
-  1 -

On the Velocity of Transient Plane Waves

When discussing the mathematical representation of a transient plane wave some confusion is apt to

result on the definition of velocity. The reason for this confusion is that there is much greater familiarity

with time-harmonic representations of plane waves. In this short exposition the nature of a transient plane

wave will be described in a relatively general framework. We want to describe transient waves which, if we

take a snap-shot in time, are constant along planes in 3-D space and which travel undeformed with a speed

given by the speed of light in the medium, say . Therefore, we are assuming a non-dispersive medium

having a constant permittivity, , and permeability, , over frequency and with the speed of light in the

medium being given as  (also constant over frequency). (We will use speed to denote a scalar

quantity and the term velocity to denote a vector quantity. This usage is consistent with standard usage in

physics.)

If the plane-wave is propagating in the  direction, where  is a constant unit vector, then planes

perpendicular to  can be described by the equation

(1)

where  is the position vector in 3-D space with respect to a set origin, and  is the perpendicular distance

from the origin to a particular plane. This relationship is depicted in Fig. 1.

Figure 1. General orientation of a transient plane wave propagating in the  direction.

We can represent planes moving in the direction  by planes whose perpendicular distance from the

origin changes with time, that is

and we see that the distance from the origin is given by the function of time, . Notice that the unit vector

 is dimensionless. Since the planes are travelling with speed  in the direction  the velocity is defined as
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(2)

and has units of meters per second, m/s, or whatever units  is given in.

Now since the plane wave propagates a distance  in an amount of time , the expression 

is a constant which can be used as the argument in the functional description of the transient plane wave.

That is, the function

describes a plane wave which at any location  has the functional description  and at the

origin will be a function of time given by .

Alternatively, if we want the functional behaviour at the origin to be specified by , then we can use

the argument  or equivalently . Therefore, the function

(3)

represents plane waves propagating in the direction , with speed , velocity , and having a

functional behaviour of  at the origin.

I. Relationship to phase speed

It is traditional to represent time-harmonic plane waves using the functional argument

, also called the instantaneous phase, in any of the harmonic functions. For example, it

is customary to use the complex function

(4)

as the prototypical time-harmonic plane wave. Letting  we see that this represents a plane wave

propagating in the  direction, i.e. the direction of  which is the so called vector propagation constant. If

we re-write this argument as

we can identify  as the propagation constant and the vector propagation constant is related to

the velocity as . Note that in terms of the individual cartesian components we have

, , (5)

with

v c0â=
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. (6)

The components of the velocity are written in terms of the components of the vector propagation constant as

, , . (7)

Now, following standard phasor notation, the general complex wave function is represented as

where any of the time-harmonic functions can be recovered by multiplying with  and taking the real or

imaginary part as required. The spatial function  is called the phase. For a change in position given by

the corresponding change in phase is

.

A surface of constant phase is defined by , which means that  must be perpendicular to .

For the case  we have  and therefore on plane surfaces perpendicular to  the phase

will be constant.

For a change in time and space given by  and , respectively, the corresponding change in the

instantaneous phase is given by

. (8)

This will be zero along space-time surfaces defined by

or when

. (9)

The term  defines the rate of change of position along which the instantaneous phase is zero and can

therefore be defined as the velocity of the constant phase surfaces, , when  satisfies the

above equation. For example, for plane waves  and we have

(10)
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as before. Equation (9) should be thought of as the equation which defines the surfaces of constant

instantaneous phase.

Another interpretation of the meaning of (9) can be made by re-writing it as

(11)

where  is the speed of the surface of constant phase in a direction which subtends an angle  with .

Thus we have

(12)

which is minimum in the direction of  where . For plane waves,  and  is

the magnitude of the velocity, but at a direction perpendicular to  we have the speed .

Now it is traditional (see Harrington p. 86 [1]) to define phase speed as follows:

“The phase velocity1 of a wave in a given direction is defined as the velocity of surfaces of constant 

phase in that direction.”

which is just a definition which follows the interpretation given by (12). Thus, in our present notation, the

phase speeds along the cartesian coordinates are defined by

, , (13)

but these are not the components of a vector and should not be associated with the components of the

velocity . All these tell us are the rates of change of the instantaneous phase along the cartesian

coordinates. Note that for the case where one of the components of the wave vector goes to zero the

corresponding phase speed goes to infinity using this definition! For example, if  then 

whereas the true  component of the velocity is . Note also that

confirming the assertion that the phase speed is not a vector. This does not imply that we cannot define a

velocity which is indeed a vector as we have above.
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1. Note that Harrington is using the term velocity inappropriately since the term velocity is reserved for a vec-
tor quantity while the term speed is used for a scalar quantity.
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