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Abstract-The Trapezoidal Recursive Convolution (TRC) scheme was previously used to
model Nth order Lorentz type dispersive media. In this paper, the full derivation of this
quast-trapezoidal-based algorithm is presented and the derivation is expanded to include
the Nth order Debye type dispersion as well as Sellmeyer’s dispersion equation. In addi-
tion, the case of general convolution integrals is considered where any arbitrary integrand
or the integral itself is represented as a sum of exponential functions, i.e. Prony’s method.
The technique is compared to several previously published schemes and it is shown that
its performance equals or exceeds various other methods in terms of accuracy, robust-
ness, and computational efficiency. A comparison to the exact application of trapezoidal
numerical integration is made and it is shown that, for time increments encountered in
typical FDTD analyses, the truncation error due to applying the quasi-trapezoidal ap-
proximation is negligible. Finally, it is shown how the skin effect phenomenon, as it
applies to multiconductor transmission lines, can be modeled using a rational function
approximation to the frequency dependency of the line resistance. This model is obtained
by using Levy's method to curve fit the line resistance directly in the frequency domain
and then the convolution integral is formulated in a form amenable to the TRC algorithm.

I. INTRODUCTION

Recently, there has been a growing interest in the numerical modeling of linear dis-
persive media [1-4,6,15,25,26]. Some applications, involving the study of biological
tissues, are concerned with the daily human exposure to radio frequency and mi-
crowave energy (1,2], while others have considered applications of electromagnetic
radiation in hyperthermia cancer therapy [3]. Also, the study of wave propagation
in highly dispersive media (such as ice, snow, water, plasma, and radar-absorbing
material) and the reflections from an air/dispersive medium interface have been
the focus of many researchers [1,4]. Finally, modern optical technology has been
demanding more accurate numerical models for pulse propagation in dispersive
media. Applications in this field range from high-speed optical lines to sub-pico-
second electro-optic switches and all-optical computational devices [5,6]. All of
the above applications require the accurate modeling of dispersive media which is
the main focus of this paper.

Generally, when a material is subjected to a time harmonic electromagnetic
field, the polarization vector, P, and the permittivity are functions of the fre-
quency of the alternating field. An important class of materials is referred to
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as linear dispersive, or frequency dependent, materials [7,8]. A physical model
of dispersive media can be developed by considering the forced oscillations of an
electron, due to an applied electric field, in a single-electron-single-atom model.
The classical equation of motion for harmonic oscillation (due to an external force)
is often used to model such problems. In the frequency domain, the displacement
distance of an electron, rg, (which is the solution to the second order ordinary dif-
ferential equation of harmonic oscillation) is commonly represented by a Lorentz
model [7] using a pair of complex conjugate poles:
*
= - K — + - K = (1)
jwta+jif  jwta-—jif

In a dispersive material, the poles essentially determine the shape and the loca-
tion of the absorption bands and, hence, give each material its unique properties
[9]. However, many dispersive materials contain permanent dipoles (for example
water); for these materials, at low frequencies (hundreds of MHz), the external
field aligns otherwise randomly oriented dipoles. This process is referred to as ori-
entational polarization, and almost always dominates other types of polarization.
In this case a first order model is often used where its solution in the frequency
domain is given by the single pole
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where both A and «a are real numbers. This representation of dispersive media
is referred to as the Debye model. It has been shown that an arbitrary material
can be represented by Ny, pairs of Lorentz complex conjugate poles and/or Np
Debye (complex) poles [9]. In section II, we briefly describe this generalization
to multiple poles as it is the basis for our numerical scheme. We also note that
once the generalization to an arbitrary number of multiple poles has been made,
a wide variety of dispersive phenomena can be studied by modeling the dispersive
behavior as a meromorphic function which then has a partial fraction expansion
in the form of multiple single and/or complex conjugate poles [10]. For example,
the skin effect in transmission lines is effectively modeled by assuming that the
series internal impedance is modeled by [11, 12]

aw=%+%%%uw 3)

where wq is the break frequency (defined as the frequency where the radius of
the conductor is equal to the skin depth, that is r, = §), and 7y, is the d.c.
resistance of the conductor. In the time domain, this is approximated by a sum
of exponential terms, via Prony’s method, or %;(w) can be approximated directly
in the frequency domain as we will show in section VI.

9=

II. Nth-ORDER DISPERSIVE MEDIA

The electromagnetic constitutive relation for a linear dispersive medium can be
written as
D = gpecok + £0P, (4)
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where the electric polarization term, Py, , models chromatic dispersion. As was

discussed in the previous section, an arbitrary dispersive medium can be modeled

using an assembly of forced harmonic oscillations; consequently, the frequency

dependent permittivity is given by the Nth-order Lorentz dispersion formula
D(w) Gpw

N
elw) = 20E(W) = €00+ X(w) = oo + (5 _600)1)2_21 wg+2jw5p—w2 )

where, £ is the static permittivity, eco is the permittivity at infinite frequency,
wp is the pth resonant frequency, ép is the p*® damping coefficient, and X(w)
is the susceptibility of the medium. To ensure causality, two complex conjugate
poles exist for each term in the summation, and the relative strength of each term
is given by Gp where the following condition must be observed [4]:

N
Y Gp=1. (6)
p=1

On the other hand, the dispersive nature of many materials can be successfully
modeled via an Nth-order Debye model [1,15,2,3]. In this case, the frequency
domain expression for the permittivity is given by:

D(w)

e(w) = ——=>5 = €co0 + (€5 — €c0) % A (7)
epE(w) o1 1

+ ijp

where 7p is the pth relaxation time, and Ap is the relative strength of each term.

Dispersion also appears in fiber optics; an electromagnetic wave propagating
in an optical cable interacts with electrons and generates a frequency dependent
response in the material. This response manifests itself as the broadening of the
pulse in time (i.e. chromatic dispersion), which is represented as a frequency
dependent index of refraction of the fiber. The index of refraction of any material
is the square root of its permittivity and, for fiber optics, it is modeled by the
Lorentz dispersion equation. However, in the case of fiber optics, the resonant
frequencies are often the most significant contributors to the value of permittivity.
For most applications in fiber optics, and in regions far away from the resonant
frequencies (where w% —w? > 2wép ), the imaginary part of the permittivity is very
small and can be ignored, i.e. Lorentz’s equation where all damping coefficients
are zero. This means that the index of refraction of any material can be modeled
using Sellmeyer’s equation given by [13,5):

N G
er(w) =n(w) = £oo + (€5 — £00) D 5" (8)
=1 Wp — W

The fact that, the above equation does not provide an accurate approximation of
materials’ index of refraction at the resonant frequencies, is of no concern since
this model of dispersive media is intended for all regions except near these resonant
frequencies.

As can be seen in all the above frequency domain formulations, the linear
polarization, Py (w) = %(w)E(w), is modeled by a sum of first order and/or
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second order poles, that is the second terms of (5) or (7). The frequency domain
product of the electric field and the first-order frequency domain susceptibility
function, ¥(w), can be represented in the time domain by a linear convolution

t
Py(t) = /O E(t — )x(r)dr ©)

where now x(7) is the time domain susceptibility of the medium and the princi-
pal of causality has been applied to simplify the limits of the above convolution
integral [8]. The expression for the Lorentzian time-domain susceptibility function
is obtained by taking the inverse Fourier transform of each term in (5), that is

ApBp

#) = Apsin(Bpt)e” U (t) & , 10
XP( ) Y4 ( D ) ( ) (a%—l—ﬂ%) +2jwap ) ( )
where U(t) is the unit step function,
2
w5Gples — €
ap=06p, B=1wi-63, and Ip= p—”(;—;’d. (11)
P

The time-domain susceptibility function of a Debye medium is obtained by
taking the inverse Fourier transform of the Debye term of (7)
Xp(t) = dpe~ P U (t) & (12)

P ___
(jw+op)’
where

ap =1/1p, Ip = Ap(es — €c0)/Tp- (13)
Using these time domain susceptibility functions we now show how an efficient
numerical algorithm for evaluating the convolution integrals of equation (9) can be

constructed by using a numerical integration technique similar to the trapezoidal
rule.

II1. DERIVATION OF THE TRC SCHEME

In the standard Finite Difference Time Domain (FDTD) technique the constitu-
tive parameters of Maxwell’s equations are assumed to be constant. While this
assumption is appropriate and convenient for free space and most dielectrics over
a narrow band of frequencies, it is not accurate for the majority of cases, especially
for highly dispersive (frequency dependent) media. The purpose of all the pub-
lished extensions to the standard FDTD method which are discussed in Section
IV of this paper, are to better model frequency dependent media. In this section,
the derivation of the discrete Trapezoidal Recursive Convolution (TRC) [20] is
presented for a general case. The derivations are developed for both an Nth-order
Lorentz and an Nth-order Debye dispersive media. Consider the Maxwell-Ampere
law oD

E':VXH—O'E, (14)

where the time domain expression for the constitutive relation is given by (4).
The above equations may be solved numerically using any of the various finite
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difference methods which have been developed [4,14]. The equations can be dis-

cretized in time, where the value of a field variable at the nt? time step is denoted
by E™ = E(nAt). If we apply this discretization to (14) we get

Dn+1 —_Dn n+1 E" '
—At——-=VXHn+1/2—G(-E—2—+— , (15)

where we have assumed that the magnetic field and the electric field components
are interlaced in time. Following Luebbers [4], the discretized form of the consti-
tutive relation (4) can be written for the difference of two consecutive time steps
as

DL D” = gpeo BV — EY) 4 £o(P™TL — PT). (16)

If in the convolution integral of (9) the value of the electric field over each time
step is approximated as an average of the fields over two consecutive time steps,
then at any point in space we have

nAt -
P(nAt) =/ E(nAt — )x(r)dr
0
n—1 - —m—
En—m 4 gn—m—1 (m+1)At
] dr.
mzzol . } Lo xtnr (1)

This is what we call the quasi-trapezoidal evaluation of the convolution integral.
In general the goal is to represent the convolution term for linear polarization as
a discrete function that can be evaluated recursively (at each time step). The fact
that this can be accomplished is due to the exponential form of the time-domain
susceptibility function we are considering. Thus, the convolution integral may be
calculated by an update equation of the form &7+l = f &m.

At first sight it seems that using an average of the field components at two
consecutive time points in (17) as opposed to only the E"™™ term will require
two levels of back storage for the electric field values in the recursion relation
(consequently requiring more memory for its implementation). However, due to
the exponential nature of some of the auxiliary functions and/or variables, we will
show how this discretized approximation can be implemented as a one time step
recursive method. Starting with the discretized form of the constitutive relation,
(16), and substituting the quasi-trapezoidal approximation, (17), we arrive at

DTL+1 D" = 50500(En+1 _ En)

n - -
Er—m+1l L gn—m (m+1)At
+ € + / x(T)dT
n—1 - —m—
En—m 4 gp—m—1 (m+1)At
— &0 Z [ 5 }/ x(T)dr. (18)
m=0 mAt

In [4], a complex time-domain susceptibility, Xp(), was defined such that

xp(T) = Re[p()] (19)
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and now the integral terms of (18) can be written in terms %p(7) as

(m+1)At i\ . )
= [ splnor = (2 ) [ lertiBInd] laptima
(20)

where only the real part of this expression will be used in calculations of the
electric field. An important property of (20) is that at each time step, m+1, the
value of the discrete integral of the complex time-domain susceptibility function,

ng+1 , is related to its value at the previous time step, 5("5‘ , that is

Rt = ;)ne(—apﬂﬂp)At. (21)

We now consider the last two terms of (18), that is, the linear polarization
terms. At this point the introduction of a complex linear polarization, 157p‘, is
necessary due to the use of the complex susceptibility function, 5(},”, where the
subscript p denotes one pair of Lorentz poles or a single Debye pole. After some
simplifications and using (21), keeping in mind that E? = 0, we arrive at

2(13;)1+1 _137pz) — En+1~0 Z E"— m+1 m Z ) 1

m=1
n—1 n—2
_ En+15(2+e(—ap+jﬂp)At Z En—mX;)n _ Z 1 ™ (22)

The summation terms of the above equation represent discrete convolution inte-
grals and can be evaluated recursively. In order to do so a new complex function,
\II;,L, is defined as

n—1 n— n-—1
\i,'zr)L:ZEn m _En +ZEn—m _Enxp+e6pAtZEn me ;n 1,
=0 = m=1 (23)
where ép = —ap + jfp. Now letting m' =m—1 we get
n-—1 (n—l)—l ( ) , ,
n—mesm—1 __ n—-1)-m'.m _ yn—1
DB TI= ) E p =% (24)
m=1 m/'=0

Hence, we see that \i/p can be evaluated recursively by
§7 = Eng) + efAPEnL (25)

Thus, the summation terms of (22) are replaced by the recursive expression defined
by (25), and we arrive at

2(PRHL — PRy = EMTI50 + HAtR - gL (26)

The above equation demonstrates the “two time step” nature of our technique;
this means that at each time step two previous values of \i/? must be stored.
However, for most realistic problems this extra level of back-storage could mean
allocation of a large block of memory that may not be available. In its place it is
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possible to evaluate \i/;,‘_l directly from (25), that is

¥l = (87 - Eng0)e b, (27)
and hence (26) can be written as

This last equation requires a large amount of CPU time to evaluate the discrete
polarization terms of (18) at one-half of the memory cost as compared to (26). The
trade off between speed and memory is a characteristic of most numerical schemes
where back-storage of variables is required. In the remainder of this paper, we
will use the memory efficient formulation of the TRC scheme (28). This form can
be substituted into the right hand side of equation (18) for each pole or pole pair,
and subsequently into (15), where only the real part of the complex polarization
vector is used. Finally, a new one time step update equation for the electric field
is given by

N
E" oAt 1
En+1 — _ el R -0 —'6pAt
A | e a2 e e
€00 + o + & p=1
20 2
N
ALV x HPTL/2 0.5 _ R
+ ( ) 53 Re [(1 —e 25:»“)2;,‘] (29)
Eoo -+ —2 0 -+ 7 £Q [ee} _250 D)

where an alternative form of QZ is defined as

By = ebAten, (30)
and
0 J 0 N JA 5,At
_ 0 _ I [, _
X —ZRe[xp]—ZRe[ép [L-ee]]. (31)
p=1 p=1

The new variable, i’; , is updated recursively using the equation

2T - 2n—1

By =E"0+ 9, (32)
The update equation for a Debye dispersive medium can be easily derived using
a similar method. First, the integral terms in the summations of (18) are defined
as

(m+1)At A
m P —apAt| ,—apmAt
Xp = / xp(7T dr=-L|1—¢e “r e “P . 33
P . p(7) ap [ ] (33)

Using the property of equation (21), the time-domain susceptibility function is
related to its value in the previous time step by

1 —apAt
Xt = xpre A (34)
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The remainder of the derivation is identical to the one of the Lorentz medium and
the final update equation for the electric field is given by:

N
E" oAt 1 _6A
Ertl = €oo— — += 3 xe oA
oAt X0 [TF 2 T 2 z_: Xp
foo+ o+ 5% p=1
2¢0 2
Hn+1/2 . N _
ot XO Eoo + dAt_ + X p=1
Eoo + _260 + 7 €0 00 260 2
where
¥y =E"x+ 857}, (36)
and
N N A A
X =3 =3 B 1-ewh]. (37)
p=1  p=17P

IV. A COMPARISON OF VARIOUS NUMERICAL SOLUTIONS

In this section a comparison of the TRC method is made with other previously
published techniques. The procedure developed in [6] uses the inverse Fourier
transform of the complex permittivity given by (5) or (7) to derive a second order
differential equation between E(t) and H(t). A second order finite difference ap-
proximation is then derived for this equation, and an update equation for gl
is obtained. This scheme requires the storage of 2N — 1 real variables in addi-
tion to the field values of the standard FDTD method. The above scheme will
be referred to JHT in the following discussion. Sullivan demonstrated that a Z
transform technique can be employed to model dispersive media in conjunction
with the FDTD method (3, 18, 19]. The convolution integral of the constitutive
relation is represented by a recursive relation obtained from its Z transform and
is incorporated into a new update equation for the electric field. The FDTD cal-
culations of a dispersive medium with 2 poles demand 3 additional real variables
beyond the current field values of the general FDTD scheme. We will denote this
method as the ZT method.

Since a conventional evaluation of convolution integrals is very computationally
demanding, both JHT and ZT schemes shy away from evaluating the convolution
term that appears in the time domain constitutive relations of the dispersive
media. However, in the convolution based schemes, the convolution terms for
linear polarization is represented as a discrete function and is evaluated recursively
for each time step. This method will not only eliminate the need for storage of the
entire history of the electric field, but also, does not require the large number of
multiplications usually associated with straight forward evaluation of convolution
integrals. In the next few paragraphs we will briefly discuss three convolution
based FDTD schemes.
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In the Constant Recursive Convolution (CRC) method [4, 16], the convolution
integral is replaced by a discrete function where all field values are assumed to
be constant over each time step, At; hence the integral term of equation (17) is
expanded as follows:

n-1 (m+1)At
D" = ggeE™ + &g Z E"_m/ x(7)dr. (38)
m=0 mAt
The above approximation is only accurate for pulses with low frequency content.
However, as the slope of the electric field increases (i.e. pulses with high fre-
quency content), the pulse approximation of the convolution integral no longer
holds. Since CRC, equation (38), uses a first order accurate approximation of
the convolution integral, whereas the FDTD method is a second order accurate
scheme, the Piecewise Linear Recursive Convolution (PLRC) method was devel-
oped to correct this short-coming. In the PLRC scheme, the electric field of the
convolution integral is represented as a piecewise linear function of time, i.e.
En—m—l _En—m

E(nAt —7) =EV™ 4+ ( N ) (1 — mAt) (39)

Thus, the constitutive relation becomes [17]

n-1

n n n—m (m+1)At
D" = gpeccE" +¢q Z E / At xp(T)dT
' m

m=0

n—1 n—m—1 _ gn—-m (m+1)At
. KE . ) / (T-mAt)xp(T)dT} (40)

mAt

This scheme is theoretically more accurate than the CRC method due to its higher
order of approximation of the convolution integral. However, this improvement in
accuracy has its price; the electric field has to be back stored one extra time step.
Also, it requires one extra complex addition and one extra complex multiplication
(two real-complex multiplications) operations per-pole-per-dimension beyond the
number of operations required for the update equation of the recursive function of
the CRC scheme. All of the above factors will result in a more accurate solution
but demand more memory and a longer computation time to obtain it.

In the TRC method described above, the convolution integral is evaluated using
a quasi-trapezoidal rule of integration, that is equation (17). Although (17) is not
an exact application of the trapezoidal rule; we show in the next section that
for the majority of cases this formulation is as accurate as other second order
accurate convolution based schemes (i.e. PLRC method). In addition, the general
simplification of the TRC method allows for a one time level recursive evaluation
of the convolution integral i.e. no additional memory requirement as compared to
the CRC scheme.

In Table 1, all the aforementioned methods of numerical modeling of disper-
sive media are compared for accuracy, robustness, and computational efficiency.
Numerical results have been presented in [20,21]. In terms of accuracy, all of the
above methods with the exception of the CRC scheme are second order schemes
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(see first row of the table). In most cases the obtained experimental data can
not be represented by a single term Debye or Lorentz model and multiple orders
of either of the dispersive models must be utilized to accurately represent the
characteristics of the material. Although it is possible to derive multiple order
expressions for both the JHT and ZT method, the equations often become lengthy
and cumbersome. However, as it was stated earlier, the N-th order assumption is
built into the all the recursive convolution schemes. Also, both schemes require
back storage of an additional 2N-1 values per dimension, that is, N-1 values of
D(t) and N values of E(t) (almost twice the convolution schemes). Due to these
disadvantages, the JHT and ZT schemes are not recommended for implementation
in general purpose 3-dimensional FDTD codes.

The last three rows of the table state the additional computational requirements
of each scheme. The number of addition and multiplication operations, as well
as the memory requirements for each scheme are given for a one dimensional
problem per order of dispersion for Lorentz type dispersive media. Overall, the
TRC scheme appears to be the most efficient and is the one we have implemented
in our 3-dimensional general purpose FDTD code.

scheme CRC | TRC | PLRC | JHT | ZT
accuracy Ist 2nd 2nd 2nd 2nd
Nth-order Y Y Y - -

multiplication operations | 6N 4N 8N 4N 4N

addition operations 4N 4N 8N 3N 3N

additional variables 2N 2N 2N+1 | 4N-1 4N-1

Table 1. Comparison of different schemes with the standard FDTD for Lorentz
type dispersive medium.

V. THE TRUNCATION ERROR DUE TO THE TRC SCHEME

In this section we compare the quasi-trapezoidal integration to the PLRC scheme
which is an exact application of the trapezoidal rule as given in (40). Denoting
the polarization using that method as Ppy pc we can write:

Pairr =Pprrc —PrRC (41)
for the difference between the two methods of evaluating the convolution integral

(for N=1), where the polarization due to the TRC approximation is given by (17).
Thus we have:
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n—1 e (m+1)At
Pgisr= E™ / x(7)dr
dif f m§=:0 A (r)

n-—1 n—m—1 _ pn—m (m+1)At

+ (E A E )/ (r — mAt)x(r)dr
m—0 t mAt
n—1 - -m-1 1At

ER—M 4 gn—m (m+1)
- ( > )/ x(r)dr. (42)

Once more, the complex susceptibility function is used to evaluate linear polar-
ization terms of (40), that is,

n—1 n—1 (En—-m—l _En—m) /(m+1)At

Paiff= D ETETH ) A (7 — mAbK(7)dr

m=0 m=0 mAt

n—-1 n—m 4 gn—m-1

¥ (e @
m=0

where the discrete complex susceptibility function, ¥, is defined by:
(m+1)At
M = / fp(r)dr = (E) [54% — 1] SmA, (44)
mAt 6

and the time domain complex susceptibility function is ¥(7) = red7. Following
the substitution of (44) in (43) and after much simplification, the truncation error
due to the TRC approximation is given by:

1 1 efAt = n—m n—m—1y.m
Pyiff = Re (T“TATW) > (EVT-E %", (45)
m=0
where for Lorentz type media
§=—-a+jB, T'=-jA (46)
and for the case of Debye media,
§=—-A, T'=-)\ (47)

as given in equations (11) and (13). Further analysis of the above difference
expression, (45), has revealed that the TRC scheme performs well at frequencies
near the resonant frequency (i.e. when At < 1/mwg where wg is the largest
resonant frequency, or wg = 1/7y where 7y is the smallest relaxation time of the
medium). However, large numerical errors (dissipation) are observed for values
of At corresponding to the waveforms with low frequency content {as compare
to the highest resonant frequency of the dispersive medium). Since no physical
dispersion occurs at such low frequencies, the standard FDTD formulation may
be used for the cases of waveforms with low frequency content propagating in
dispersive media.
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VI. TRC FORMULATION OF ARBITRARY FUNCTIONS

So far we have concentrated our efforts on the recursive formulation of the con-
volution integral as it appears in the Maxwell’s equations. Earlier, it was shown
that these equations are only applicable to the cases of either Lorentz or Debye
type dispersive media. However, convolution relations are typical of time domain
formulations of frequency dependent phenomenon and may arise in a variety of
applications such as modeling of the skin effect in transmission lines. Hence, it
is only logical to develop the above TRC scheme for convolution integrals of any
arbitrary function, that is, the convolution of any set of arbitrary time domain
functions can be approximated by

t n—1 Fn—m 4 pn—m-1 (m+1)At
/0 F(t—7m)x(r)dr = Z H +2 ]/ x(‘r)d‘r], (48)

where x(t) is the arbitrary function used to describe the time domain behavior
of the frequency dependent material, and F(¢) is the unknown variable. The
general derivation of such schemes follows the same procedure outlined in section
ITI. However, in order to use the recursive evaluation properties of the auxiliary
variable/functions of the TRC scheme, the kernel of the integral of equation (48)
must be in the form of an exponential function. Hence, some type of procedure
must be employed to represent the kernel or its integral in the desired exponential
fommm. This can be accomplished either in the time or the frequency domain using
either Prony’s or Levy’s method [23, 24].

In the frequency domain, the kernel can be evaluated at various frequencies
and by using the weighted least squares curve fitting procedure, introduced by
Levy, the frequency domain kernel can be represented as a meromorphic function
which has partial fraction expansion in the form of multiple single and/or complex
conjugate poles, (1) and (2),

Pr/2 "
A K K
~ p p p
x(w) = —+ - — + - - 49

(w) I;]w+ap ;(JW+QP+]ﬂp ]w+ap—gﬂp> (49)
where each summation term represents either a single Debye pole or a pair of
complex conjugate poles (note that op of the two summation terms represent
different poles). The inverse Fourier transform of the expansion terms is known
and thus the inverse Fourier transform of (49) is given by (note that K = |K|/6):

Pr/2

Pp
x(t) = Z Ape™ 0t + Z 2| Kple™ %" cos(Bpt + 6). (50)
p=1 p=1

Since a recursive evaluation of the integral of the above terms is essential to the
efficiency of the algorithm, a complex time domain function, similar to (19), is
defined for the second term of (50), that is,
Pp Pr/? . ,
x(t) = Re(x(t)) = Re | > Ape™ %'+ > 2| Kpleifel~ortibplt|  (51)
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where Ap, ap, Kp, and —ap+jfp are the coefficients in Levy’s approximation
of x{w), Pp are the number of Debye type terms and Pr/2 are the number of
Lorentz type terms required for an accurate approximation of the function. Now,
the integral of the kernel can be solved analytically, and is evaluated recursively
for each term of the expansion,

(m+1)At L
/ N p(r)dr = X3 =y~ le%A, (52)
m
-~ a. _—
2= - by, (53)

where ép = —ap or bp = —ap +jfp and ap = Ap or ap = 2|K|eﬂ9 depending
on which summation of (51) we’re talking about.

After substitution of (52) in (48), the time domain convolution integral is given
by

¢ P n-1 n—m n—m—1
/O F(t—r)x(r)dr = Re |3 3 (F i )x;,” . (59

=1m=0

where now P = Pp + P;/2 and once again, the auxiliary function \i/;,‘(z) is
defined as

n—1
=5 s (55)
m=0 '

where an updated equation for its recursive evaluation can be obtained using a
similar approach to the one outlined in section III. i.e.

B2 = P50 + e AR (56)

Finally, the update equation for the convolution integral can be derived in terms
of the previously defined functions/variables, that is

P
1 . - p .
B=Re|5d [X2F"+1 + (e At 1)\11;;} . (57)

p=1
For the time domain case, Prony’ s method is utilized to approximate the time
domain integral of equation (48), that means

/(m+1)At

P P
- ~ - —6,mA
x(r)dr = Z Xp' = Z ape ™ t, (58)

p=1

Although this approximation requires recalculations of all the coefficients using
Prony’s approximation, the update equations of (56) and (57) remain the same.
The only change appears in the value of 5(% given by

%p = ap. (59)
This new procedure allows us to obtain FDTD update equations (of a frequency
dependent phenomena) for time domain electromagnetic problems in formulations
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other than Maxwell’s equations. An example of such phenomenon is the modeling
of the skin effect in Multiconductor Transmission Lines (MTL). Consider one of
the MTL equations in the frequency domain

2 V(@) + L+ 2@)Hw,w) =0, (60)

where L is the low frequency inductance and Z (w) is the impedance of the line,
given by

Z(w) =rge + —2_ [0, (61)

in which fy is the break frequency. Denoting B = r4./1/7fy and R =14, (60)
can be written as

%V(m,w) + jwLI(z,w) + RI(z,w) + B\/j—wj(:z:,w) =0 (62)

and taking the inverse Fourier transform of the above equation

N t
iV(:r, t)+ L—a—I(m, t}+ RI(z,t) + B/ x(T)F(z,t — 7)dT = 0. (63)
Oz ot 0
where
1 8I(z,t — )
- Ft-1)=—F"—" 4
x(t) & N and F(t—7) ) (64)
and F(z,t) is the derivative of current with respect to second argument. Now

the term (jw)_l/ 2 can be approximated directly in the frequency domain, via
Levy’s method by the rational polynomial approximation [24]

1 P ap

~

Via S LGy (%)
The best fit was obtained using a ninth order, p = 9, polynomial approximation
of the above function over a frequency range of w = 1 — 100 Mrad/s. The
coefficients of the fitted rational function are given in Table 2. Also a comparison
of the approximated polynomial with the original function is shown in Figure 1.
Now the losses in the MTL equations, due to the skin effect, which were pre-
viously implemented using the CRC method can now be approximated by the
quasi-trapezoidal approximation of the convolution integral, i.e. the TRC method
[22]. This will increase the accuracy of the obtained numerical solution at no cost
to memory requirement.
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Figure 1. A comparison between the original function, \/—%, and a ninth order

fitted polynomial.

Table 2: Coefficients of the Levy’s Approximation of 1/ Jjw

i a,x10* 5,x10°

1 -5.3019 3.3584

2 1.2165 -0.2462
3,4 - 0.0002 + 0.00004; 0.0112 +0.0672/
56 0.0003 % 0.0005; —0.0090 % 0.0597;

7 0.3192 -0.0408

8 0.1749 -0.0075

9 0.0926 -0.0006

Table 2. Coefficients of the Levy’s approximation of \/;—w
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VII. CONCLUSION

In this paper the full derivation of the TRC technique was presented for general
dispersive media. It was also shown that the FDTD update equation obtained
using a quasi-trapezoidal approximation of the convolution integral has similar
accuracy as the piecewise linear approximation method for time steps typically
encountered in FDTD analyses. A comparison of the TRC method with other
published schemes showed TRC to outperform all the others in terms of accu-
racy, required memory, and other computer resources. The application of this
method to general convolution integrals encountered in dispersive electromag-
netic problems was also described and the specific case of the skin effect problem
in multiconductor transmission lines was discussed.
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