmuth—Kuester debate, and a third one which can be used
to meet Harmuth’s and Hussain’s challenge to Wait. The first
point is the care taken to derive the results from the first-
order Maxwell equations rather than from the wave equations
for E and H, thus justifying a posteriori the use of the wave
equation in the neighborhood of the discontinuity at the origin.
The second is the argument in the introduction which shows
that Hillion’s objections, while mathematically correct, have
no serious consequences. The third item is the modification of
Ohm’s law to 79J/8t + J = oy E, i.e., the introduction of a
dynamic conductivity.

In a second paper (II), it will be assumed that there is a
vacuum in the half-space z < 0, while the half-space z > 0 is
filled with a material of constant 1, p1, and o (e.g., sea water
below 10'® Hz), and that the source is an electromagnetic
wave (nonsinusoidal, in general) impinging on the plane z = 0
from the vacuum, with prescribed incident electric field Eq(t)
for ¢ > 0 and 0 for ¢ < 0 (and, therefore, magnetic field
vVeo/1oEq(t)), leading, for ¢ > 0, to reflected electric and
magnetic fields F'(t) and —\/eo/uoF(t) at z = 0. If E(z, s),
H(x,s), Eo(s), and F(s) are the Laplace Transforms of
E(z,t), H(x,t), Eo(t), and F(t) with respect to time, then

F) = Bo(o) )

where

and, for z > 0

Mex —r ES2+ o d
1+Q(s) | P ers 4 o

H(z,s) = L ﬂ(s))) \/ulelsz + pa0y

E(z,s) =

pis \ 1+ Q(s

S
X exp (—117\/#16132 +moryg T rs)

where for only frequency components < 1/7 appreciable,
1/(1 + 7s) may again be replaced by 1 — 7s. In paper 1II,

1+ 7s

general expressions will first be given for E(z,t) and H(z,t)
in terms of Ey(s). Then, the results will be specialized to the
case of sea water below 10'° Hz with an incident step function
electric field, Ep(s) = Einc/s, €71 = 80, iy =1, 07 = 4
[S/m] (4 x10™ [s~1] in cgs units), and 7 = 4 x 10715 [s].
Actually, the results for 70 /&1 so small are not much different
from the case 7 = 0, but we shall use this positive 7 in order
to meet the Harmuth—Hussain challenge to Wait.

In a future paper, the same problem will be solved for
the case where the only important frequency components are
still « 1/7 but the conductivity is large enough so that
To1/e1 > 1, as is certainly true for copper.
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