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SUMMARY

A new hybrid finite-volume time-domain integral equation (FVTD/IE) algorithm for the solution of
Maxwell’s Equations on unstructured meshes of arbitrary flat-faceted volume elements is presented. A
time-domain IE-based numerical algorithm is applied on the boundary of the computational domain to
determine the incoming fluxes for the boundary facets of the mesh. This method is a global grid-truncation
technique similar to the method previously introduced for the finite-difference time-domain scheme by
Ziolkowski et al. The three main advantages of this IE truncation method are that (1) it allows geometrical
objects to be located (almost) arbitrarily close to the mesh boundaries without compromising the physics of
the problem, (2) it couples the physics of unconnected meshes so that distant scatterers can be surrounded
by their own local mesh, thus reducing total mesh size, and (3) the same IE formulation can be used to
compute electromagnetic field values at points outside the mesh. Currently, the main disadvantage is that
an acceleration scheme for performing the IE update, which requires integrating field components on an
interior surface at a retarded time, is not available. Computational results are presented for the scattering
from a perfectly electrical conducting sphere and compared numerically with the analytic time-domain
solution as well as the solution obtained using a large spherical outer mesh boundary with local absorbing
boundary conditions. Results are excellent and show almost no reflections from the mesh boundary even
when the observation point is located close to the corner of the cubically shaped outside mesh boundary.
Results are also presented and validated for the scattering from two objects that are contained inside their
own unconnected meshes. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The standard finite-difference time-domain (FDTD) method is a very popular method for
computational electromagnetics because of its ease of implementation, but it requires that
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curved geometries be approximated by ‘stair-stepping’ the boundaries and the electromagnetic
field components are interlaced in space and time [1]. On the other hand, the finite-volume
technique is a standard technique used in computational fluid dynamics (CFD) [2], which can be
implemented on unstructured grids and therefore is better suited to modelling curved
geometries. Several finite-volume time-domain (FVTD) formulations for Maxwell’s equations
are available, but a recently developed version has provided good results for a wide variety of
problems [3, 4]. This method collocates all the field components at the centre of each finite
volume and is implemented on unstructured meshes. It is a characteristic-based FVTD scheme
that uses a two-step second-order upwinding scheme in the time domain. It also uses a second-
order accurate MUSCL-type scheme to interpolate the fluxes at the finite-volume facets [5, 6].
Recently, we have reported the extension of this method using higher-order spatial interpolation
techniques [7, 8]. In [9], a new stability criterion for these methods has been reported which
relaxes the overly conservative criterion that was provided in [3].

In this paper we present the use of a time-domain integral equation (IE)-based algorithm to
truncate the boundary of the FVTD mesh. This IE technique is similar to the one that was first
introduced for the FDTD algorithm by Ziolkowski et al. called the Global Lookback Lattice
Scheme [10]. Implementing such a truncation algorithm for the characteristic-based FVTD
scheme is tricky because of the flux splitting at the finite-volume cell boundaries. The key idea in
incorporating the IE truncation into the FVTD algorithm is to use the IE to update only the
incoming fluxes on the boundary facets (as opposed to using it to update the total field values).
Here, we provide details of the hybrid FVTD/IE algorithm for the FVTD scheme using
MUSCL-type interpolation.

In Section 2 we give a detailed overview of the theory behind the FVTD method as
implemented in our code. In the following section we describe the IE formulation at the
boundary of our mesh. In Section 4 we compare computational results with the analytic solution
for the perfectly electrical conducting (PEC)-sphere scattering, as well as for the test case of
transient scattering from two PEC cubes located in separate FVTD meshes.

2. FVTD FOR MAXWELL’S EQUATIONS

The FVTD algorithm is usually applied to physical phenomena that are governed by a
conservation law. The FVTD method for solving electromagnetic problems considers all of the
electric and magnetic field components as components of a solution vector u ¼ ½E H�T; and then
casts Maxwell’s equations in a conservation law form. Following a procedure similar to that
given in [3], starting from Maxwell’s two curl equations in a lossy, isotropic, homogeneous
medium,

e@tE� r �Hþ sE ¼ � J

m@tHþr � E ¼ 0 ð1Þ

we employ the matrix operator

SðxÞb ¼

0 �x3 x2

x3 0 �x1

�x2 x1 0

2
664

3
775

b1

b2

b3

2
664

3
775 ¼ x� b ð2Þ
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by which the curl of a vector can be expressed in terms of the divergence of a matrix operating
on the vector

r � x ¼ ðdiv SðxÞÞT ¼

@2x3 � @3x2

�@1x3 þ @3x1

@1x2 � @2x1

2
664

3
775 ð3Þ

In terms of this new operator, Maxwell’s equations can be written as

e@tE� ðdiv SðHÞÞ
T
þ sE ¼ � J

m@tHþ ðdiv SðEÞÞ
T
¼ 0 ð4Þ

or, even more succinctly as

@tuþ a�1Ku ¼ a�1ðGþ BuÞ ð5Þ

where

a ¼
eI 0

0 mI

" #
; Ku ¼

�r �H

r � E

" #
; B ¼

�r 0

0 0

" #
; G ¼

�J

0

" #
ð6Þ

where I is the identity matrix. Integrating (5) over an element denoted by Ti with boundary @Ti

and using the divergence theorem to convert the integral over volume to integrals over the
surface we arrive atZ

Ti

@iu dxþ

Z
@Ti

a�1Að#nÞu ds ¼

Z
Ti

a�1G dxþ

Z
Ti

a�1Bu dx ð7Þ

where matrix Að#nÞ is defined by

Að#nÞ ¼
0 �Sð#nÞ

Sð#nÞ 0

" #
ð8Þ

and #n denotes the outward normal to the volume surface @Ti: The vector quantity Að#nÞu is
referred to as the flux through the surface @Ti (a few more details can be found in [8]).

We now associate with each cell a value of the average of the generalized solution vector ui
located at the barycentre xi of element Ti: This is calculated as

ui ¼
1

mðTiÞ

Z
Ti

uðxÞ dx ¼ uðxiÞ þOðjjDxjj2Þ ð9Þ

where mðTiÞ gives the volume of element Ti; and jjDxjj2 scales with the size of the element. To
perform flux splitting, we first define *Að#nÞ ¼ a�1Að#nÞ which can be decomposed as a sum of
matrices with positive and negative eigenvalues. It can be shown that *Að#nÞ has six eigenvalues
given by L ¼ diagf0; 0; v; v;�v;�vg; where v ¼ 1=

ffiffiffiffiffi
em
p

; and can be decomposed as

*Að#nÞ ¼ *Að#nÞþ þ *Að#nÞ� ð10Þ

where

*Að#nÞþ ¼
1

2

�vSð#nÞ2 �e�1Sð#nÞ

m�1Sð#nÞ �vSð#nÞ2

" #
and *Að#nÞ� ¼

1

2

vSð#nÞ2 �e�1Sð#nÞ

m�1Sð#nÞ vSð#nÞ2

" #
ð11Þ
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To compute the value of the surface integral associated with a volume Ti in (7) we
require knowledge of the flux *Að#nÞu on all the facets of the boundary @Ti: To determine the flux,
we let un denote the solution vector on the internal side of each facet of @Ti while using unn

to denote the solution vector just to the outside of each such facet. These are obtained
by interpolation centred on the relevant side of each facet. In this paper, all interpolations
are performed using the MUSCL scheme [3]. As shown in our previous paper [8], for
facets separating volumes having different material properties, the flux can be concisely
represented as

*Að#nÞu ¼ *Að#nÞþun þ *Að#nÞ�unn ð12Þ

where

Ti ¼ 2
YkðYi þ YkÞ

�1I 0

0 ZkðZi þ ZkÞ
�1I

" #
; Tk ¼ 2

YiðYi þ YkÞ
�1I 0

0 ZiðZi þ ZkÞ
�1I

" #
ð13Þ

I 2 R3�3is the identity matrix and Z ¼ Y�1 is the impedance. For PEC facets it can be shown
that the linear operation of Að#nÞ on u becomes Að#nÞ ¼ aiT

pc *Að#nÞþun; where

Tpc ¼
2I 0

0 0

" #
ð14Þ

In the scattered field formulation the flux at a PEC facet is given by

Að#nÞus ¼ aiT
pc *Að#nÞþus* � 2Ãð#nÞ�Gs* ð15Þ

where Gs* ¼ ½Ei 0�*T represents a source term.
For a mesh comprising N elements we may write the flux integration at each element in the

vector form as

1

V1

Z
@T1

a�1Að#nÞu ds

� �T
1

V2

Z
@T2

a�1Að#nÞu ds

� �T

� � �
1

VN

Z
@TN

a�1Að#nÞu ds

� �T
" #T

� LU ð16Þ

where U ¼ ½uT1 uT2 . . . u
T
N �

T is the vector of unknowns in each element and where the division by
volume Vi arises due to the barycentric averaging of ui: Using the result of (16) in the volume
integration of (5) gives

@tUþ LU ¼ F ð17Þ

where the time derivative is taken element-by-element over U and where F is a source
term with each element i of F representing the right-hand side of (5) integrated over the ith
volume.

Having organized the flux integration into a matrix–vector product over the entire
computational space, it remains to discretely approximate the time derivative in (17). For the
results presented herein, we use a standard second-order accurate predictor–corrector scheme
given as

Uðnþ1=2Þ ¼UðnÞ �
Dt
2
LUðnÞ

Uðnþ1Þ ¼UðnÞ �
Dt
2
LUðnþ1=2Þ ð18Þ
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Being an explicit time-integration scheme, there is a time-step limitation for retaining stability.
The computational results in this paper are calculated using the new time-step stability criterion
described in [9].

3. MUSCL INTERPOLATORY SCHEME AND ABSORBING BOUNDARY
CONDITIONS

For the calculation of fluxes at the element facets we use a MUSCL-type interpolation scheme
(as was used in [3]). The MUSCL scheme is a well-known scheme that was devised for CFD [5].
The scheme is based on Taylor interpolation and is easy to describe for a scalar function uðrÞ:
Start by first approximating the function uðrÞ; for all values r on each element Ti of
computational domain, by

uðrÞ ¼ ui þ ðr� riÞ � ruðriÞ þOðjjr� rijj
2Þ ð19Þ

Here, although the gradient may be approximated with first-order accuracy, the dot product of
the gradient with r� ri produces a second-order accurate interpolation scheme. With the
following identity, based on the gradient theorem, we obtainZ

Ti

ruðrÞ dV ¼

Z
@Ti

#nuðrÞ dS ¼
Xmi

k¼1

SiðkÞ#niðkÞuiðkÞ ð20Þ

where SiðkÞ and #niðkÞ represent the area of and normal vector to the kth facet for the ith volume. On
a single flat facet, @TiðkÞ; of the element i we define the average value of the solution for the facet as

uiðkÞ ¼
1

SiðkÞ

Z
@TiðkÞ

uðrÞ dS ð21Þ

This average value on the facets of each tetrahedral, uiðkÞ; can be approximated with first- or
second-order accuracy by interpolating the solution calculated at the barycentres of the
neighbouring elements that share that facet. For cases that we know the solution on the facet,
e.g. from PEC boundary conditions, we can use the known value instead of interpolation. From
these interpolated average values, we can calculate the average of the gradient by dividing (20)
by the volume. This average of the gradient will be a second-order accurate approximation to
the gradient at the barycentre of the element.

For the gradient computation of an element having a facet on an exterior surface with
absorbing boundary conditions, we can use the idea that the incoming flux to the computational
domain is equal to zero. As a second-order approximation the value on a facet which is on an
absorbing boundary can be set equal to the solution value at the barycentre of the element.
Alternatively, higher-order interpolation formulas can be used based on calculated values on the
interior of the mesh. Although we have implemented these, they are not considered in this paper.
It has been found that the second-order interpolation works well if the outside mesh boundary is
chosen to be a large sphere.

Thus, for purposes of this paper we can provide a simple formula for calculating the gradient
at the barycentre of each finite volume:

ruðriÞ �
1

Vi

Xmi

k¼1

SiðkÞ#niðkÞðb
k
i ui þ ð1� bki Þuik Þ ð22Þ
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where for absorbing boundary conditions bki ¼ 1; when we know the value wik on the facet
uik ¼ wik and bki ¼ 0: For the case when there exists element Tik sharing the kth facet we can use
the uik value from the barycentre of the neighbouring element and bki ¼ j#niðkÞ � ðrik � rikÞj=
j#niðkÞ � ðri � rikÞj; where rik is the position vector of the barycentre of the kth facet of the ith
element, and rik is the position vector of neighbouring element’s barycentre.

4. INTEGRAL EQUATION BOUNDARY CONDITIONS

We now consider the representation of an electromagnetic field in terms of its values on a closed
surface in the same way as was done by Ziolkowski et al. [10]. The physical problem space is first
divided into two separate volumes bounded by surfaces S and S as shown in Figure 1. The
surface S bounds the whole computational region of interest and we assume that outside of the
surface S is free space. The region of interest bounded by S will contain all sources as well as
medium inhomogeneities. Now suppose we consider an observation point r which lies in the
free-space region outside of S and consider a point s on the surface S: The electric and magnetic
fields at r and at time t can be represented in terms of field values on S at a retarded time by
integrating these field values at all such points s on S: The final expression can be written as [10]

Eðt; rÞ ¼

Z
S

yðt� tÞ
4pR

f#n� ½Eþ t@tE� � Rþ ð#n � ½Eþ t@tE�ÞR� #n� ½m0@tH�g dS

Hðt; rÞ ¼

Z
S

yðt� tÞ
4pR

f#n� ½Hþ t@tH� � Rþ ð#n � ½Hþ t@tH�ÞRþ #n� ½e0@tE�g dS ð23Þ

where @t ¼ @=@t; yðtÞ is the step function and R ¼ ðr� sÞ=R2; where the distance from the source
point to the observation point is given by R ¼ jjr� sjj: Here, we let t ¼ R=c denote the retarded
time, and the notation ½f � ¼ f ðs; tkÞ is used to denote the value of function f at location s
evaluated at the retarded time.

These can be used to truncate the FVTD mesh as follows (see Figure 1). To determine the field
value at a point on the outer mesh boundary, S; instead of using local absorbing boundary
conditions, we use the IE evaluated using FVTD computed field values on an internal closed

Figure 1. Coupling of IE surface to FVTD grid.
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surface S: The surface S is made up of finite-volume facets. We also use the IE to compute the
solution at any observation points of interest inside or outside of the computational domain.

We now give a brief description of how the integral is computed on S: After discretization of
the computational domain, using tetrahedrals in our case, the surface S can be represented as a
union of NS flat surface facets Sk:

S ¼
[NS

k¼1

Sk

Hence, the integrals of Equation (23) can be approximated as a sum of influences from all these
facets Sk: The influence of the field values, computed using the FVTD technique on the FVTD
element facet Sk; on to the resulting field at point r on S can be computed with the second-order
accuracy as

Eðt; rÞ ¼
X
k

mðSkÞ
yðt� tkÞ
4pRk

f#nk � ½Ek þ tk@tEk� � Rk

þ ð#nk � ½Ek þ tk@tEk�ÞRkg � #nk � ½m0@tHk� dS

Hðt; rÞ ¼
X
k

mðSkÞ
yðt� tkÞ
4pRk

f#nk � ½Hk þ tk@tHk� � Rk

þ ð#nk � ½Hk þ tk@tHk�ÞRkgðþ#nk � ½e0@tEk�Þ dS ð24Þ

Here, denoting sk as the position vector of the barycentre of the surface element Sk;Rk ¼

jr� skj; Rk ¼ ðr� skÞ=R2
k; the retarded time for the facet of interest is tk ¼ Rk=c; ½Ek� ¼

Eðt� tk; skÞ and ½Hk� ¼ Hðt� tk; skÞ: In these expressions, #nk is the outward normal to facet Sk

having area mðSkÞ; and the values at the barycenters sk of the facets of S are obtained with the
same order of interpolation as used for the flux approximation in the FVTD scheme. This
approximation is second-order accurate because field values on each Sk are computed at the
barycentre of the facet. In order to utilize the benefits of the IE solution on the mesh boundary
we must make appropriate use of it in conjunction with the finite-volume update scheme. We
have found using numerical experimentation, that only the incoming flux values should be
calculated using the IE, otherwise numerical oscillations occur in the resulting solution. This will
now be explained.

Consider a volumetric element Ti for which one of its facets Tiðk0Þ belongs to the surface S
bounding the computational domain. We assume that the integration surface S; containing all
sources and inhomogeneities, is far enough from the exterior surface S that element Ti lies in
free space and all elements ‘near’ Ti are subject to the same electrical properties as Ti (where
‘near’ implies all elements used in an interpolatory stencil for updating). For spatial
approximations we can approximate volumetric integrals as a sum of surface integrals using
Stoke’s theorem:

1

Vi

Z
Ti

�r �H

r � E

" #
dx ¼

1

Vi

Xni
k¼1

Z
TiðkÞ

�#n�H

#n� E

" #
ds ð25Þ

There are two obvious ways of using IE solution at the barycentre of Tiðk0Þ to update the field
values in Ti: First, we can compute the solution using flux splitting for all facets except the
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boundary facet Tiðk0Þ (the latter cannot be computed in the usual manner since at Tiðk0Þ we do
not have knowledge of a solution unn which depends on the field outside the computational
domain). Then, we can use IE to compute the value unn ¼ uint at the barycentre of facet Tiðk0Þ
and therefore use uint to compute the incoming flux from outside the computational domain.
Using this technique, a general formulation for computing (25) for all elements in the mesh
(boundary or otherwise) may be written as

1

Vi

Z
Ti

�r �H

r � E

" #
dx ¼

1

Vi

Xni
k¼1

Z
TiðkÞ

ðAþð#nkÞu
n þ A�ð#nkÞfð1� dkk0Þu

nn þ dkk0u
intgÞ ds ð26Þ

A second, and somewhat simpler approach would be to compute the field uint at the barycentre
of the boundary facet Tiðk0Þ and use that field value for computing both the incoming and
outgoing fluxes. In this case, the computation of (25) becomes

1

Vi

Z
Ti

�r �H

r � E

" #
dx ¼

1

Vi

Xni
k¼1

Z
TiðkÞ

ðAþð#nkÞ þ A�ð#nkÞÞu
int ds ð27Þ

This second approach, although easier, has the drawback that it does not enforce consistency
between the IE solution and the solution computed using the usual finite-volume methods (i.e. at
the boundary the two solutions are more-or-less independent). We have found that this second
approach is not quite as good as the first: numerical oscillations arise in the solution. Thus,
results will be given using only the first method.

To use IE (23) to compute field values on the surface S we must know the field values at the
appropriate retarded times on the surface S: There are several ways to represent the surface S in
the computational domain. The most basic (and the one we have adopted) is to choose the
surface S such that it coincides with the facets of volumetric elements. Also, it is beneficial to
make the surface S as small as possible so as to limit the computational requirements for
computing the IE. Because S is selected to coincide with element facets, we must compute the
solution at the barycentres of each facet on S: To do so, we use the same interpolation
techniques (19) that we have previously used for flux approximations. We note that there are
many ways of picking the stencils for computing the field values on S: As it is our desire to
compute field values external to S from IE (23), for consistency it may be desirable to select a
stencil with more points external to S than internal to S: This is shown in Figure 2. This concern

Figure 2. Interpolation on the integration surface S:

D. K. FIRSOV AND J. LOVETRI36

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2007; 21:29–42

DOI: 10.1002/jnm



arises only for higher-order flux interpolation schemes [7] which we are not considering in this
paper.

For a surface S comprising of m facets, and a surface S composed of n facets, the
computation of the boundary values using IE (23) scales as OðmnÞ: For large problems, if m
approaches n we have the undesirable computational complexity of Oðn2Þ at each time step.
Fortunately, if this complexity becomes too expensive, it would be possible to apply some sort
of fast multipole method [11] to the time-domain IE computation which would reduce the
complexity to Oðn log nÞ or OðnÞ: Details of this approach are beyond the scope of this paper,
but we have included their mention for the possibility of future improvements.

5. NUMERICAL RESULTS

5.1. Transient scattering from a PEC sphere

We present the FVTD results for calculating the electromagnetic scattering from a PEC sphere.
The reason why we use this as the test case is that an exact eigenfunction solution, the Mie series,
is available in the frequency domain, and time-domain waveforms are easily obtained using the
inverse Fourier transform. This problem was also selected as a benchmark for the investigation
of different high-order interpolation schemes for our FVTD engine [7]. In the present case, the
FVTD algorithm we choose to couple with the IE truncation scheme uses the second-order
MUSCL-type scheme for spatial approximation and the predictor–corrector scheme for time
integration. We also show results of using the second-order MUSCL-type scheme with the
second-order absorbing boundary condition applied on the surface of a large sphere which
terminates the boundary.

This first case consists of a PEC sphere having a 3-m radius centred in our computational
domain. The incident wave is an x-polarized electric field plane-wave transient pulse (see Figure 3).
The time variation of the transient pulse, gðtÞ; is chosen as the derivative of a Gaussian:

gðtÞ ¼
2Aðt0 � tÞ

b2
e�ððt�t0Þ=bÞ

2

yðtÞ ð28Þ

Figure 3. Scattering from a PEC sphere: location of test points and computational domain geometries for
(i) the MUSCL and ABC test and (ii) the integral equation hybrid test cases.
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with the parameters selected as A ¼ 1; b ¼ 1:14� 10�8 s and t0 ¼ 4:0� 10�8 s: This results in
significant energy at the free-space wavelength of about 3m, i.e. in the resonance region of the
sphere. The field quantities, u; were computed at those test points shown in Figure 3. For the
case of local MUSCL-absorbing boundary conditions, the PEC sphere was put inside a free
space spherical mesh having a radius of 15m to avoid large reflections from the boundary. This
large mesh was required to achieve reasonable results using only second-order local boundary
conditions.

For the case of IE hybrid technique, a mesh with a cubical outer boundary was chosen. The
integration surface was chosen as a sphere of 5m radius and the S surface cube had a diagonal
length of only 16m (see Figure 3).

The computational results for the most difficult case of side-scattering point ð7; 0; 0Þ are shown
in Figure 4. The mesh that was used was an unstructured tetrahedral mesh with an average edge
length of 0.75 m. The results were found to be in excellent agreement with the exact solution for
all three electric field components and for several test-point locations which were tried. Note
that the side-scatter point is also the closest to the corner of the cubical outside mesh boundary.
Typically, when using local absorbing boundary conditions, such a point would receive a large
amount of numerical reflections. The IE technique does not show much difference between
points located close to corners of the outside mesh boundary and those located near smoother
parts of the outside boundary. Using a laptop computer the simple ABS solution required
approximately 30min whereas the IE-based solution required approximately 3 h.

5.2. Transient scattering from two PEC cubes

To demonstrate the potential of the hybrid FVTD/IE method we show results for the transient
scattering from two identical PEC cubes. Three cases are considered: (i) using the standard

0 50 100 150 200 250

0

0.5

−0.5

−1

−1.5

1

1.5
x 107 Side Scattered Gaussian Pulse at Location (7, 0, 0)

Time (nsec)

M
ag

ni
tu

de
 [V

/m
]

Analytic Solution

IE boundary conditions

Absorbing Boundary Conditions

Figure 4. Computational results. Ex at the side-scatter point ð7; 0; 0Þ:
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FVTD with both cubes inside a single mesh, with second-order absorbing boundary conditions
applied at a large distance from the scatterers, (ii) using the FVTD/IE algorithm with a single
integration surface S and a single exterior boundary S contained both cubes, and (iii) a second
FVTD/IE case wherein each cube is contained inside its own FVTD mesh with its own S and S
surfaces. These are depicted in Figure 5.

The edges of each cube measure 6m in length and the distance between the centres of the
cubes is 12m. The incident plane wave electromagnetic field is propagated along the x-direction.
The time variation of plane wave is the same as for the PEC sphere example. Note, that in case
(iii) the field coupling between the two cubes is modelled by the IE and that although there are
two S and S surfaces, a single update algorithm is implemented: for each point on either S
surface the IE must be evaluated on both S surfaces. This gives an accurate formulation of the
coupling between the two PEC cubes. Energy is propagated from one domain to the other via
the IE boundary conditions.

The observation point was taken between PEC cubes as shown in the figure. Because the
observation point was not located exactly at a finite-volume barycentre, the field at the
observation point was computed with the same interpolation procedure as was used for
approximating the field at the facet centres. For case (ii), where a single FVTD/IE mesh was
used, the IE was used to obtain the field value at the observation point. The results of the
computations showed good agreement for all three cases and are shown in Figure 6.

Several other cases, not shown here, indicate that we can use the IE boundary conditions
even to compute fields at observation points outside of the computational domain and

Figure 5. Transient scattering from two PEC cubes; three mesh cases.
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that the interaction between isolated computational subdomains are accurately modelled. No
late-time instabilities were present in any of the test cases that we have run to date. We have
also found that the outer boundary can be placed almost arbitrarily close to the scatterer
without loss of much accuracy, but we have not quantified the effects on numerical accuracy
when this is done.

As with the previous example the IE solution took more time to compute. Using a laptop
computer the simple ABS solution required approximately 40min whereas the IE-based
solution required approximately 5 h.

6. CONCLUSIONS

We have shown that using a time-domain IE as a boundary condition for the FVTD scheme
provides excellent results. The agreement with the analytic solution is almost perfect for
scattering from a PEC sphere and using a second-order absorbing boundary condition would
require a much larger FVTD mesh. The three main advantages of our hybrid FVTD/IE method
are that (1) it allows geometrical objects to be located arbitrarily close to the mesh boundaries
without compromising the physics of the problem, (2) it couples the physics of unconnected
meshes so that distant scatterers can be surrounded by their own local mesh, thus reducing total
mesh size, and (3) the same IE formulation can be used to compute electromagnetic field values
at points outside the mesh. Although we have not described the numerical integration in detail,
it is obvious that the integral requires a convolution-type time integration. This requires that
field components on the integration surface be stored for the whole computation time.
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Figure 6. Two PEC cube and an Ez component of the scattered field.
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Currently, the IE computations take an appreciably longer time than running the
simple absorbing boundary conditions but we are currently investigating methods of
reducing the storage requirements and speeding up the algorithm. This will be the topic
of a future paper. The purpose of this paper was to show the achievable accuracy using the
method.
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