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October 1, 2003 Due Date: Wednesday, October 22, 2003

As was discussed in class, Maxwell’s equations for the one-dimensional time-domain case can be written
as

where the solution vector u is given by

, and , , , .

For the case of the grid function given by  and shown in Figure 1, write a program to

calculate the value of  using the discretized analytic solution and the Yee version of the Leap-Frog

scheme. Comment the code and include it as an appendix to your assignment. The initial conditions, ,

are given by the function shown in Figure 2.

Figure 1. The 1-D FDTD Grid

Figure 2. Initial Conditions:  and .
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Plot the spatial distribution of the solution vector, i.e. both  and , at t = 100 ∆t for both numerical

methods (Note that in the Yee algorithm n = 100 means  and ). For the Yee algorithm use

a time step of ∆t = ∆x/c. What happens if in the Yee algorithm if you set ∆t = 1.001(∆x/c)? Plot the solution
vector using the Yee algorithm at t = 100 ∆t if ∆t = 0.8(∆x/c). Comment on the results.

Using the initial Gaussian electric field distribution shown in figure 3 as your initial conditions, modify
your programs to include perfectly conducting walls at the points i = 300 and i = 0, a dielectric slab of
relative permittivity εr = 3 between the points i = 200 and i = 250 inclusive, and a lossy slab of
conductivity σ = .01 [S/m] between the points i = 1 and i = 50 inclusive (see figure 4).

Plot the electric and magnetic fields at times n = {25, 50, 75, 100, 125, 150, 175, 200} across the whole x
axis.

Figure 3. Initial conditions on electric field: 

Figure 4. Dielectric slab and perfectly conducting boundaries.
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Pseudo Code (Discretized Analytic Solution)

1) declare E(300), H(300), Enew(300), Hnew(300)
2) set eps = 8.854e-12, mu = 4πe-7, Z = sqrt(mu/eps), Y = 1/Z
3) for i = 1(1)300 / initialize all fields to zero
4) set E(i) = 0.0, H(i) = 0.0
5) end
6) for i = 146(1)150 / set triangular wave as initial conditions
7) set E(i) = (i-145)*20, E(i+5) = (150-i)*20
8) end
9) for n=1(1)100 / time steps
10) for i = 2(1)299 / calculate new field values from old
11) set Enew(i) = 0.5*[E(i+1)+E(i-1)+Z*(H(i-1)-H(i+1))]
12) Hnew(i) = 0.5*[H(i+1)+H(i-1)+Y*(E(i-1)-E(i+1))]
13) end
14) for i = 2(1)299 / replace old field values with new current ones
15) set E(i) = Enew(i)
16) H(i) = Hnew(i)
17) end
18) end
19) output E(i), H(i), i=1(1)300 / output the field values after 100 time steps

Pseudo Code (Yee version of Leap-Frog Scheme)

1) declare E(300), H(300)

2) input ∆x, Courant / input spatial step size and Courant number
3) set eps = 8.854e-12, mu = 4πe-7, m = 1/mu, e = 1/eps
4) coef = 0.5 / coef of 0.5 is used in the first time step
5) C = sqrt(m*e) / maximum speed of propagation
6) ∆t = ∆x*Courant/C / set time step
7) for i = 1(1)300 / initialize all fields to zero
8) set E(i) = 0.0, H(i) = 0.0
9) end
10) for i = 146(1)150 / set triangular wave as initial conditions
11) set E(i) = (i-145)*20, E(i+5) = (150-i)*20
12) end
13) for n=1(1)100
14) if n=2 set coef = 1.0
15) for i = 2(1)299 / be careful here: should be two loops later
16) set H(i) = H(i) - coef*(∆t/∆x)*m*[E(i+1)-E(i)]
17) E(i) = E(i) - (∆t/∆x)*e*[H(i)-H(i-1)]
18) end
19) end
20) output E(i), H(i), i=1(1)300 / output field values after 100 time steps


