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Time-Domain Electromagnetic Plane Waves
in Static and Dynamic Conducting Media II

Joachim B. Ehrman and Joe LoVetri, Member, IEEE

Abstract—The electromagnetic field inside a lossy half-space
for the case of a transient electromagnetic plane wave impinging
on the half-space from free space is derived. The losses in the
half-space are modeled by assuming either a static (J = ¢E) or a
dynamic (70.J/3t + J = 0 E)) conducting medium. Solutions are
derived directly from the first order system of partial differential
equations, i.e., the Maxwell equations. Plots for the total fields at
the half-space boundary are given and expressions for the fields
anywhere inside the half-space based on these boundary fields are
given. Asymptotic formulae for late and early times are derived
for the case of a step function as well as a square pulse plane
wave.

1. INTRODUCTION

N a previous paper [1], we considered the initial boundary

value problem where the electric field was given at the
plane boundary of a lossy half-space. This lossy half-space was
modeled by assuming either a static or a dynamic conductivity
[2], [3]. It was shown that the inclusion of a magnetic con-
ductity term, in the Maxwell equations, as originally suggested
by Harmuth [4], [5], was unnecessary for the solution of this
problem. Although the problem was first thus formulated in
the literature [6], the specification of the total electric field
at the boundary is less suggestive of how the field is to be
produced physically than a formulation in terms of a plane
transient wave impinging from a free space region onto a
lossy half-space. The formulation by specification of the total
electric field is the more common one in the literature [6],
[5], but there exist various research notes [7]-[11] as well as
a conference paper by Barnes and Tesche [12] which study
the reflection of a plane wave from and the transmission into
a lossy half-space. (References [7]-{12] were brought to our
attention by one of the reviewers.)

This approach has been used in the present paper to com-
plete the arguments of our previous paper [1] of the possibility
of a unique solution without the inclusion of a magnetic con-
ductivity term in the Maxwell equations. References [7]-[12]
are more general than this paper in that we deal only with
normal incidence of the plane wave on the boundary. On
the other hand, the present paper considers not only static
but also dynamic conductivity {2] for the lossy medium, in
order to answer the challenge of Harmuth and Hussain [3].
In addition, the results given herein are considerably simpler
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than those of references [7]-[12], and we derive a useful
long time asymptotic formula for the total electric field at
the boundary and other pertinent physical quantities. All of
the above references as well as the present work assume
a frequency independent dielectric constant, which is valid
for water below 10'° [Hz] but must be modified at higher
frequencies.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The problem of a transient plane wave impinging on a lossy-
half space can be formulated mathematically via the Maxwell
equations, in each region. That is

3—f+uo%—lf =0 8}
%4—&0% =0 2)

in the free space region, z <0, and
‘ 8w o, 3
c%1;£+51%+J=0 @

in the lossy half-space, z >0, where E = E,(z,t) [V/m], H
= H,(z,t) [A/m], represent the y-component of the electric
and the z-component of the magnetic field intensity vectors
respectively, J = J,(z,t) [A/m?] is the y-component of the
current density vector, og [S/m] is the static or dc conductivity
of the medium, and 7 [sec] is the time constant of the medium
related to the type and density of charge carriers in the medium
[2]. Of course, €1 [F/m] and 1 [H/m] are the permittivity and
permeability of the half-space.

We now assume that the impinging electromagnetic field is
such that at the half-space boundary, z = 07,

- Eo(t) t>0
E(0,0 = {0 >0 ©
S Fo(t) t>0
Hi(07,0) = 1/ Polt) t> 0]
0 t<0
and we denote the reflected fields at the point £ = 0™ as
- F(t) t>0
E@,n={l" >? (®)
€0
Hr(o,t):{‘\/,ToF(t) t>0, ©)
0 t<0
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The total field is given by the sum of the incident and
reflected components and therefore, due to the continuity of
the tangential fields across the plane interface, we have that
the total fields at the point z = 0F are given by

Eroal(t) = E(0F 1) = { Bo(t) + F(t) t>0 1
Towa(8) = (0%, 1) = { ] >y 3o
€0
Hrotal(t) =H(0+,t) - { A IE(Eo(t) — F(t)) t>0.
0 t<0
aan
The initial conditions in the lossy half-space are given as
E(z,07) =0, H(z,0")=0,
J(z,07) =0, z>0 (12)

where it should be noted that the current density at the
boundary (z = 0) is also initially equal to zero (at least for
the case where 7> 0) even for the case of a discontinuous
electric field arriving at the boundary. These equations define
the initial boundary value problem which we must solve for
all values of z and for positive time.

III. SOLUTION VIA THE LAPLACE TRANSFORM

A. Expressions in the Laplace Domain

We denote the Laplace transform with respect to the time
variable of the electric field intensity as e(z, s) = L{E(z, 1)},
with similar notation for the transforms of the magnetic
field, h(z,s), and the current density, J(z,s). Thus, (1)~(5)
transform to

Ee(z, s) + posh(z,s) =0 (13)
%h(z, 5) + epse(z,8) =0 (14)
in the free space region, z <0, and
d
%e(m, 8) + p1sh(z,s) =0 (15)
%h(z, s) +e1se(z, s) + j(z,8) =0 (16)
Tsj(x,s) + j(z,s) = ope(z,8)  (17)

in the lossy half-space, = > 0. Solving for J(z,s) in (17) and
substituting into (16) we have

T

0
1+7s

d
Eh(:c, s)+ (sls + )e(z,s) =0. (18)

The boundary conditions of (10) and (11) transform as

e(0%,5) =eo(s) + f(s) (19
= [ Leo(s) — 3
h(oﬂs)—\/:0 [eo(s) — ()] 20)

and thus, (15), and (18)-(20) represent a boundary value
problem in the (z,s) domain. Taking the Laplace transform

with respect to the z variable, by defining
é(p, s) =/ e(z,s)e P* dz,
0

ﬁ(p,s):/o h(z, s)e P* dx @n

we get the algebraic system

P g “IS] [i(’” s>}
a8 + 14+ 7s P (z,5)

[ eo(s) + £(s) ]

€0
v/ - leo(s) = £(s)]
Ho
This system is easily solved as

[«;(p, S)} __ 1 P,
h(p, s) pz - cz(s) Q18— 1+ 7s
[ eo(s) + £(s) ]
€0 ,
‘/E[BO(S) = f(s)]

(22)

—H18
p

where we have defined

2/0) — %o
¥ (s) = (E1S+ 1+rs)’“8'

Transforming back from the (p, s) space to the (z,s) space
yields the expressions

e(z, s) = [eo(s) + f(s)] cosh (¢(s)z)
€0 H1s .
—/ E[eo(s) - f(s)]c—(s) sinh (s(s)z) (24)

(23)

h(z,s) = \/% leo(s) — f(s)] cosh (s(s)e)

— [eo(s) + f(s)] [513 + ] iOTs]
_sinh (g(s)z)
s(s)

which, as in [1], using the conditions that lim,_,, e(z,s) =
0, and lim;_,o, h(z,s) = 0 for all values of s results in

(25)

ec(s)z

i {leots) + 16155

€0 prs 5=
- hents) - SN 25 S <o

tim { [ - 1%y

- [eos) + £(5)] [ . j’m} 2:()) } ~0

Both these expressions require that the reflected field boundary
value be implicitly related to the incident field boundary value




EHRMAN AND LOVETRI: TIME-DOMAIN ELECTROMAGNETIC PLANE WAVES IN STATIC AND DYNAMIC CONDUCTING MEDIA II 19

via the relation

60(5 f(s Ho ao
uls + 78
Po&r [ %0

Eopt1 e1s( 1 + T5)

_s()
26
e = Q). 6)
It is a simple matter to derive the explicit relation
_1-Qs)
1) = T @

which when substituted back into (24) and (25) produces

e—<(s)r

e(a.5) = [eol0) | T

o5

el 5) =eals) o grs7e " = eals)A(s)e
(28)
and
_ feo 2Q(s) Jes()=
h(.’L’, S) = \/%[EO(S)W] 2
2 ao
o)+ 75
1 esG)z
. Z(?)—Z
2Q(8) | —c(o)=
e = o g [
= \/Eeo(s)Q(s)A(s)e_‘(s)w (29)
Ho
where A(s) is given by
2

B. Inversion of Laplace Domain Expressions

In order to complete the solution of the total electric and
magnetic fields inside the lossy half-space region it is now
required that we take the inverse Laplace transform of the
expressions given by (28) and (29). The expressions for Q(s)
and ((s) can be simplified by assuming that

1
1+7s

which is valid for 7s < 1 so that we can write

Ho€1
Qs )—\/ \/ 618(1+T8)
~ [HoE 1_m Lo
Eoft1 €1 s€1
a
=Qoy/1+ —
s

2l-7s8

(€2))

(32)

and

o
s(s) = \/<els + ] +0Ts)uls

=~ Vp(e1 — oor)Vs(s + a)
=V ms(és + o)

(33)

where

and

=g, —TOg. (34)
Note that for seawater, 7 =2 4x 10715 [sec], €; = 80¢q, g9 = 4
(S/m] and thus, Qo = 9 and a = 6 x 10° [sec™].

As can be seen from the previous section, the expressions
for the field inside the lossy half-space are quite formidable.
The solution can be simplified by first finding the inverse of
f(s) given by (27). To obtain F(t) we first wish to obtain

1-Qoy/1+2
- [———” Q(s)] Y I R (PP
14+ Q(s) a ’
1+ Qo” 1+ 5
It can be shown [13], [14] that, for Qo # 1,
1- Qo\ {1+ % 1
L! 6(t 0t)
1
1+Qoy /142 + Qo
2Qo -t
where
aQ} Tolo
0= = — 37
Q-1 poé — e G
and
aQo azQ%
Wi(t) = +
O=@-1* @17
t 2
Qotla a
[ e (G 50)
a Qi+1la
+§exp(Qg_12t)
a Q3+1
-G e
Since

F(t) = Eo(t) ® L™ [1 - Q(S)]

1+Q(s) |’
where ® denotes the convolution operator, F'(t) can be

obtained if Fo(t) is specified. In particular, consider the case
Eo(t) = Eol(t), where Eg is a constant and 1(t) is the




20
Heaviside step function (i.e. equals 1 for ¢ > 0 and 0 for ¢ < 0).
Then

Qo1 2QuE
Q+1 Q-1

and it can be shown (see Appendix A) that, for ¢ > 0,

F(t) = —E()

t
/ W) dy  (39)
0

F(t)=—Eo— Q%Ef O Z?O_E(l’ -at/2f (“;)
_ 208K o~ Ot / (Qo +1 ay)
Qo(Q5 — 1) 0 Q-
10("—2*”) dy. (40)

Note that the total electric field and magnetic field at z = 0 (for
t > 0) are given by (10) and (11) respectively. These can now
be substituted into any of the formulae given in [6], [15], or
in [4] for the fields inside a lossy slab given the total electric

field at = = 0. For convenience, we repeat the expressions of
[1] here

E(IL’, t) = e_(az/ch)ETma](t — .T/Cl)
_ az t—x/cy
+ e~ (at/2) Z:T A ETotal(y)eay/2

L(5VT= 97 = G/a))
=97 = (/e

€
H(z,t) = A / I [e_("/?cl)ETotal(t —z/c1)

@ _ayzy [T ay/2
+ -2—6 ETotal(y)e Y
0
a
IG5 V=97 = (@/er)?) dy
a _ t—x/cy
e (at/2) / Browa(y)e/?
0
t—y
(t—y)?—(z/c1)?

(&= =) 4]

dy 41

42)
where ¢; 1/2
half-space.

= (111€)” is the speed of propagation in the

IV. ASYMPTOTIC EXPANSION OF THE FIELDS

A. Step Function Incidence

Using the asymptotic expansion for the modified Bessel
function it can be shown (see Appendix B) that for ¢ >
1/a(ie. t > 2 x 10710 [sec] for seawater)

} (43)

Qf -
2\/_620(1115)3/2

Ft) = E{ vt
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Total Electric Field At Boundary

40T T T — T
|
|
i
|
i
0.30 ' _ ~ — _ lorge ot asymptotic expression
: i
\
i . . . .
\ numerical integration of exact expression
kol \
] \
& 0.20 1 \ exact peok value = .20
o
o
[
0.10 1
ool . . vy U
0.0 0.2 0.4 0.6 0.8
Time (nsec)
Fig. 1. Total electric field at boundary of lossy half-space (sea water).

so that the total electric field at the boundary is given by
ETotal(t) = E(0+7 t)

= E(){ 2 QO - }
Qovmal | 2\/_Q3(at)3/2
44)
while the total magnetic field at the boundary is given by
HTotal(t) = H(O+v t)
20 2
2FEy [ —42— —F—
°y Ho{ QoV'rat
Qf -2

svrQiay® W

Thus, we see that Eo¢a1(t) — O proportional to 1/ Vatast —
oo (i.e., the electric field is “shorted out” by the conducting
medium) while Hroia1(t) — 2Eo+/€0/po as t — oo (ie.
the magnetic field becomes a constant twice the value of the
incident magnetic field). This can be compared to the case
considered in [1], [6], [4] where the total electric field at the
boundary of the lossy half-space is a constant and the magnetic
field goes to infinity. A plot of the asymptotic expansion for
the electric field, (44), as well as the numerical integration of
the exact expression given by (40) is shown in Fig. 1.

For times such that at <1, that is for the early time behavior,
it is easy to show by Taylor series expansion that

PO =B -G - et oWt} o
from which
Erotal(t) = Eo{ 2 Qo at + O(a’t )} 47)
Qo+1 (Qo+1)?

However, for seawater, this formula is much less interesting
than the large at formulae of (44) and (45) because t <
1/a = 2x 10710 [sec], but the assumption that €, is frequency
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independent becomes invalid for frequencies >10° [Hz],
which means that a step function really is meant to model a
function which does not change appreciably in times <1070
[sec]. Hence, the range of t over which the small at formula
of (46) is valid, for seawater, is negligible. For a somewhat
poorer conductor than seawater, for which 1/a is quite a bit
longer than 2 x 10710 [sec], the small ar formula might be
useful.

Let us now compute the dominant term in the asymptotic
time dependence of E(x,t), H(z,t) for fixed x as ¢ — oo.
For the function Erea(t) in the integrands of the second
terms in (41) and (42) we shall not use the complicated exact
expression derivable from (40) and (10), but rather

2F,
0<t< Pla
Era(t) = { Q4P (48)
——— Pla<t
QQ\/’II‘(Lt /a -
where
1[Qo+ 1] 2
=~ =~ 0.39
T [ Qo

for seawater. This expression gives the dominant behavior
correctly for at >>1, the correct value 2Eq/(Qo + 1), for
t = 0,and is continuous for all ¢. It will be shown below that
those results which depend on the precise value of P (rather
than the assumption that P ~ 1) do not contribute to the
leading term in the asymptotic expansion, which justifies this
simplification for Errqa)(t) a posteriori. Of course, coefficients
of higher terms in the asymptotic expansion cannot be validly
calculated using this simplification and require the use of the
exact expression for Erotai(t), or at least a closer (and more
complicated) approximation to it.

Inserting Eo¢a1(t) into the second term of (41) for E(x,t)
gives

azEq Pla _
Esi(z,t) = ——— eme/2(t=y)
(@) Qoc1 V7P Jo
L(5 =y = (/o)
2 dy
VIt -2 = (z/c1)?)
azEy [t/ ¢=o/2(t-v)
+ F—
Qoc1 /;/a VTay
a
L(5VE=v7 - Glay)
. dy. (49)
(t—y)? = (z/c1)?
Defining X = ax/2c;, u = ¢1t/z, so that uX = at/2 and

introducing in lieu of y the variable of integration where v =
(c1/z)(t — y), then

2E0 “ ev'vX
QoV TP Ju@-pPlat)

Lh(Xvv?-1) )

XVv? —
+ X3 ‘/_E" .
Qv )y Va-v

Eqi(x,t) =X2

II(X\/v?—)
TXJE o1
_ x3/2Y2% V2E, e ¥
QovT Jui—p/at) Vu—v
LX)
CXVP-1

where the first line comes from the first integral of (49) while
the second and third lines come from the second integral
in (49). Defining these three lines as Fg41, Est2, and Eg3
respectively we now evaluate the leading term in an asymptotic
expansion for Ego (for u >> 1) and show that E; and Eg3
are both negligible- compared to this leading term.

We define

(50)

v X [(XVAEDD)

= d 51
IE(X1 u) \/m X\/’UT:——I v ( )

which for u large and X fixed
Ig(X,u) ~ f(X)u™"2 + O(u=>/?) (52)

and we want to determine f(X). The function f(X) is
determined as follows (see [16], #8, p. 200)

f(X) = lim (u'*Ig(X,u))
li e~ vX Il(X\/’U2 )
= lim
u—00 \/1 — v/u X\/’UT
- /°° _U\Il UV 1) g l_e_X (53)
h XVv2 -1 X2
and hence, ‘
2Ep1 B _
Ego(z,t) = _QO X1/2 1/2+0( 3/2)
2E, x 32
1—e )+ 0(t™%). (54
= Quval'
To estimate Fg, we replace the integrand by
o-ux (X vu? — ) L (55)
XvVu? - T\ 2r X3/243/2
to give
1 Eo/P 56

" V2 Qoud/2VX

which is small compared to Ego for u > 1.

Similarly, in E3, we replace v by u in all factors of the
integrand except in the factor 1/y/u — v, and again use the
approximation of (55). Doing this, we have

v2_EWVP
T Qout/2VX

which is of the same order of magnitude as E,;;. Hence the
second term

Eos = - (57)

2Ey

E, =~
! QovTat

=2 _(1-eY)+ 0137 (58)
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but from (41), the first term, Ey, of E is
XETDt(t — .’L'/Cl)
2E
wa(t — z/c1)

Eft ~e

= 67X
Qo

—ex 2Dy o-arey

QoVmat 59

so that
2E,

QoVmat

for all >0, t large enough. (Of course, it has been assumed
that u = t/(z/c1) > 1, not merely that ar >1.

Now, inserting E1, of (48) into the second and third terms,
which we denote H.,;, of (42) for H(z,t), and proceeding
similarly, it can be shown that

Hst((B,t) =

E(z,t) = +0(t=3/?) (60)

Hg + Hopa + Hyz ©1)

where

[ é 2XEy [ .
Hg(z,t) =4/ — —vX
stl( ) 1 Q() ,—ﬂ_P u(1_p/at)e
v
(X Ve - 1
[\/v—sz XVt - 1)

+ Io(X /w2 — 1)} dv

2(z,t) \/ EO t e
S
H1 = v

. [ﬁ[l(X\/ ’U2 - 1)
+ Ip(X V2 - 1)] dv

Hpz(z,t) = — \/_EO / \/—vx
w V7T Qo Jua—play Vi—v

: [\/v:——ill(X‘/”? -1
+ Ip(X Vv? - 1)] dv.

Again, we begin by obtaining the asymptotic behavior of the
important term H,;o. Defining

(62)

(63)

(64)

Vu—v
. [ﬁ[l()(\/ ’U2 - 1)

(65)

+ Ip(X V2 - 1)] dv

for X fixed and u large, Iz (X, u) approaches a nonzero limit
as u — oo. For all but a negligible portion of the v interval
[1, u], we may make the approximation
6—UX |: v
Vi -1

Il(X\/ U2 - 1) +10(X\/ v2 — 1)]
2

~ Vanxs (66)

that is, each term is approximated by 1/(v 27 Xv). Hence, for

u — 00,

Ig(X,u) =\/—%/lu——(ﬁdv

~ %(2 —sin”'(-1+ 2/u))

2

To estimate H,y1 and H,;3, one can make the approximation

Il(XV ’U2 - 1) + I()(X\/ '()2 - 1):|

o-vX [le__

~ f;u\[ _Il(x\/F—)Ho(X\/—)]
2
=~ ﬁm (68)

and these terms are small, O(t~%/2), as t — occ. The same is
true of the first term

Hpat) = [ 5 2o
H1 0

—_————, 69
wa(t —z/c1) ©

Hence, for >0 and cit/x > 1, as well as at >1, H(z,t)
becomes

H(il} t)~ _gtzl't

\/—[EQ—IH(X u)
231

€
~\/;\/;E°a

_2EVE g, R (70)

= =2
Qo1 Lo
since /é/u1 = Qo+/€o/po and we see that this agrees with

the leading term for Hrotai(0,t) of (45), as it must.

We now derive expressions for the early times after arrival
at any fixed spatial position. That is, we assume (a/2)(t —
(z/c1)) >0 but (a/2)(t — (z/c1)) < 1 which gives the field
just above the characteristic line z = cit. (Note that we do
not assume at/2 < 1 nor az/2¢c; = X < 1, only that
the difference, at/2 — X, while >0, is <1.) Let us then
compute E(z,t), H(z,t) up to and including the first power
of at/2 — X, but neglecting quantities of order (at/2 — X )2,
Then it is necessary to use the expansion given in (47) in the
first term of the expressions for E(z,t), H(z,t) in (41) and

(42) but only
2E0 at
+ O\ —
Qo+1 ( 2 )

in the other terms. Carrying out the Taylor series expansion
consistently in powers of the smail parameter at/2 — X gives

then
_ 2EyQoe™ (a_t B X)
(Qo+1)?2\2

ETotal(t) = (71)

2E06_‘Y
Qo+1

Eft(.’l/', t) =
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72)

+0((“§ —X)z)
XEoe -X < )
) (73)

Est(.'l',t) = Q0+1

+o( (- x)

_ -x 2 at
E(‘(I"7t)_EOe |:Q0+1+(.2—_X)

(o)
(Q+1)2 Qo+1

and

10 at X 2
2- ) (74)
For H(z,t), using \/¢/p1 = Qov/€o/1o
H . — E_O -X 2 _ 2Q0
el 1) \/;Q"E“e [Qo +1 (@ + 12
at at A ]
: (5 ~X) +0((§ —X) ) as)
£ _x[X+2
Hao(o, ) = : [%+1

and

H t)_\/iQ"E" [Q 1t
'Q@?b+éig
Ao

B. Finite Square Pulse Incidence

(3

an

If instead of a step function we take the incident field to be
a square pulse which can be represented mathematically as

0 t<0
Eo(t) = Eo[1(t) - 1(t - T)] = {Eo 0<t<T (78)
0 t>T

then, instead of (39), we get (taking the corresponding func-
tions of ¢, { — T, and subtracting) for ¢t > T

2QoEy /t —6y
e "YW (y) dy.
Q5—1Jir (w)dy

(Note that, for 0 < ¢t < T, the formula of (39) still holds.) Hence
as in (40), for t >T

—(a at
. [e ( ‘/2)10(5)

F(t) =

79

2QoEo
21

[efet eée(t T)l

o~latt=T)/2) (a(t ; T))]

B 20F, .
Qo(Q3—-1)

¢ Q3+ 1ay ay
e (@55

20F, -
Qo(Qo -1°

D (QF+lay), (ay

and asymptotically, for the case [a(t — T)] > 1 and T < t,

-6t

e—O-T)

F(t) gEO{ \/_[t V2 _(t—1)"V3
QO [t—3/2 _ (t _ T)—3/2] 4o
2\/ alQ3
(81)
or
~ ~EoaT 3/2
F(t t
= Qo/m (at)™
) 3 _2)\1 —2,-2
{1+4(aT+1 Q%)at+0(a t )}
(82)
In this case, for ¢ > T,
ETotal(Ovt) = F(t) (83)
and
Hrotar(0,8) = —, /%F(t). (84)

V. CONCLUSION

The problem of a transient plane wave impinging normally
on a lossy half-space, where the losses are modeled by a
dynamic conductivity has been solved in terms of a simple
integral for the reflected electric field at the boundary (40).
This has been used to obtain even simpler asymptotic expres-
sions for the total electric and magnetic fields at the boundary
in the case of step function incidence ((44) and (45)) and of
square pulse incidence ((82)—(84)). For step funcion incidence,
we have also derived the dominant terms of the total electric
and magnetic fields in the interior of the lossy medium for
large times ((60) and (70)) and for short times after arrival
((74) and (77)) of the wave. For seawater, these results have
been shown to be valid for ¢ > 2 x 10710 [sec].

The treatment of dynamic condutivity [2] becomes more
difficult if frequencies so high that (31) cannot be justified
become important. In the case of water, the assumption of
a frequency-independent dielectric constant requires restiction
to frequencies <10'° [Hz], and then, not only is (31) well-
justified, but the (dynamic) correction to the static conductivity
of seawater becomes very small. It was kept there in order to
meet the point raised by Harmuth and Hussain [3].
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The next obvious extension of this work is the inclusion
of the Lorentz dispersion model into the formulation of the
problem in order to properly model the half-space. Then,
with a frequency-dependent dielectric constant, the restriction
to frequencies <10'0 [Hz] for water, for example, could be
dropped.

APPENDIX A
We now derive the simplified form of F(t) given in (40)
from (39). Equation (39) is re-written as

F(t) _ Qo—1 2Qo

Ey  Qo+1 Q-1

and the three terms in (38) are denoted as

t
/ W (y)dy  (85)
0

W (t) = Wi (t) + Wa(t) + Ws(t) (86)
such that
_ aQo
Wi(t) = -1
_ a’Q3 t Ri+1la a
Wa(t) = W/o exp (Q(g) =3 Ey)lo(gy) dy,
and

Ws(t) = gexp (Q(Z) tla t)

[0~

At a0

The second term of (85) is now evaluated for each of these
terms. We have, for W;(¢),

2Qo /t _oy 20 b e
e YW, dy=—5—— [ e d
Z-1), 1(y) dy @@=/, Y
__2 _ -6t
_Qg_l[l e . (87
For the term containing Ws(t),
2Q0 /t -0y
e YW. d
-1, 3(y) dy
t
= ZQO /e*auﬂ
Q—1Jo
(e, - B+
{11(231) Q2 - I"( y)] dy
ZQU at/2
= 3 e %
Q-1
Q+1
5(2) - Io(2)| dz (88)
-G
Integrating by parts,
at/2
/ e ?I1(2) dz =e™ /2 Iy(at/2) — 1
0
at/2
+/ e *Iy(z)dz (89)
0

so that this third term in F(t)/E, becomes

2Qo —at/2 _
_Q% _1 [6 I()(at/Q) 1
2 at/2
+ ag—_—l/(; e—zlo(z) dz}
_ 2 0 —at/2 _ 2Q0
= _Qﬁ — ¢ Iy(at/2) Z-1
4Q0 at/2 .
- @%——1)2_/0 € I()(Z) dz (90)
Finally, the term in F(t)/Eo due to Ws(¢) is
2a2Q0 / / Q2 +1la )
Qo - 1)3 -1 2
Io(5y') dy' dy 1)

which becomes, when the order of integration is interchanged
2a2Q3 ¢ QO + la ’
0z-13 [ *P\oz—73Y
(@ —1)° Jo Q-
. .y —©y /
Io(2y)/yle dy dy
_ 2aQo /te <Q0+1a /)
Q-1 Jo Q3
. Io(gy')[e_ey _ E—G)t] dy'

at/2
= _—(Qg?ol)z /0 e *Ip(z)dz

20Q0 o [* Qitle,
@ e (Q2 V)
To(5v') '

Now collecting the terms in F(t)/Ey, the time independent
terms total —1, and the coefficients of

at/2
/ e *Ip(z)dz
0

total zero and thus the result of (40) is obtained.

92)

APPENDIX B

Using the asymptotic expansion for the modified Bessel
function

Io(z) ~ (93)

al (1 + ! + ) T — 00
— 4. ),z —

V2rz 8z
in (40) for F(t), and assume that at/2 > 1, we see that,
of the four terms in the expression for F(¢), the second one
decays exponentially for large positive at, and may be ignored
in the large at asymptotic series. Using the first two terms in
the above asymptotic expansion for Io(z) gives for the third
term in (40)

2QoEq

a1 (%)n(3)
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2Q0E, 1 ( 1
N 1+ —
B-1vmai\ da )
at — oco. %4)

In the integral in the fourth term, since both factors grow
exponentially with the variable of integration, y, (note Qo > 1),
the asymptotic contribution of the integral for large at comes
entirely from the region of the upper endpoint, so that

oo (G5 )u(F) o

=/ t eey<f(:y>1/2 )W

Ot 1
-5/ ¢ V(@R - D/ Qe
1
Q- 15/ Qge?

dv

95)

where we have made the substitution v = Oy.
Now using the first two terms in the integral

Ve U 12, 1
/ Tpdv=e (U‘/ +§U‘3/2+«--) (96)

which has been obtained by integrating by parts, but only the
first term in

U v
€ —
/ s =TT+ )
gives (with U = Ot) for the approximation of (95)

Q3 —1(vp, 13
(o g )

QO U._3/2

4“\/_\/ QF -

€

et 1(3@3 sl R
oV | Q§Vat Qo(at)*/?
so that after multiplying by
2aQo
R R
the fourth term in F'(t)/Ey becomes asymptotically
2 3Q32 —

T Qo(Q%—1)Wrat  2Q3(Q3 - 1)y/m(at)¥?

-~

Adding to the corresponding contribution from the third term
in F(t)/Ey, ie., (94), and recalling the first term, —1, (and
ignoring the exponentially small second term) gives the ex-
pression of (43).
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