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Abstract—Two common Fourier imaging algorithms used
in ground penetrating radar (GPR), synthetic aperture radar
(SAR), and frequency-wavenumber (F-K) migration, are reviewed
and compared from a theoretical perspective. The two algo-
rithms, while arising from seemingly different physical models:
a point-scatterer model for SAR and the exploding source model
for F-K migration, result in similar imaging equations. Both algo-
rithms are derived from an integral equation formulation of the
inverse scalar wave problem, which allows a clear understanding
of the approximations being made in each algorithm and allows a
direct comparison. This derivation brings out the similarities of the
two techniques which are hidden by the traditional formulations
based on physical scattering models. The comparison shows that
the approximations required to derive each technique from the
integral equation formulation of the inverse problem are nearly
identical, and hence the two imaging algorithms and physical
models are making similar assumptions about the solution to the
inverse problem, thus clarifying why the imaging equations are so
similar. Sample images of landmine-like targets buried in sand are
obtained from experimental GPR data using both algorithms.

Index Terms—Frequency-wavenumber (F-K) migration, ground
penetrating radar (GPR), inverse wave problem, synthetic aper-
ture radar (SAR).

I. INTRODUCTION

I N MANY disciplines throughout science and engineering,
it is desirable to produce images of both the internal and ex-

ternal structure of remote objects through noninvasive means.
Examples of different techniques which have been devel-
oped include seismic imaging algorithms used in geophysics
[1]–[3], synthetic aperture radar (SAR) [4], X-ray tomography
[5], diffraction tomography [6], [7], and magnetic resonance
imaging (MRI) [8]. Essential to all these imaging techniques,
with the possible exception of MRI, is the use of the scalar wave
equation to model the electromagnetic or acoustic fields and
the subsequent, explicit or implicit, inversion of that equation.
Although a rigorous derivation from the governing equations of
the physics is possible (for SAR see, e.g., [9]), these methods
usually assume some type of a physical/signal model and derive
imaging equations from this [1], [4]. The use of different phys-
ical and signal models for deriving these imaging techniques
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can lead to confusion about the assumptions and mathematical
approximations underlying these algorithms.

Each of these imaging techniques identify the unknown
image profile (or objective function) as the inverse Fourier
Transform of some composite function constructed from the
received data signals. The term Fourier imaging is sometimes
used to describe imaging algorithms of this type [10]. Often
the steps and assumptions required to obtain such a Fourier
imaging formulation seem quite dissimilar.

The main goal of this paper is to consider together two
seemingly different Fourier imaging techniques and clarify the
similarities and differences that exist between them. In partic-
ular, we consider two Fourier imaging techniques as applied
to the ground penetrating radar (GPR) problem: from the geo-
physics community, frequency-wavenumber (F–K) migration
and, from the radar community, SAR. Both algorithms arise
from different physical and signal models, yet yield surpris-
ingly similar Fourier imaging algorithms. The similarities and
differences of these algorithms are more easily delineated by
formulating both algorithms under a common integral equation
representation of the scalar inverse problem as compared to
their traditional derivations.

The organization of this paper is as follows. In Section II,
we give the required background information on the inverse
problem being considered followed in Section III which first
outlines the basic SAR imaging algorithm and then shows how
to derive the same equation from the full integral formulation
of the inverse problem. In Section IV, we first explain the
exploding source model, and then we outline and analyze the
F-K migration algorithm. In Section V we compare the two
algorithms and give representative results of applying them
to the imaging of landmine-like targets buried in sand. These
images are obtained from experimental GPR data collected
using a stepped-frequency radar in a laboratory environment.
Finally, in Section VI we give a brief conclusion.

II. BACKGROUND

Fourier imaging type techniques can be formulated for
various physical modalities of interrogating a region of interest,
e.g., ultrasound and electromagnetics, but the main feature
that allows the methods to be so formulated is the propagation
of waves. Mathematically, the effect which is essential to the
method is the variation of the speed of propagation throughout
the imaging region from which one can infer the dielectric
properties of the region. Under different physical modalities
the variation in speed of the wave associated with that modality
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will indicate the variation of a different physical material
parameter. If the variation in speed is attributable to more than
one material parameter, e.g., variation in both permittivity and
permeability, then there will be an ambiguity in the material
parameter corresponding to the resulting Fourier image.

A. Scalar Inverse Problem

Quite arbitrarily, we suppose that one is interested in imaging
the dielectric properties of a region using electromagnetic in-
terrogation and that the dielectric properties are the only prop-
erties which vary in the imaging region. Electromagnetic field
problems are properly formulated using Maxwell’s equations
but the use of the full vector equations does not yield simple
mathematical solutions to the inverse problem. However, under
the assumption of slowly varying permittivity with respect to
the smallest wavelength being used, Maxwell’s equations can
be cast into six independent scalar wave equations (one for each
rectangular component of the electric and magnetic fields) [5].
Assuming that the radar transmits and receives only one rectan-
gular electric field component, and that the dielectric inhomo-
geneity of the region does not affect the polarization, we can
utilize a scalar wave equation model for the inverse problem.
With these assumptions, we can write the scalar wave equation
governing the particular field component we’re interested in as

(1)

where is the scalar wave field, is the speed of prop-
agation in the medium, and is a source term.

In what follows, we assume an time-harmonic depen-
dence for all fields and separate the total field into incident,

, and scattered, , field components. The wave equa-
tion can be converted into an equivalent integral equation for-
mulation referred to as the domain equation with

(2)

where is the free-space Green’s function,
is defined as the objective or contrast function,

is the total field, is the imaging domain, is the
speed of wave propagation in , and is the background ve-
locity of wave propagation. We are free to pick to suit our
particular problem, as long as it contains all regions where
is nonzero.

The inverse problem for the scalar wave equation can be
stated as: Given the scattered field, , at some observa-
tion points, , outside the imaging region, recover the objective
function . Mathematically, this means that we must solve
the data equation with [5], [11]

(3)

Equation (3) is sometimes referred to as the Lipmann-
Schwinger Equation. Due to the multiplication of the two
unknowns, and in the data and domain equations
this inverse problem is nonlinear. In addition, for spatial and

Fig. 1. Physical configuration of imaging problem.

frequency limited data, the inverse problem is ill-posed (in the
sense that the solution is nonunique and small changes in the
data may result in arbitrarily large changes in the solution).
Thus, in order to achieve efficient solutions to this problem,
various simplifying assumptions must be made.

B. Basic Physical Configuration and the 2.5-D Model

The physical configuration considered in this paper is shown
in Fig. 1. An antenna located at radiates an inci-
dent field into the ground in an attempt to image the medium,
i.e., the ground and the inhomogenieties in it. We assume for
this paper a monostatic configuration wherein the same antenna
both transmits and receives. Data is collected by moving the an-
tenna along the one-dimensional line described by the axis, al-
though during transmit and receive, we assume that the antenna
is static. (This is sometimes referred to as Stripmap SAR [4].)
We assume that the reflection from the air–ground interface is
part of the scattering process and we are therefore imaging the
whole ground (i.e., we use the free-space Green’s function, not
the half-space Green’s function).

The two and one half dimensional (2.5-D) model, which is
used in the paper for the analysis of both F-K migration and
SAR, consists of the assumption of three-dimensional (3-D)
spherical spreading of propagating waves, with a two-dimen-
sional (2-D) variability in the medium to be imaged. In prac-
tice, this means the utilization of the 3-D Green’s function, with
“volume” integrals, such as those in the data (3) and domain
(2) equations ranging over two dimensions. This is a commonly
used model for this type of imaging [2].

III. SAR ANALYSIS

A. SAR Algorithm

We now present the synthetic aperture radar algorithm as
given in [4]. A radar, with an omnidirectional radiation pattern,
emits a pulse from the location . Assuming a con-
stant velocity of light, and that the object to be imaged is
composed of point targets in space located at , each
with an associated “reflectivity,” , the received
signal is modeled as

(4)
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where the spherical decay term has been ignored. Next, the
Fourier Transform (FT) in the time variable is taken, giving the
received signal in the frequency domain as

(5)

where is the usual wave-number and we have utilized
(and continue to utilize throughout this paper) the Fourier trans-
form with in the forward transform, and the term in
the inverse transform. Next, the Fourier transform is taken with
respect to the variable, giving

(6)

In order to solve this equation, the method of stationary
phase is utilized [4], [12]. Suppressing an amplitude term

which results from the use of the method
of stationary phase, we arrive at

(7)

If we define our “ideal image” to be a series of Dirac delta func-
tions scaled by the reflectivity, i.e.,

(8a)

and note that the phase term of the SAR signal is now linear in
and , we can make the observation that the two-dimensional

Fourier transform in the and variables of our “ideal” image,
, is equal to the SAR signal in the and domains,

given by (7), divided by the Fourier transform of the transmitted
pulse, i.e.,

(8b)

where we must make use of the spatial-frequency mapping
equation

(9)

to relate values of and at to values of
at . The final SAR imaging equation can be

written as

(10)

In the practical implementation of the SAR algorithm, these fre-
quency variables (e.g., ) are discrete and the use of the map-
ping equation creates an interpolation problem. A more detailed
account of this interpolation problem is given in [13].

B. Analysis of SAR Algorithm Within the Integral Formulation
of the Inverse Problem

The electromagnetic assumptions required for the above SAR
derivation are not explicit in the derivation itself. A more rig-
orous formulation which lays bare the assumptions required
from an electromagnetic perspective can be obtained from a so-
lution of the integral formulation of the inverse problem. First,
we make the assumption that the second term in the domain
equation, (2), is zero, i.e.,

(11)

This is known as the Born approximation and is valid for targets
with small contrast values. This is equivalent to ignoring mul-
tiple scattering within the imaging area [5], [11].

Next, we utilize the so-called 2.5-D model, with the assump-
tion of spherical spreading of the wave (i.e., we use the 3-D
Green’s function) with 2-D variability in the medium. Thus, the
scattered (received) field becomes

(12)

where and we have selected the free-
space Green’s function

The in the denominator will be dropped for the remainder of
the paper because it makes no difference to the resulting images.

Assuming, as before, that the objective function consists of
Dirac delta functions scaled by a reflectivity, we write the

contrast function as

(13)

We now assume that the incident field is of the form

(14)

which represents a family of nondecaying spherical waves cen-
tred at the monostatic transmitter/receiver point . Using the fact
that the scattered field is collected along the line ,
the expression for the received scattered field becomes

(15)

Ignoring the spreading term which came from the Green’s
function, as well as the term, we get

(16)

which is identical to the SAR signal given in (5). The imaging
equation for SAR can now be derived from this equation in ex-
actly the same manner as in Section III-A, i.e., by taking the
Fourier Transform in the variable, etc.
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Neglect of the term is usually justified because the phase
term in the exponential part of (15) is much more important [4].
From a physical point of view, the removal of the term from
(15) can be viewed in several ways. The first is that the removal
can be seen as an assumption that the signal is narrow-band,
and that the square of the frequency does not vary significantly
over the radar bandwidth. The other is that the incident field can
be approximated by its own second derivative (which is not a
good approximation in most cases). In fact, the term arises
because the source term in the wave equation for the scattered
field contains a second derivative in time of the total field (details
can be found in [5], [11]). Another option which would also
eliminate this term would be to assume an incident field of the
form

However, incident fields of this type are not normally generated
by radars, and we choose to remain with the initial interpretation
of an incident field given in (14).

None of these physical interpretations seem justifiable in
themselves. The fact that the term is dropped in practice can
be better justified by its effect on the resulting imaging (10). If
the term is retained, the result would be an in the denom-
inator of the integrand of (10) and this would low-pass filter the
corresponding image by strongly emphasizing contributions
from low-frequencies. Images obtained with the term in
(10) give a better representation of the actual permittivity of the
medium but are less useful for purposes of detection. Another
way of interpreting the dropping of this term is as performing
an edge-detection in the range dimension.

We have shown that the SAR model can be viewed as an ap-
proximate inversion of the inverse scattering problem, under the
Born approximation and a 2.5-D model, with point scattering
targets and the incident field assumed to be a nondecaying point
source travelling from the point to each point
target. It is important to note that in order to obtain the SAR
imaging equation, one additional approximation must be made,
in particular the approximation of stationary phase.

IV. FREQUENCY-WAVENUMBER MIGRATION ANALYSIS

Frequency-Wavenumber (F-K) migration, also known as
Stolt migration, was first developed by R.H. Stolt in 1978 [1].
It is based on the exploding source model and can be shown to
be equivalent to Kirchhoff migration [3], which is also based
on the exploding source model. Thus, the following analysis
of F–K migration implicitly applies to Kirchhoff migration as
well.

A. Exploding Source Model

In the exploding source model, we assume that the scattered
field originates from point sources located throughout the
imaging region. At time these sources “explode” and
propagate toward the receiver [3], [14]. It is assumed that no
interaction occurs between these fictitious point sources which
is the same assumption involved in the Born approximation.

The use of the exploding source model in seismic imaging and
GPR problems consists of two steps.

1) To ensure that the exploding source field arrives at the
same time as the actual scattered field, the velocity of
propagation in the surrounding medium must be replaced
by half its true value.

2) The image in the exploding source model is defined to be
the scalar wavefield at time .

Comments on these assumptions are left for Section V-C.

B. Frequency-Wavenumber Migration

For the derivation of F–K migration, we assume the
source-free scalar wave equation with constant velocity applies.
Here we follow the derivation provided by Scheers [14]. As
before, the scattered field data is collected along the axis:

. Starting with the source-free 2-D scalar wave
equation, (1), and taking the Fourier transform with respect to
the and variables results in

(17)

where, as per the assumptions of the exploding source model,
. We now define as

(18)

and note that the solution to the differential equation (17) can
be written as

(19)

In general, the coefficients and need to be
obtained from two boundary conditions located at two

. However, in typical GPR applications, the
field values are obtained only along the surface, and
not even on the whole surface. If an assumption is made that

, i.e., we admit only up-coming waves, then we
can write the solution to the differential equation in terms of the
collected data as

(20)

(Note that this is not truly consistent with the idea of exploding
sources, as true exploding sources would emit waves in both
“up” and “down” directions). After taking the inverse Fourier
transform with respect to the and variables, we arrive at

(21)
Utilizing the second part of the exploding source model, the

image is taken to be the scattered field at time . Doing this,
and making a switch of coordinates from to , we arrive at
the final imaging equation

(22)

where we have implicitly made use of the spatial frequency
mapping equation, (18), to map values of to values of . We
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note that because , the mapping equation given in (18)
is identical to the mapping equation for SAR, (9), and thus the
interpolation problem seen in SAR for practical problems is the
same as for F–K migration.

We note here that the two imaging equations, (10) for SAR
and (22) for F-K migration are very similar. In particular, for
SAR, the imaging procedure consists of taking the Fourier trans-
form of our collected data in the and variables, dividing by
the magnitude of the transmitted pulse in the frequency domain,
interpolating the data collected in to , and finally taking the
2-D inverse Fourier transform in the and variables. The
process for F–K migration is exactly the same, except that in-
stead of dividing by the magnitude of the pulse in the frequency
domain, we multiply the data in the and domain by the
scale factor before taking the inverse Fourier transform.
It is unclear from this derivation where, if at all, F-K migration
takes into account the transmitted pulse characteristics. It is also
unclear what the effects of the different scaling terms in the final
imaging equations are. The analysis of these issues is left for
Section V.

As will be seen in Section V, the differences between images
generated by these two algorithms are slight. However, many
fundamental questions remain, e.g., Why are the two algorithms
so similar despite seemingly different initial models? The prob-
lems involved with comparing these two models can be solved
by analyzing both under the integral formulation of the inverse
problem.

C. Analysis of Frequency-Wavenumber Migration Within the
Integral Formulation of the Inverse Problem

F–K migration involves solving the scalar wave equation
based on knowledge of the wavefield on the surface and
the assumption that only up-coming waves exist. This solution
is completed under the exploding source model where the
velocity of light is replaced by half its true value and where the
image is taken to be the wavefield at time . Due to the
fact that this is a solution of the forward problem, under the
exploding source model, the inversion step is actually inside the
exploding source model. To properly analyze F–K migration
in terms of the integral formulation of the inverse problem we
must therefore analyze the exploding source model itself, i.e.,
we must understand under which conditions does the wavefield
at time accurately model the true objective function,

, in the inverse problem.

We begin by considering the scattered field portion of the
domain equation (2)

(23)
If we assume the Born approximation applies, utilize the free-
space Green’s function, and assume that the incident field is of
the form

(24)

then (23) becomes

(25)

We now note that (25) is the integral form of the partial differ-
ential equation

(26)

As was done with the analysis of SAR, we now ignore the
term, and take the inverse Fourier transform with respect to ,
which results in

(27)

where , and is the Dirac delta function. We note
that with the use of half the true velocity, this differential equa-
tion can be viewed as the differential equation satisfied by the
fields generated from the exploding sources, i.e., we have com-
pleted the first step of the application of the exploding source
model. The term on the right-hand side, is equivalent
to having an initial condition of (this can be
shown through the use of the Laplace transform). The removal
of the term from (26) can be viewed in the same manner as
was done for the SAR derivation in Section III-B.

The time-domain PDE, (27), has an integral solution of the
form

(28)

where is the time domain free-space Green’s func-
tion given by

(29)

Utilizing the exploding source concept that the image we wish
to display is the scattered field at time , we set in
(28) and arrive at

(30)

where we note that for this equation, both and range over
the imaging region .

We now arrive at a classical problem in electromagnetics and
other field theories, namely that the fields at a source are infinite.
Thus, defining the image as the scattered field sources at time

leads to an image with singularities in it. In particular,
if we examine (30), we note that the Dirac delta function will
sift out all points under the integral where . However, the
leading term, , is singular at that point.

To circumvent this problem, we assume (in exactly in the
same way as was done in the SAR derivation) that we can ignore
the decay in the free-space Greens function. If we do this,
we may write that

(31)
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TABLE I
COMPARISON OF ASSUMPTIONS MADE FOR SAR VERSUS F–K MIGRATION

Thus, given the assumptions of the Born approximation, the in-
cident field being that of a nondecaying point source, ignoring
the term in the right-hand side of (26), and ignoring the
spherical spreading, the exploding source model offers an ap-
proximate inversion of the scalar form of the inverse problem.
Therefore, we can conclude that any imaging algorithm which
uses the exploding source model, such as F–K migration, is an
approximate inversion under these assumptions.

V. COMPARISON AND ANALYSIS OF SAR AND F–K
MIGRATION IMAGING ALGORITHMS

Now that both the SAR and F–K migration algorithms have
been analyzed under the integral formulation of the scalar in-
verse problem, we are able to compare them without the added
confusion of seemingly disparate physical models. Both algo-
rithms are an approximate solution to the scalar inverse problem,
with a series of assumptions made. The assumptions made for
each particular algorithm are shown in Table I. It is important to
note that the first four assumptions made in the F–K migration
algorithm are implicit in the exploding source model.

Seen in this tabular form, the reasons why the two final
imaging equations for SAR and F–K migration are so similar
becomes clear—it is because the underlying assumptions made
by the imaging algorithms in the solution of the more rigorous
inverse problem are almost identical.

In particular, the first four assumptions in Table I are identical
(with the exception of the term). Both algorithms assume
the Born approximation applies, both assume that the incident
field consists of a family of nondecaying spherical waves cen-
tered at the receiver point , both ignore the dependence of
the scattered field and both (at the final stages of derivation) ig-
nore the decay of the Green’s function. The only major
difference comes at the fifth assumption—for SAR the method
of stationary phase is used to obtain a Fourier transform type
signal, and in F–K migration, it is necessary to assume only
up-coming waves from the exploding sources in order to solve
the partial differential equation (17) (and thus obtain a Fourier
integral solution, with a different scaling factor in the Fourier
integral).

The final minor difference between the two algorithms is the
amplitude term, , in the SAR incident wave which takes

Fig. 2. Unfocused experimental data.

Fig. 3. SAR focused image of two buried targets.

into account the amplitude of the transmitted pulse at each fre-
quency. This term is missing in the incident wave of the F–K
migration algorithm, but this can easily be introduced into the
algorithm.

It is important to note that these two algorithms show very few
differences with respect to the images generated from both syn-
thetic and experimental data [15]. To illustrate these differences,
experimental data were collected in a laboratory sandbox envi-
ronment. Data were collected using an Anritsu 360 A vector net-
work analyzer (VNA) operating from 1–12.4 GHz. The system
uses a monostatic antenna configuration with a double-ridge
horn antenna. The forward reflection S-parameter (S11) is uti-
lized as the radar response for subsequent signal processing. The
antenna was always directed with maximum power toward the
ground. In our laboratory setup, the ground medium was dry
silica sand with a dielectric constant of . In this experi-
mental setup two landmine-sized targets were buried in the sand
approximately 10 cm below the surface. Data were collected in
1 cm cross-range steps, over a total 1-m cross-range.
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Fig. 4. F–K migration focused image of two buried targets.

Fig. 5. Difference between F–K migration and SAR focused images of two
buried targets.

Fig. 2 shows the unfocused B-scan image, where the two
targets and ground surface are clearly visible in the image.
Figs. 3 and 4 show the normalized SAR and normalized F–K
migration focused images respectively. The reader may note
that there is little discernible difference between the two im-
ages. Finally, Fig. 5 shows the difference between the normal-
ized F-K migration and normalized SAR images. The magni-
tude of the differences between the two images is on the order
of below the peak values in the image, thus illustrating
that there is very little difference between the algorithms from
an imaging perspective.

VI. CONCLUSION

We have shown how two Fourier imaging techniques arising
from different areas: frequency-wavenumber migration, from
geophysics, and SAR, from the radar community, are derived.
Based on an analysis of both imaging algorithms within the
framework of the integral formulation of the scalar inverse
problem it has been shown why the two algorithms are so
similar and where the differences do occur. Essentially, the two
algorithms are identical, with no practical advantage of one
over the other.
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