DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

24.781 COMPUTATIONAL ELECTROMAGNETICS

ASSIGNMENT 2 Part A
 Time Domain Electromagnetics in 1-D by Finite Difference Methods

October 1, 2003
Due Date: Wednesday, October 22, 2003

As was discussed in class, Maxwell's equations for the one-dimensional time-domain case can be written as

$$
\partial_{t} \boldsymbol{u}(x, t)+A \partial_{x} \boldsymbol{u}(x, t)=\mathbf{0}
$$

where the solution vector \boldsymbol{u} is given by

$$
\boldsymbol{u}=\left[\begin{array}{l}
E_{y} \\
H_{z}
\end{array}\right], \text { and } A=\left[\begin{array}{ll}
0 & e \\
m & 0
\end{array}\right], e=\frac{1}{\varepsilon}, m=\frac{1}{\mu}, c^{2}=m e
$$

For the case of the grid function given by $\boldsymbol{u}_{i}^{n} \cong \boldsymbol{u}(i \Delta x, n \Delta t)$ and shown in Figure 1, write a program to calculate the value of \boldsymbol{u}_{i}^{100} using the discretized analytic solution and the Yee version of the Leap-Frog scheme. Comment the code and include it as an appendix to your assignment. The initial conditions, \boldsymbol{u}_{i}^{0}, are given by the function shown in Figure 2.

Figure 1. The 1-D FDTD Grid

Figure 2. Initial Conditions: $\left(E_{y}\right)_{i}^{0}$ and $\left(H_{z}\right)_{i}^{0}$.

Plot the spatial distribution of the solution vector, i.e. both E_{y} and H_{z}, at $t=100 \Delta t$ for both numerical methods (Note that in the Yee algorithm $n=100$ means $\left(E_{y}\right)_{i}^{100}$ and $\left.\left(H_{z}\right)_{i}^{100.5}\right)$. For the Yee algorithm use a time step of $\Delta t=\Delta x / c$. What happens if in the Yee algorithm if you set $\Delta t=1.001(\Delta x / c)$? Plot the solution vector using the Yee algorithm at $t=100 \Delta t$ if $\Delta t=0.8(\Delta x / c)$. Comment on the results.

Using the initial Gaussian electric field distribution shown in figure 3 as your initial conditions, modify your programs to include perfectly conducting walls at the points $i=300$ and $i=0$, a dielectric slab of relative permittivity $\varepsilon_{r}=3$ between the points $i=200$ and $i=250$ inclusive, and a lossy slab of conductivity $\sigma=.01[\mathrm{~S} / \mathrm{m}]$ between the points $i=1$ and $i=50$ inclusive (see figure 4).

Plot the electric and magnetic fields at times $n=\{25,50,75,100,125,150,175,200\}$ across the whole x axis.

Figure 3. Initial conditions on electric field: $E_{i}^{0}=100 \exp \left[-\left(\frac{(i-150)^{2}}{100}\right)\right]$

Figure 4. Dielectric slab and perfectly conducting boundaries.

Pseudo Code (Discretized Analytic Solution)

1) declare $\mathrm{E}(300), \mathrm{H}(300)$, $\operatorname{Enew}(300)$, Hnew(300)
2) set eps $=8.854 \mathrm{e}-12, \mathrm{mu}=4 \pi \mathrm{e}-7, \mathrm{Z}=\operatorname{sqrt}(\mathrm{mu} / \mathrm{eps}), \mathrm{Y}=1 / \mathrm{Z}$
3) for $\mathrm{i}=1(1) 300 \quad /$ initialize all fields to zero
4) \quad set $\mathrm{E}(\mathrm{i})=0.0, \mathrm{H}(\mathrm{i})=0.0$
5) end
6) for $\mathrm{i}=146(1) 150 \quad$ / set triangular wave as initial conditions
7) \quad set $\mathrm{E}(\mathrm{i})=(\mathrm{i}-145) * 20, \mathrm{E}(\mathrm{i}+5)=(150-\mathrm{i}) * 20$
8) end
9) for $\mathrm{n}=1(1) 100 \quad /$ time steps
10) for $\mathrm{i}=2(1) 299 \quad /$ calculate new field values from old
11)
12)
13)
14)
15)
16) end
17) output $\mathrm{E}(\mathrm{i}), \mathrm{H}(\mathrm{i}), \mathrm{i}=1(1) 300$ / output the field values after 100 time steps

Pseudo Code (Yee version of Leap-Frog Scheme)

1) declare $\mathrm{E}(300), \mathrm{H}(300)$
2) input Δx, Courant input spatial step size and Courant number
3) set eps $=8.854 \mathrm{e}-12, \mathrm{mu}=4 \pi \mathrm{e}-7, \mathrm{~m}=1 / \mathrm{mu}, \mathrm{e}=1 / \mathrm{eps}$
4) \quad coef $=0.5 \quad$ / coef of 0.5 is used in the first time step
5) $\mathrm{C}=\operatorname{sqrt}(\mathrm{m} * \mathrm{e}) \quad /$ maximum speed of propagation
6) $\Delta t=\Delta x *$ Courant/C / set time step
7) for $\mathrm{i}=1(1) 300 \quad /$ initialize all fields to zero
8) \quad set $\mathrm{E}(\mathrm{i})=0.0, \mathrm{H}(\mathrm{i})=0.0$
9) end
10) for $i=146(1) 150 \quad /$ set triangular wave as initial conditions
11)
12) end
13) for $n=1(1) 100$

$$
\text { if } \mathrm{n}=2 \text { set } \text { coef }=1.0
$$

$$
\text { for } \mathrm{i}=2(1) 299 \quad / \text { be careful here: should be two loops later }
$$

$$
\text { set } \mathrm{H}(\mathrm{i})=\mathrm{H}(\mathrm{i})-\operatorname{coef} *(\Delta \mathrm{t} / \Delta \mathrm{x}) * \mathrm{~m} *[\mathrm{E}(\mathrm{i}+1)-\mathrm{E}(\mathrm{i})]
$$

$$
\mathrm{E}(\mathrm{i})=\mathrm{E}(\mathrm{i})-(\Delta \mathrm{t} / \Delta \mathrm{x}) * \mathrm{e} *[\mathrm{H}(\mathrm{i})-\mathrm{H}(\mathrm{i}-1)]
$$

end
end
output $\mathrm{E}(\mathrm{i}), \mathrm{H}(\mathrm{i}), \mathrm{i}=1(1) 300 \quad /$ output field values after 100 time steps

